Study of enterprise load-balancing algorithms... 69

3-6eJ1iM Pazgen 3 Section 3
Nudopmarnka Nudopmarnka Computer
science
UDC 519.872

Study of enterprise load balancing algorithms using model-based design

Aidarov K.A., PhD student, al-Farabi Kazakh National University, Almaty,
Republic of Kazakhstan, +77013460160, E-mail: kanataidarov@yahoo.com
Almatov A.Zh., Student, al-Farabi Kazakh National University, Almaty,
Republic of Kazakhstan, +77476273606, E-mail: abat _aktobe 95Q@Qmail.ru

Given work describes load balancing algorithms for external services with unspecified clients used
in real enterprise facilities. Simplest example of such service is a pair of a web server and a
browser. Principles of load balancing, their pros and cons are considered, their implementation
and applicability to different services are described. Algorithms of load balancing for DNS Round
Robin, Direct Routing, Redirect methods are studied. Result of model implementation for cluster
system allowed to obtain estimations of oscillation effect decrease between its overloaded and
normal states. As a conclusion recommendations for using implemented model of queuing network
for different enterprise services of user request processing are given.

Key words: load balancing, discrete-event simulation, model based design, probabilistic modeling.

Moaenbre 6arbpITTAJIFAH 2K00AJIay apKbLIbI XKYKTey/di 6e30eHaeyiH, eHAipicTik ajropurMaepin
3eprTey
Aiinapos K.A., nokropant, oin-Papadbu arsingansl Kazak YATTeIK yHEBEpcuTeTi, AnMarsl K., Kazakcran
Pecniybuinkacsr, +77013460160, E-mail: kanataidarov@yahoo.com
Asmnvaros A.2K., crynent, oi-@apabu arbiaganbl Kasak YirTeik yHuBepcureri, Ajmars! K., Kasakcran
Pecriy6iukacel, 77476273606, E-mail: abat _aktobe 95@Qmail.ru

Bepisren xkymbic, MIbIHABI OHIPICTIK MeKEMeJIEP/Ie KOJIIAHBLIATHIH, APHANBI eMec KJIMeHTTEP] Oap
CHIPTTail KbI3METTEp YIIiH 0e30eH ey aaropuTMIepin cunarTaiiasl. ByHmail KbI3MeTTiH eH Kapa-
maiibIM MBICAJIBI PETiHIE BeO-cepBepai HeMece Opay3epai aiayra Oosrazel. besbeHaey npuHIumrepi,
OJIAP/IBIH, APTHIKIIBLIBIKTAPEI MEH KEMIITLITIKTEP] KAPACTBIPBIIFaH, TYPJI KbI3METTED YIIIiH icKe achl-
PBULyJIapbl MEeH KOJJIAHBIMIBLIBIFGl cunarrajrad. DNS Round Robin, Direct Routing, pejupexr
yaicrepi yrrin 6e36eney anropurmepi 3eprresres. Mojenp i KiacTepaiik Kyiie YIIIiH icke achIpy
HOTVKecl OOWMBIHINA, YKYHEeHIH achlpa »KYKTEJINeH YKOHE KAJIBIITHI YKarJaillapbl apachblHIAFbl OC-
MMJLTSIIAST 9CEPiHiH Kemyi 6akbIanIbl. Maka aHbIH COHBIH/IA iCKe aChIPBLIFAH YKEJUIK KYHeHIH
MOJIEJTiH, TYPJIi KOJJAHYIIBLIAPIBIH, CYPAHBICTAPBIH OHJIEY KBI3METTEPl VIMiH, KOJIIaHyFa HYCKa-
VIIBIKTAP KeJITipiJireH.

Tyitin ce3aep: KykTeyi 6e36eH,1ey, TUCKPETTi-OKUFaIbl MOJEbIEY, MOJIe/IbIe OAFbITTAIFAH KO-
6ajiay, BIKTUMAJIIIBIK, MOJIEJIbIIEY

WUccnenoBanue IIPOMBIHIJIEHHBIX aJITOPUTMOB 0AaJIAHCUPOBKY HArPY3KH 4depes3
MO/1€JIbHO-OPUEHTUPOBAHHOE IIPOEKTUPOBAHUE
Aitnapos K.A., nokropant, Kazaxckuii HalmoHaJbHBIN yHUBEpcuTeT uM. ajab-Dapabu, r. Ajmarsr,
Pecnybnuka Kazaxcran, 477013460160, E-mail: kanataidarov@yahoo.com
Asmnvaros A.2K., crynent, Kazaxckuil HallmoHaILHBINA YyHUBEPCUTET UM. ajib-Papabu, . AjMarsl,
Pecniybuinka Kazaxcran, +77476273606, E-mail: abat _aktobe 95@mail.ru

Becrauk KaszHY. Cepus maremaruka, mexanuka, nuadopmaruka Nel(93)2017

70 Aidarov K.A., Almatov A.Zh.

Hannass pabora OnuchbIBaeT AJTOPUTMBI OAJTAHCHPOBKU JIJIsT BHEIIHUX CEPBUCOB C HECIEIINAJId-
3UPOBAHHBIMU KJINEHTAMU, UCIOIb3yeMbIX B HacTodmux mpoMbinuieHHbx 11O dax. TIpocreiimmii
[IpUMEDP TAKOI'O CEPBHCA M KJIMEHTa — 3TO Beb-cepBep u Opaysep. PaccMOTpeHbI HEoCpeICTBEH-
HO IIPUHIUIILI 0AJIAHCUPOBKU, UX ILJIFOCHI U MHHYCHI, OIIMCAHA UX PeaJu3alus U IPUMEHUMOCTH
K pa3jIMYHbIM cepBucam. VlcciieoBaHbl ajrOpuTMbl OAJIaHCUPOBKU HArpy3Kd i MeTojoB DNS
Round Robin, Direct Routing, Pequpext. [lo pesyibpraram peaju3anuu MOIENH st KJIACTEPHON
CUCTEMBI TI0JTy YEHBI OTICHKH yMeHbITeHus 3 (HeKTa OCIULIAINNA MEXK/Ty €€ EPErpyKeHHbIM 1 HOP-
MAaJIbHBIM COCTOSHUSIMU. B 3aK/II0OUeHne JaHbl PEKOMEHIAINN 110 UCIOIbL30BAHUIO PEeaTn30BAHHOMN
MOJIEJIN CETEBOI CUCTEMBI B PA3JINYHBIX [IPOMBIIIJIEHHBIX CEPBACAX 00PabOTKU I0JIb30BATEIbCKUAX

3aITPOCOB.
KuaroueBble cJyioBa: 0ajaHCHUPOBKA HATPY3KH, JIUCKPETHO-COOBITUHHOE MOJIE/TUPOBAHUE,

MO/I€JIbBHO-OPUEHTUPOBAaHHOE IIPOECKTUPOBaAHNE, BEPOATHOCTHOE MOJAEJINPOBaHUE

1 Introduction

In many Internet projects, web server is running on a single physical server gradually limiting
performance achieved by the server. The most obvious solution in this case is to upgrade
hardware equipment. But if one goes this way, then after some time it becomes impossible to
upgrade equipment furhter because of limited space and cost efficiency. Therefore, one needs
to convert his project to clustered model instead signle server one. Clustering is beyond the
scope of this work and thoroughly described in (Teo, 2001: 185-195).

Now the question arises is how to balance load between servers. In addition to direct
load distribution is necessary to solve a number of issues. These include increasing
resiliency (uninterrupted operation of the project in case of failure of one of servers), and
protection against certain types of attacks. For example, from the opening large number of
"empty" connections, where nothing is transmitted. In given work considered three algorithms
implementing load balancing methods and they modeled using technology of Model-Based
Design.

Working on the basis of the model is becoming more and more popular trend in development
of a software for systems with clustered resources. On websites of manufacturers of software
tools, one can find a lot of success stories, reports on improving the efficiency up to 50%, a
significant reduction of errors in the design and a more rapid increase in the level of maturity
of developed functions just on the basis of development models (Navarre, 2002: 205-216).
Constructed models allow to model three methods of load balancing in distributed systems,
namely DNS Round Robin, Direct Routing, redirect. Of course all three models can be
implemented in a cluster environment.

2 Related works

All of reviewed methods and works use queuing networks and their respective algorithms
based on the queuing theory (Mitrani, 2004). Studied algorithms of load balancing can be
classified into three categories: static, dynamic and adaptive (Al-Amri, 2002: 165-178).

A system described in work (Barros, 2007: 241-255) is a dynamic method which executes
programs solving the problem based on "divide-and-conquer"approach on systems with
distributed memory. Given system provides primitives for organization of parallel operation
of program and uses Random Stealing algorithm (Wrzesinska, 2007: 425-436) for distribution
of load between clusters.

ISSN 1563-0285 Journal of Mathematics, Mechanics and Computer Science Series Ne1(93)2017

Study of enterprise load-balancing algorithms... 71

Random stealing algorithm fully distributed load balancing algorithm which initiates
connection as soon as task being finished and load balancing partner will be chosen randomly
among neighbor nodes. Proof of stability of the algorithm for systems with full graph structure
written in (Wimmer, 2013: 315).

Another system described in (Eckstein, 2015: 429-469) built as a framework written in
C'++/M PI in order to implement general algorithms of branch and bound method (Krislock,
2017: 1-23). It uses Inversion of Control principle (Martin, 2014) for interaction with code
of branch and bound method. Given system optimized in a way that not all nodes are
participate in load balancing, only nodes load of which deviates from average on a predefined
value. Information about load of nodes distributed through complex mechanism based on
linked tree between nodes.

Paper (Aversa, 2005: 1034-1047) offers an algorithm of load distribution for master-slave
systems and possesses a hierarchical structure. System consists of three types of nodes:
workers, masters and controller. Master defines idle node and sends a task to it from his
local pool of subtasks. Worker receives this subtask and executes it sequentially and after
finishing sends back results. Job of controller is to monitor load of masters which summarizes
load of their respective workers and retranslates subtasks between master nodes if necessary.
Work (Mazzucco et al., 2007) studies issue of building optimal tree structure for distributed
networks of grid-services. A system of many nodes considered using queuing networks
theory, an average processing time of a single job calculated in an open model for different
configurations of interactions between nodes. The structure of systems represented as a tree
for organization of interaction between nodes using master-slave paradigm.

Paper (Kameda, 1997: 35-97) arises response time minimization problem for distributed
system. System modeled as queuing network consisting of M/M/1 servers merged into
arbitrary topology network. In paper presented algorithm for parametric by ¢ study of optimal
distribution of jobs on servers with complexity O(n?M) and algorithm of construction of
optimal distribution for fixed ¢t of O(mMlogn) complexity where M is a complexity of finding
optimal solution (Kontogiannis, 2014: 144).

Mean value analysis method (Geist, 1982: 67) applied to system with closed queuing networks
for calculation of parameters. There are exact and approximate methods of mean value
analysis. Last reviewed paper considers exact method for closed networks with single class of
requests.

3 Material and methods

There are quite a bunch of different algorithms and methods of load balancing. Selecting
specific algorithm must be justified, first, by specifics of certain project, second, arisen from
goals of the project. In order to find theese goals it necessary to focus on following (Waraich,
2008: 1263-1265) when considering appropriate method for one’s own project:

e Justness. It must be guaranteed that for processing of each request system resources
allocated and do not allow situation when single request being processed and others
wait for their turn;

e Effectiveness. All servers processing requests must be busy 100%. It is desirable not to
allow situation when one of servers being idle waiting requests, despite given situation

Becrauk KasHY. Cepusi maremarnka, Mexanuka, uadopmaruka Nel(93)2017

72 Aidarov K.A., Almatov A.Zh.

is quite common and this property cannot be always achievable.

e Minimizing request execution time. Time between start of processing of single request
(its queuing for processing) and finishing of it must be minimized.

e Minimizing response time. Time of response to user request also must be minimized.
Other desirable (but not necessary) properties of an algorithm are following:

e Predictability. It is necessary to clearly understand in which situations and at which
loads algorithm will be efficient for solving given tasks;

e Even distribution of system resources;

e Scalability. Algorithm must preserve its state and stay operational at sudden increase
of incoming load.

3.1 DNS Round Robin

The easiest method of balancing is the use of DNS Round Robin algorithm (Borkar, 2011:
198-201). The essence of it is that it creates multiple DNS-records of type A for the domain

in the DNS-server. DNS-server returns the record of type A in an alternating cyclic order
(Figure 1).

sitc.com. INAL1.1.1.1

site.com. IMA2.2.2.2 —

sitec.com.IMNA3.3.3.3 r

DNS
server
domain

site.com
Caching
client E
senver

DNS
A .

_ server service
Client

Figure 1 — Load balancing with DNS Round Robin

Method Pros

ISSN 1563-0285 Journal of Mathematics, Mechanics and Computer Science Series Ne1(93)2017

Study of enterprise load-balancing algorithms... 73

e [t absolutely does not depend on the high-level protocol. That is, this method can be
used by any protocol, where an appeal to the server is named;

e Method does not depend on the server load. Due to the fact that there is a DNS-caching
server, we do not care how much we will have customers — at least one or millions;

e Method does not require communication between servers. Therefore, it can be used for
balancing the local (this balancing of servers within a data center, for example) and for
the global balancing, when we have a few data centers, where server together almost
have nothing to do;

e The main advantage of the method - it is a low cost solution. If we have a project,
domain, DNS-server, we only need to add some records in DNS, to move to this method
of balancing.

Method Cons

e [t is difficult to shut down servers that do not respond or have failed. VDNS there
caching. Recording removed, and customers no longer use it only after a time, which
is given by the parameter TTL (Time To Live) in the DNS-zone. In addition, some
providers have the DNS-servers that cache entry is forced to a much longer time. We
even faced with a situation where entry has been removed from the DNS, and on her
customers continued to go another year;

e [t is very difficult to distribute the load between servers in the correct proportions. The
only way to do this is to provide for each server on several IP-addresses so that their
number was in proportion to that part of the load, which should go to them. This is a
minus, as the [P-address, we usually do not have much.

3.2 Direct Routing

On balancer having a certain IP-address and responds to the ARP, comes first packet
connection. It determines that he was first. Need an algorithm it is sent to the correct server,
changing the MAC-address of the place of destination (destination address). Then, the IP-
address is written in a certain connection table. If this is not the first packet, it is simply
search the connection table. It turns any server processes this compound, and the package is
recovering there. The most common solution is now software implementations of this method
is called the Linux Virtual Server. The URL-terminology, this method of balancing is called
direct routing (Direct Routing, Figure 2).
Method Pros

e Independence from the high-level protocol. One can balance using HTTP, FTP or
SMTP - the difference will be negligible;

e There balancing method without a dedicated load balancer. With a small number of
servers may be relevant;

Becrauk KasHY. Cepusi maremarnka, Mexanuka, uadopmaruka Nel(93)2017

74 Aidarov K.A., Almatov A.Zh.

INTERNET \
e
Client e
4444 /
sre: ip 3.3.3.3, mac e;g:eeieie Srciip 2.2.2.2, mac b:b:bibib:b
Dst: ip 2.2.2.2, mac d;d:d:d:d:d Dst: ip 3.3.2.3, mac ejgig:eie;
1.1.1.1 I
5.3.5.5

src: ip 3.3.3.3, mac d:d:d:d:d:d
Dst: ip 2.2.2.2, mac b:b:b:bibih [P=pl | 2:2:2:2 i

3.33.3 I

—_—

Figure 2 — Load balancing with Direct Routing

e [t is possible to send the replies by balancer. Given that, for example, the protocol
HTTP response size is typically an order of magnitude larger than the size of the
request, then there is a fairly strong economy of resources;

e Relatively low resource consumption.

Method Cons

The obvious disadvantage of this method is that all servers must be in the water and the same
network segment. Need a specific configuration of servers and network equipment. Therefore,
this method is not always convenient and is applicable.

3.3 Redirect

There is some balancer that when referring to the service (eg, http://site.com) gives the client
a redirect to a particular server (for example, http://server2.site.com). In the case of HTTP
it will look like "HTTP redirect 302". Thus, the redirect code will look like "temporarily
moved" (moved temporary, Figure 3).

Method Pros

ISSN 1563-0285 Journal of Mathematics, Mechanics and Computer Science Series Ne1(93)2017

Study of enterprise load-balancing algorithms... 75

Balancer

Server 1

o

Client

Server 2

INTERNET =]

Figure 3 — Load balancing by redirecting

o If the request is sufficiently "heavy it sometimes makes sense to use a redirection,
even for global balance. We have a load balancer that sends via redirects requests
for processing in different data centers;

e The method also allows users to distribute different types of requests to different servers;
e Queries may well be analyzed.
Method Cons
e [t is, as has been said, applies to a very small number of high-level protocols;
e For the client to each request, it turns out, it made two requests;

e One-to our redirector, one- to the server that handles the connection. This increases
the time in which the client will receive a final answer to customers request.

4 Results and discussion

Analytical representation of algorithms implemented in the form of model-oriented design
models with intention to further verify them. For this purpose, the model-oriented design
tool Mathworks Simulink (Simulink, 2016) was used. For given paper currently only DNS
Round Robin algorithm implemented in model’s Scheduler block, but other algorithm
implementations also quite trivial to build and will be implemented further.

The SimEvents framework (SimEvents, 2016) in Simulink is designed for visual modeling of
processes with discrete-event semantics, including simulating the behavior of a multiprocessor
/ multicore system with unstable resources. This framework allows to simulate the effects

Becrauk KasHY. Cepusi maremarnka, Mexanuka, uadopmaruka Nel(93)2017

76 Aidarov K.A., Almatov A.Zh.

of planning (delays, etc.) and to explore the design area of a running task by analyzing
the impact of decisions made in planning on the performance of management design. The
framework provides control algorithms and makes it possible to smoothly transition to
implementing the algorithm from the model through automatic code generation technologies.

[Mogenb nnaHUpoBLYWKa ANst MYMETMIPOLECCOPHON CUCTEMbI YNpaBneHus |
ApPXUTEKTYPHbIE KOMMNOHEHThI
%
Mutex
CPU Utilization
T

[=><Tm)

%E \.‘
[[~
L > [12]

Lock Mutex CPU Unlock Mutex

OS Task Queue

W CPU Utilization

1| as [
s Plant1

¢yHKuMDHa]1I:HbiE KOMMOHEeHTbI

seExampleSwcController1

In1 Outt

Step1 |

Controller1

Plant1

0

Step2 ‘

seExampleSwcController2
In1 Out1

Controller2

1
S Plant2

Plant2

0

W Plant1

N Plant2

! !

| id = allocCore(status)

[ononHuTensHble
koMnoHeHTel |

glohal

Figure 4 — Scheduler implementation of multicore control system with Simulink model

Figure 4 shows the Simulink model using the SimEvents framework containing a
block of architectural components and a block of functional components. The scheduler
implicitly implies the existence of a Task definition, which is a real-time task with the
following attributes: identifier, period, priority, segments (subtasks). The scheduler simulates
a homogeneous multiprocessor system and is defined by the following properties: the number
of processes, the planning policy, the mutually exclusive resources. The implementation of the
architectural block of the scheduler is built on a high-level discrete-event language supported
by Simulink. In turn, this language relies on the MATLAB interpreter, which allows to
implement own scheduling policies for processors, which was done, i.e. The implementation
of the standard planning policy has been replaced. In our case, these were the implementations
of the 3 algorithms described above in MATLAB.

The SimEvents Scheduler permits clients to determine errands as some parameters
additionally as appeared in Figure 5.

These parameters characterize a homogeneous multicore framework with two centers.
The scheduler is setup to play out a need based approach. The framework has two control
undertakings, with:

ISSN 1563-0285 Journal of Mathematics, Mechanics and Computer Science Series Ne1(93)2017

Study of enterprise load-balancing algorithms... 77

| Scheduler Tasks Resources |

Mumber of tasks:

2

Task periods:

[0.5, 0.5]
Task priorities:

[200, 50]
Mumber of segments in each task:

[3, 2]
simulink function for each segment:

{Tti_read', 'ti_run', "t1_writey, Tt2_run', "t2_write}}
Ewecution durations of each segment:

{[0.1, 0.2, 0.1], [0.25, 0.1]}

Figure 5 — Parameters used in Scheduler block for DNS Round Robin method

Task 1 for Controllerl is arranged with a time of 0.5 second, need of 200 and 3 sections,
whose capacities and execution lengths are (t1 read, t1 run, t1 write) and (0.1, 0.2,
0.1) second individually;

Task 2 for Controller2 is arranged with a time of 0.5 second, need of 50, 2 sections,
whose capacities also, execution lengths are (t2_run, t2_write) and (0.25, 0.1) second
individually. The Scheduler is made as a MATLAB Discrete-Event System. It executes
the multi-center scheduler as takes after:

An assignment occurrence is demonstrated as an element that is intermittently
made, executed, and demolished toward the end of execution. Properties and runtime
conditions of an assignment occasion are put away as information of the element;

The assignment line of the working framework and the multicore processor itself are
demonstrated as two element stockpiles;

Task occurrences (elements) are made occasionally inside the assignment line. They are
put away in a requested grouping as required by the planning approach;

The booking calculation is acknowledged by planning occasions on the undertaking
substances. Occasions cause errands (elements) that are prepared to execute to be sent
from the assignment line to the processor (the second element stockpiling);

Becrauk KasHY. Cepusi maremarnka, Mexanuka, uadopmaruka Nel(93)2017

78 Aidarov K.A., Almatov A.Zh.

e An executing assignment remains in the processor for the time period as determined
by the execution length parameter. Such execution term is reproduced by utilizing a
clock occasion. At the point when the clock finishes, its occasion activity executes the
comparing assignment work (Simulink Function).

The Scheduler permits appointing a subjective number of centers and investigating how
that effects SimEvents framework execution. In the primary situation two centers have been
allocated to execute the two control errands. Fig. 7?7 shows parameters of the Scheduler
obstruct for this setup.

With adequate preparing limit, both shut circle control frameworks perform acceptably when
the set point is changed from 0 to 1. Fig. ?? incorporates a reaction outline (on the left-hand
side) and a timing outline (on the right-hand side):

e The reaction outline demonstrates the reaction of the two controllers with Controllerl
in the top diagram, and Controller2 in the base diagram;

e The planning graph demonstrates usage of centers and assets. A hued bar shows
execution of a fragment of errand. The position of a bar on the flat pivot shows time
of begin and consummation of the fragment. The position of the bar on the vertical
pivot shows standardized errand consummation prior and then afterward executing the
fragment.

The planning graph of Figure 6 shows that errands are prepared simultaneously with centers
having medium and adjusted usages. See that Task2 allocated to Corel since it has higher
need and, along these lines, allocated before Task]1.

Task segments on core 1 (Priority-based) I vask1

1 I Tesk2

T L LTt

5
[_/ Time (second)

Task segments on core 2 (Priority-based)

e R

Completion

Completion

Time (second)

Figure 6 — Task scheduler output and scheduler performance (2 cores) with DNS Round Robin scheduling

5 Conclusion

Therefore, common software-balancing algorithms have been considered, which are often
used to solve the problem of load balancing servers, websites etc. In traditional web server
architectures DNS balancer distributes requests to the server based on the status of their
workload. Because the Web servers must inform the DNS server about the status of their
load from time to time, the so-called buffer download busy often to reduce the frequency
of updates. Without proper attention, excessive use of loading buffer may lead to excessive
oscillation within the cluster. All three discussed the method helps reduce the oscillation
effect on Web servers that has been tested through the implementation of their models using
Model-Based Design.

ISSN 1563-0285 Journal of Mathematics, Mechanics and Computer Science Series Ne1(93)2017

Study of enterprise load-balancing algorithms... 79

(1]

2]

(3l

(4]

(5]

[6]

[7]

(8]

(9]

[10]
(11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

References

Al-Amri, M. S., and S. E. Ahmed. "New job selection and location policies for load-distributing algorithms."International
Journal of Network Management 12, no. 3 (2002): 165-78. doi:10.1002/nem.428.

Awversa, R., B. Di Martino, N. Mazzocca, and S. Venticinque. "A hierarchical distributed-shared memory parallel
Branch&Bound application with PVM and OpenMP for multiprocessor clusters."Parallel Computing 31, no. 10-12 (2005):
1034-047. doi:10.1016/j.parco.2005.03.010.

Borkar, G. M., M. A. Pund, and P. Jawade. "Implementation of round robin policy in DNS for thresholding of distributed
web server system."Proceedings of the International Conference & Workshop on Emerging Trends in Technology — ICWET
’11, 2011, 198-201. doi:10.1145/1980022.1980067.

Barros, F. J. "Modeling and simulation of parallel adaptive divide-and-conquer algorithms."The Journal of
Supercomputing 43, no. 3 (2007): 241-55. doi:10.1007/s11227-007-0143-3.

Eckstein, J., W. E. Hart, and C. A. Phillips. PEBBL: an object-oriented framework for scalable parallel branch and
bound."Mathematical Programming Computation 7, no. 4 (2015): 429-69. doi:10.1007/s12532-015-0087-1.

Geist, R., and K. Trivedi. "Queueing Network Models in Computer System Design."Mathematics Magazine 55, no. 2
(1982): 67. doi:10.2307,/2690049.

Kameda, H., J. Li, C. Kim, and Y. Zhang. "Overall Optimal Load Balancing vs. Individually Optimal Load
Balancing."Optimal Load Balancing in Distributed Computer Systems Telecommunication Networks and Computer
Systems, 1997, 35-97. doi:10.1007/978-1-4471-0969-3 2.

Kontogiannis, S., and A. Karakos. "ALBL: an adaptive load balancing algorithm for distributed web
systems."International Journal of Communication Networks and Distributed Systems 13, no. 2 (2014): 144.

doi:10.1504 /ijcnds.2014.064041.

Krislock, N., J. Malick, and F. Roupin. "BigCrunch."ACM Transactions on Mathematical Software 43, no. 4 (2017):
1-23. doi:10.1145/3005345.

Martin, R. C. Agile software development principles, patterns, and practices. Harlow: Pearson Education Ltd, 2014.
MathWorks "SimEvents User’s Guide." The MathWorks Inc., Natick, MA, USA (2016): 208 p.
MathWorks "Simulink User’s Guide."The MathWorks Inc., Natick, MA, USA (2016): 3290 p.

Mazzucco, M., I. Mitrani, J. Palmer, M. Fisher, and P. Mckee. "Web Service Hosting and Revenue Maximization."Fifth
European Conference on Web Services (ECOWS’07), 2007. doi:10.1109/ecows.2007.8.

Mitrani, I. Probabilistic modelling. Cambridge: Cambridge University Press, 2004.

Navarre, D., P. Palanque, and R. Bastide. "Model-Based Interactive Prototyping of Highly Interactive
Applications."Computer-Aided Design of User Interfaces III (2002): 205-16. doi:10.1007,/978-94-010-0421-3 18.

Teo, Y. M., and R. Ayani. "Comparison of Load Balancing Strategies on Cluster-based Web Servers."Simulation 77, no.
5-6 (2001): 185-95. doi:10.1177,/003754970107700504.

Waraich, S. S. "Classification of Dynamic Load Balancing Strategies in a Network of Workstations."Fifth International
Conference on Information Technology: New Generations (itng 2008), 2008, 1263-265. doi:10.1109/itng.2008.166.

Wimmer, M., D. Cederman, J. Larsson Trl'qff, and P. Tsigas. "Work-stealing with configurable scheduling
strategies." ACM SIGPLAN Notices 48, no. 8 (2013): 315. doi:10.1145/2517327.2442562.

Wrzesinska, G., A. Oprescu, T. Kielmann, and H. Bal. "Persistent Fault-Tolerance for Divide-and-Conquer Applications
on the Grid."Euro-Par 2007 Parallel Processing Lecture Notes in Computer Science: 425-36. doi:10.1007/978-3-540-74466-
5 46.

Becrauk KasHY. Cepusi maremaruka, Mexanuka, uadopmaruka Nel(93)2017

