The first regularized trace of integro-differential Sturm-Liouville operator on the segment with punctured points at integral perturbation of transmission conditions

  • L. K. Zhumanova Казахский национальный университет имени аль-Фараби, Республика Казахстан, г.Алматы
  • M. A. Sadybekov Институт математики и математического моделирования, Республика Казахстан, г.Алматы

Abstract

The paper is devoted to calculating a first regularized trace of one integro-differential operator with the main part of the Sturm-Liouville type on the segment with punctured points at integral perturbation of "transmission" conditions. The Sturm-Liouville operator −y′′(x) + q(x)y(x) + γ∫^π_0 y(t)dt = λy(x) given on the segments π/n(k − 1) < x < π/n k, k = 1, n; n ≥ 2 is considered. Boundary conditions of the Dirichlet type: y(0) = 0, y(π) = 0 are given on the left-hand and right-hand ends of the segment [0, π]. The functions continuous on [0, π] , the first derivatives of which have jumps at the points x = π/n k, are solutions. The value of jumps is expressed by the formula y′(πk/n − 0) = y′(πk/n + 0) − β_k ∫^π_0 y(t)dt, k = 1, n − 1. The basic result of the paper is the exact formula of the first regularized trace of the considered differential operator.

References

[1] S adovnichij V.A. Teorija operatorov. – M.: "Drofa" , 2004, 384 s.
[2] M itrohin S.I. Spektral’naja teorija operatorov: gladkie, razryvnye, summiruemyekojefficienty. – M.: Internet-Universitet informacionnyh tehnologij, 2009, 364 s.
[3] Gel’fand I.M., Levitan B.M. Ob odnom prostom tozhdestve dlja sobstvennyh znachenij differencial’nogo operatora vtorogo porjadka. // Dokl. AN SSSR, 1953, t. 88, s. 593-596.
[4] Lidskij V.B., Sadovnichij V.A. Reguljarizovannye summy kornej odnogo klassa celyh funkcij. // Funkcional’nyj analiz i ego prilozhenija, 1967, t. 1,No 2, s. 52-59.
[5] B erikhanova G.E., Zhumagulov B.T., Kanguzhin B.E. A mathematical model of vibrations for a stack of rectangular plates with allowance for pointlike constraints. // Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2010,No. 1(9), s. 72–86.
[6] B erikhanova G.E., Kanguzhin B.E. Resolvent of finite-dimensional perturbed of the correct problems for the biharmonic operator. // Ufimsk. Mat. Zh., 2010, t. 2, No 1, s. 17–34.
[7] K anguzhin B.E., Koshanov B.D. Resolvent of finite-dimensional perturbed of the correct problems for the biharmonic operator. // Ufimsk. Mat. Zh., 2010, t. 2, No 2, s. 41-52.
[8] K anguzhin B.E., Nurakhmetov D.B., Tokmagambetov N.E. Resolvent of finite-dimensional perturbed of the correct problems for the biharmonic operator. // Ufimsk. Mat. Zh., 2010, t. 3, No 3, s. 80-92.
[9] K anguzhin B.E., Aniyarov A.A. Well-posed problems for the Laplace operator in a punctured disk. // Mathematical Notes, 2011, t. 89,No 5-6, s. 819-829
[10] K anguzhin B.E., Nurakhmetov D.B., Tokmagambetov N.E. Laplace operator with δ-like potentials. // Izv. Vyssh. Uchebn. Zaved. Mat., 2014, No 2, 9–16
[11] K anguzhin B.E., Tokmagambetov N.E. A Regularized Trace Formula for a Well-Perturbed Laplace Operator. // Doklady Mathematics, 2015, t. 91, No 1, s. 1-4.
[12] K anguzhin B.E., Tokmagambetov N.E. On Regularized Trace Formulas for a Well-Posed Perturbation of the m-Laplace Operator. // Differential Equations, 2015, t. 51,No 12, s. 1583-1588.
[13] M artinovich M. Ob odnoj kraevoj zadache dlja funkcional’no-differencial’nogo uravnenija // Differenc. uravnenija, 1982, t. 18No 3, s. 537-540.
[14] I manbaev N.S., Sadybekov M.A. The first regularized trace of a dierential operator of the Sturm–Liouville problem on the segment with punctured points. // ISSN 1563-0285. Vestnik KazNU, ser. mat., meh., inf. 2014,No 2(81), s. 66-71.
Published
2018-07-18
How to Cite
ZHUMANOVA, L. K.; SADYBEKOV, M. A.. The first regularized trace of integro-differential Sturm-Liouville operator on the segment with punctured points at integral perturbation of transmission conditions. Journal of Mathematics, Mechanics and Computer Science, [S.l.], v. 92, n. 4, p. 32-39, july 2018. ISSN 1563-0277. Available at: <http://bm.kaznu.kz/index.php/kaznu/article/view/451>. Date accessed: 10 dec. 2018.
Keywords first regularized trace, integro-differential operator, inner-boundary condition