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ANALYSIS OF A FINITE VOLUME ELEMENT SCHEME FOR SOLVING
THE MODEL TWO-PHASE NONEQUILIBRIUM FLOW PROBLEM

The paper proposes a hybrid numerical method for solving a model problem of two-phase
nonequilibrium flow of an incompressible fluid in a porous medium. This problem is relevant in
the modern theory of the motion of multiphase fluids in porous media and has many applications.
The studied model is based on the assumption that the relative phase permeabilities and capillary
pressure depend not only on saturation, but also on its time derivative. The saturation equation in
this problem refers to the type of convection-diffusion with a predominance of convection, which
also includes a third-order term to account for the nonequilibrium effects. Due to the hyperbolic
nature of the equation, its solution is accompanied by a number of difficulties that lead to the
need for an appropriate choice of the solution method. In contrast to previous works, this paper
uses a finite volume element method for solving the problem, the construction of which is based on
integral balance equations, and an approximate solution is chosen from the finite element space.
To discretize the problem, two different dual grids are used based on the main triangulation. In
this paper, a number of a priori estimates are obtained which yields the unconditional stability of
the scheme as well as its convergence with the second order. The advantages of the approach used
include the local conservatism of the scheme, as well as the comparative simplicity of the software
implementation of the method. These results are confirmed by a numerical test carried out on the
example of a model problem.

Key words: Finite volume element method, nonequilibrium fluid flow, dynamic capillary pressure,
dual mesh, a priori estimate, convergence, stability, computational experiment.
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Eki dazansr TeHesneMciz duabTpalusHbIH MOJAEJbAlI ecebiH IIentyaiH, aKbIpJIbl KOJIeMIi
3JIEMEHTTi CcyJIbachbiH Tajaaay

Byn xkymbicTa eki ¢das3asbl CHIFBIMAWTBIH CYHBIKTHIKTHIH TEHOIIEMCI3 (DUIbTPAIUsCHIHBIH, MO-
JIeJTB/IIK ecebiH IMIery/1iH, THOPUATI CAHIBIK 9/1iC YChIHBLITaH. Byt ecer Komdas3abl CYHBIKTHIKTaAP-
JIBIH KEYeKTi OpTaJlafbl KO3FAJIBICHIHBIH 3aMaHAyU TEOPUSICHIHIA ©3€KTi OOJIBIIT TAaObLIAIbl YKOHE
KOIITereH KOJIJIaHOaiapra ne. 3epTTesieTiH MOJIE/Ib CAJIBICTBIPMAJIbI (Da3aJIbIK, OTKI3TIIITIKTED MEeH
KAITUJIISIPJIBIK, KBICBIMHBIH KAHBIKTHIKTAH FaHa eMeC, COHBIMEH KATap OHBIH YaKbIT OOMBIHIIA Ty bIH-
JBIIAPBIHAH T8 TOYes il Jeren OosKaMmra HerizmesnreH. By ecenreri KaHBIKTHIK, TEHIEY1 KOHBEK-
IUsACHl 6achiM OOJATHIH KOHBEKINA-TNnMdy3ust TypiHe KaTaIbl, COHBIMEH KATap OHBIH KYpPaMbIHa,
TEHOJIIIEMCI3/IIK 9CepJIepiH eCKepeTiH YIIiHII peTTi KOCBUIFbII Kipeai. TeHaeyaiy rumepOoJiabik,
cunaThiHa 6l IaHBICTHI OHBIH IIelriMi DipKaTap KUBIHIBIKTAPFa ne 6018 1bl, COHIBIKTAH OHBI IIEITY
OIICIH JIAMBIKTBI TAHIAY KazKeT eTiaedi. AJIbIHFEL XKyMBICTApFa Kaparania OyJl »KyMBICTa €CelTi
I/ TiH, aKbIPJIBI KOJIEM/Ti-9JIEMEHTTIK 9/TiCi KOIAHBLIa bl Byt o/1ic MHTErpaIablK, OaaaHC TeHIe-
yJIepi Heri3iHJle KYPaCThIPBIIFaH, aJl KYbBIK, MM aKbIPJIbl 3JIeMeHTTED KEHICTIrHEH TaH/1aJ1a/IbI.
By xkarnaitga ecenti gucKpeTusaIusiay VIIiH HETi3ri TPUAHTYJIANUS Herisinae exi TypJsii Kocap-
JIAaHFaH TOP KOJIAHBLIABI. Bys1 »KyMmbicTa GipKaTap ampuopJIbIK Oarajiaysiap ajblHFAH, OJIAp/IaH
CYJI0AHBIH, MAPTCHI3 OPHBIKTHLIBIFLI, COHIAN-aK eKiHII PETIIeH KUHAKTAJIYBI IIBIFaIbl. Ko/ aHb-
JIATBIH TOCUIIIH aPTHIKIIBLILIFBIHA CYI0AHBIH, JJOKAJIbIbl KOHCEPBATUBTLIIT, COHBIMEH KATAp 9/IiCTi
OarmapaaMaJIbIK, Ky3€ere aChbIPYIbIH CAJIBICTEIPMAIbI KaPAaibIMIbLILIFBI KaTaIbl. By HOTHKe-
JIep MOJIENIbJIIK eCell MBICAJIBIH/IA YKYPri3iJireH CAHIbIK, TOXKipUOEMEH PaCTaJIa/IbI.
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AHau3 KOHEYHO-00bEMHO-3JIEMEHTHOI cXeMbI pellleHus MOAeJbHOM 3ada4n AByxXda3Hol
HEepaBHOBECHOI puabTpanum

B pabotre npemraraercss THOPUIHBIN IUCIEHHDBIT METOJT PEIIeHNsT MOIEIBHON 3aa9u NBYX(a3HOM
HEPABHOBECHOW (QUIbTpAnu HeCKUMaeMoil kujakoctu. JlaHHash 3ajiada sBJISIETCS aKTyabHON
B COBPEMEHHON TEOPUHU [BUKEHUSI MHOTOMA3HBIX JKHUIKOCTEH B IMOPUCTBIX CpejaX U UMeeT
MHOXKECTBO IIPUJIOXKeHuii. V3yuaemasi MOJIEIb OCHOBAHA, Ha, IIPEJIIIOJIOKEHIH, 9TO OTHOCUTE/IbHBIE
¢da30BbIe TTPOHUIAEMOCTH W KANWILISPHOE JABJEHUE 3aBUCAT HE TOJBKO OT HACBIIEHHOCTH,
HO TaKXKe OT ee BPEMEHHOI NPOU3BOMHOI. YpaBHEHWE i HACBHIIMIEHHOCTH B JIAHHOW 3ajade
OTHOCHUTCS K TUITy KOHBEKITUU-ndy3un ¢ mpeodsiaianneM KOHBEKITIUH, KOTOPOE TAK¥KE COIEPIKUT
cjaraeMoe TPeThero MopsiaKa s yieTa 3(pEdeKTOB HEpaBHOBECHOCTH. B cuty rutepOoIuIecKoro
XapaKTepa ypPaBHEHHs] €ro pellleHrne COMPOBOXKIAETCsl PSJIOM TPY/IHOCTEN, KOTOPbIe MPUBOIAT K
HEeOOXOIMMOCTH HAJIJIeXKAaIlero BhIOOpa MeTOja pelleHusi. B oTimdme oT npeablayux paboT, B
JAHHO paboTe MPUMEHSIeTCST KOHETHO-00bEMHO-3JIEMEHTHBII METO/T PEIeHNs 3aa11, TOCTPOCHUE
KOTOPOTO OCHOBBIBAETCS HA WHTEIDAJbHBIX YDaBHEHUsIX OajiaHca, a NPUOJNKEHHOE PpereHne
BBIOMpAeTCss U3 KOHEYHO-3JIEMEHTHOTO MPOCTpaHcTBa. [Ipm 3TOM I JUCKPETHU3AINN 33J1a9n
UCIIOJIB3YIOTCS JIBe PA3JInTIHbIEe JIBOMCTBEHHDbIE CeTKN Ha 6a3e OCHOBHOM TpuaHTryJsiuu. B pabore
MOJIyYeH Psijl allpUOPHBIX OIEHOK, M3 KOTOPBIX CJiejlyeT 0e3yCJIOBHAS yCTOWYMBOCTH CXEMbI, a
TaK»Ke ee CXOJIUMOCTb CO BTOPBIM IMOPAAKOM. K YHCIy MpenmMyINecTB HMCIOIb3yEeMOro MOIXO0Ja
MOXKHO OTHECTH JIOKAJbHYIO KOHCEPBATHMBHOCTH CXEMbBI, & TaKXKE CPABHUTEIHHYIO IIPOCTOTY
IPOTPAMMHO¥ peasm3aruu MeToa. JlaHHble pe3yabTaThl MOATBEPKIAIOTCS YUCEHHBIM TECTOM,
[TPOBEJIEHHBIM Ha IIPUMEPE MOJIETLHON 3a/IadM.

Kuarouesbie ciaoBa: KonedHo-00beMHO-3/IEMEHTHBINT METO/I, HEpABHOBECHAsT (DUIBLTPAIIHS, JTUHA~
MUYeCKOe KalluJIsgpHOe JaBJIEHUe, JTBOHCTBEHHAs CETKa, allPUOPHAas OIEHKA, CXOJIMMOCTH, YCTOM-
YUBOCTb, BHIYMCIUTEIHLHBII SKCIIEPUMEHT.

1 Introduction

Modeling the flow of a multiphase fluid in porous media is of great economic importance in the
petroleum engineering, hydrology, carbon sequestration, and nuclear waste management [1-3].
These models form the basis of fluid dynamics simulators used in the development of oil
fields, allowing predictive calculations of development indicators. Most simulators contain
descriptions of the so-called classical fluid flow models in porous media that do not take into
account a number of important factors. One of these factors is the phenomenon of a delay in
the establishment of saturations, which is observed in microheterogeneous fractured rocks.

There are several approaches to modeling nonequilibrium effects. The first approach [4]
is based on thermodynamic arguments and volume averaging of the microscopic equations
of conservation of mass and momentum, as a result of which the authors of [4] came to the
conclusion that it is necessary to add additional terms to the macroscopic equations. [4]
introduced the concept of dynamic capillary pressure, i.e. instantaneous local difference
between phase pressures. Dynamic capillary pressure has been the subject of many
experimental [5] and theoretical [6,7] studies.
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The second approach [8] is based on the assumption that relative phase permeabilities
and the capillary pressure are considered as functions not only of saturation, but also of

o . . . Os -
the derivative of the saturation with respect to time ——. Thus, a characteristic feature of
nonequilibrium flows, i.e. the dependence on the rate of the process is taken into account.

Many works [9-12] are devoted to the numerical implementation of the two-phase fluid flow
model with the nonequilibrium law from [4]. For example, in [9], a second-order numerical
scheme for both spatial and temporal variables is proposed using a mixed finite element
method with the lowest order Thomas-Raviar elements and an implicit Euler scheme. To
show the convergence of the scheme, the error estimates for saturation, fluxes and phase
pressures are obtained in L* (0, T’; L? (Q)) norm for temporal and spatial triangulation. The
authors of [10] present an a posteriori error estimate for (piecewise linear) approximation of
finite elements, which corresponds to some linear Sobolev equations using the implicit Euler
scheme.

Also, a class of quasiparabolic equations is considered in [11]. Such equations simulate
the two-phase flow in porous media, where dynamic effects are included in capillary pressure.
The existence and uniqueness of the weak solution were proved, and the error estimates for
the implicit Euler time discretization were obtained.

The paper [12] analyzes the convergence of a "two-point flow* finite volume scheme to
approximate the flow of two incompressible phases with dynamic capillary pressure in porous
media. In that work, a fully implicit scheme is based on a non-standard approximation
of mobility and capillary pressure on a double grid is proposed. A discrete variational
formulation was derived and a new result of convergence in a two-dimensional and three-
dimensional porous medium was presented. Compared to static capillary pressure, the
nonequilibrium capillary model requires more powerful methods, especially not standard
discrete energy estimates.

This work is devoted to the construction of a numerical method for solving the problem
of two-phase fluid flow with the inequality law proposed in [4]. In contrast to the above
works, we use the finite volume element method (FVEM). The essence of this method
consists in constructing dual grids based on the main grid and generating control volumes
on the dual grid. Compared to finite difference and finite element methods, the finite volume
element method is simple to implement and provides flexibility in handling complex geometric
domains, as well as automatically provides local mass conservation. The last property is most
important in problems of fluid flow in porous media.

The FVEM has been successfully applied to problems of non-stationary equations of an
incompressible fluid in the Boussinesq approximation [13|, for problems of fluid flow of an
incompressible fluid [14], for a non-stationary equation of convection-diffusion [15] and many
others. In the cited works, the accuracy theoretical estimates of the proposed schemes are
obtained, a comparative analysis of the estimates obtained with the results of numerical tests
is carried out, and the implementation advantages of the method are shown.

In the present paper, two dual grids are constructed on the base of the main triangulation.
The first dual grid is used for the velocity and pressure equations, and the second one is used
for the saturation equation. Theoretical estimates are obtained which show the stability of
the scheme, as well as the convergence of the scheme with the second order.
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2 Materials and Methods

2.1 Statement of the Problem

In Qr = Q x [0,7], where Q@ C R? is a convex bounded domain with a Lipschitz-
continuous boundary I', T" > 0, the following model problem of two-phase nonequilibrium
flow is considered under the assumption of incompressibility of phases and the absence of
gravitational forces:

V-@=0, (z,t)€Qr, (1)
(kX (s)) M+ Vp=0, (x,t)€Qr, 2)
¢st+ fui - Vs =V - (7Vs) =V - (mV(Ls)) =0, (z,t) € Qr, (3)
s(x,0) =so(x), x€Q, (4)
u-n=0, Vs-n=0, (x,t) el x(0,7T], (5)

where # is the total velocity vector, p is pressure, s = s(x,t) is the water saturation, ¢ is
porosity, k is the absolute permeability, L is the replacement time; f,,, v, 71 are some positive
constants; A (s) = Ay, (8) + Ao (5), Ao (8) = ko (5) pt, ko (s) and p, are relative permeability
and viscosity of the phase «; 77 is the outer unit normal to the boundary T'.

Introduce the following functional spaces:

U={teH(div;Q) : ¥-7i=0onT}, M=L*(Q)/R, W=H; ().

The mixed variational formulation of Problem (1)-(5) is as follows: find (@, p,s) € U x
M x H'(0,T;W) such that the following identities hold for all ¥ € U, w € M, ¢ € W,
te(0,7)

(V-d,w)=0, (6)

(KX (s)) " @,7) = (p, V- 7) =0, (7)

(st,go)—i—a(ﬁ,s,(p)—l—d(s,cp)—i—dl (St,@) :07 (8)

s(x,0) =so(z), =€, 9)
where

a(i,n, ) = %”/Qﬁ (pVn —nVy)dz,

d(s,p) = /Q’st Vodz, di(s,p)= /Q%V (Ls) - Vedx

for all (i,n,p) € U x W x W. It is known that [16]

a(d,n,¢)=—a(t,e,n), a(d, e ¢)=0. (10)
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2.2 The Finite Volume Element Method

Let us first discretize Problem (1)-(5) with respect to time. Let {t,}\ , be a uniform
partitioning introduced in the time interval [0, 7). Further, let (@™, p™, s™) denote the semi-
discrete approximation of (i, p, s) at t = t,.
n n—1 n n—1
Introduce the notations A,s" /2 = i, V2 = i
The semi-discrete formulation of ProblerTn (6)-(9) reads: ﬁnd (u",p*,s") e U x M x W,
n=1,2,...,N such that foral v € U, w e M, p € W:

(V-a", w) =0, (11)
(N ) — (7, V- 3) =0, (12)
(s", )+ Ta (_'” 1/2 gn=1/2, go) +7d (3”_1/2, gp) + dy (s" — s”_l,go) = (s"_l, 90) . (13)
s =s(x), €. (14)

To solve Problem (1)-(5), we use the finite volume element method. In § introduce a quasi-
uniform triangulation ¥, and let A be its diameter. Let us construct two dual partitions on
the basis of the basic partition Th.

Let {V;}M, {E}Y and {M;}Y™ denote the sets of vertices, edges and midpoints of
the triangles in %, respectively. Con81der two adjacent triangles T; € %) and T; € ¥}, and
let Ej be their common edge, and M} be the midpoint of Ej. We form a quadriterial Qx
by connecting the barycenters of 7T; and 7} with the ends of Ej. In the case when T; is a
boundary element and Ej, is its edge lying on the domain boundary, I', we form a triangle 7}*
by connecting the barycenter 7; with the ends of the edge Ej. The set of internal elements )},
and boundary triangles 7;* is called the dual partition for the pressure and velocity equation
and is denoted by ;.

To construct the second dual partition, *U;, we connect the barycenter C; of the triangle
T; € %), with the midpoints of its edges by straight lines. This leads to the partitioning of T;
into three quadrilaterals. By combining them, we obtain a control volume 77y, which surround
the vertex V;. A set of control volumes cover (), and is called the dual partition of €2 of the
barycentric type corresponding to the triangulation %j.

Let us define the functional spaces Uy, W) and M), of trial functions as

Un={a eUn(C@)": Glxe(P(K) VK e},

Mh:{whEWﬂC(ﬁ)I wh|K€P0(K) VKE‘Z}Z},
Wh:{thMZ qh|K€P1<K) VKETh},

where P (K) is the space of polynomial functions of degree not greater than [ on K.
Define the spaces of test functions U, and W, in the following form:

U= {f e (1@ @y e (RO)P, Tl =0 WeT).

Wh:{wh€L2 () wply, € B(V), wply, =0 VVGQIZ}. (15)
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Let IT; @ and pjw be the interpolation projections of 4 € U and w € W into the spaces of
trial functions U, and W, defined as

VVL
huh E Uh ) hwh E wh

for all x € Q, where (; is the characteristic function of QF and x; (x) is the characteristic
function of Ty;.

Now we define a fully discrete scheme corresponding to Problem (1)-(5): find (@}, p}t, s}!) €
Up x My x W, (1 <n < N), such that the following identities hold for all ¥}, € Uy, wy, € My:

((k)‘) i, I 0) + by (100, ) = 0, (16)
(V ’ JZ, wh) = 07 (17)
(At5n 1/27p2<ph) +ah( T 1/2,p2<ph) +dy, ( " 1”;072%) +
+du, (Atszil/{/?}i@h) =0, (18)
$h = pnp (), (19)
where

an (U, Sy, PhPh) Z Jwon (Z)/ sy - nds,

V. €0 vz
dn (8hs Pren) Z Pn (Z)/ yVsy - nds,

V. €0 OVz

din (83, pron) = L Z ©n (Z)/ v1Vsy - nds

V.05 OVz
Iy, (1T, Uy, pr) = Z Up, (z)/ Py - mds.

V.€T; oV,

Let us formulate the following lemmas from [13,14] without proof.
Lemma 1 The following results hold [13]:
dn (Sh, Pron) = d (Snyn) s an (U, Sy pren) = a (Un, Sn, o) ,

din (S, Prn) = di (Sh, ¢n)
ap, (Un, Sp, ppsn) =0,  Vsp, o € Wy, Vi, € Up,.

Moreover, dy, (sp, pywy) is a symmetric, bounded and positive definite form, i.e.
dp (Shy phwn) = dp (Wn, psK) , Vs, wp, € W
and there are constants hgy, Cy, such that for 0 < h < hg,

dn, (s, p50) = 0 |sulT . |dn (s, pjwn)| < Collslly wnlly s Vsn, wy € Wi
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Lemma 2 The following result is valid [13]:
(U, I 0),) = (U, Iy 1dy) , Vg, vy € Up.
For every uw € H™ (9)2, m=0,1 and v}, € Uy,
(@, 0y) — (&, IL;0)| < CR™ " ||, ||Oall,, =0, 1. (20)

Lemma 3 The operator 11} satisfies the following inequalities for all v, € Uy, and wy, € M,
provided V - U, = 0 [14]:

1) G0 2y < 10kl 225

2) N0 = 1G04l 1202 < CRNO g (aivin)-

3) lh (HZU}“ wh) (V 77}1, wh),

4) ((k?/\ (nh))i Uthhvh) > C”UhHQH(div;Q)'

Let us introduce the norm |||uyl/[, = (il IT3i@,)"2. Tt is shown in [13] that |||- o
equivalent to || - ||, on Up,.
Let us formulate the following result obtained in [14| without proof.

Theorem 1 ( [14]) Let (d, p) and (i, pn) be the solutions of (6)-(7) and (16)-(17),

respectively. Then there exists a positive constant C' independent of h such that

1@ — @nll 22 + 1P = ally < OB <H’JH(H1(Q))2 + HP”1) ; (21)

IV - (@ =)o < ChIV -, (22)
provided @ (t) € (H' (Q))*, V- @ (t) € H(Q) and p (t) € H ().
Now we prove the main results of the paper.

Theorem 2 The sequence of solutions (u}, p}, sp) € Uy x MpyxWp, n=1,2,.... N of Problem
(16)-(19) satisfies the inequality

—n n Yo n
51 g aisey + sk llo + 7 oT IVsillg < Cllsoll; - (23)

Proof. Taking ¢, = 5} in (18), we get:

<At5n 1/2,p2 Z 1/2) + b, (uzfl/z SZ 1/2 p28271/2> I

+dh< nol2 g ) +du (Atsh ,,o;;s;j—l/2> —0. (24)

Estimate the terms in (24):
n-1/2 « n-1/2) _ 1 ni 2 1 n—1|[|2
(Atsh y» PrSp, ) =9 |”5hH’0 T or H|Sh |H0’

dy ( i PZSZ_1/2> - % CET e
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n— x N L n—
e (Dosi™ i) = 22 (Vs — 95 12) -
Then it follows from (24) that
sl = llsi= 1o + S 119 (si 4+ i)l + Lan (IVsil = [1Vsi~'[lg) <0 (25)

Sum (25) by n from 1 to n:
T’}/ 7 1
[spllfe -+ Z IV (st + i) lo + Ly [ Vs2llz < [llsollla + L [V 5ol -

By extracting the square root from the last inequality, and using Lemma 3, we arrive at
the statement of the theorem.

Lemma 4 Let ©, : W — W), be the projection operator such that there exists ©,s™ € W,
for snlsm e W, st € Wy, and @} € Uy, satisfying [13]

(@hAtS”_l/Q — As"2, wh) +dp (©p8" — 8™, wy) + dy (@hs"_1 — s wh) +

+a <1IZ 1/2 @hs”_l/Q,wh> —a (ﬁ”_l/Q, s”_1/2,wh) =0
1
for any wy, € Wy, where dy (s, wp,) = B (d(s,wp) + dy (s,wy)). Moreover,

615" = 5"l + 717 (8™ — 5™}y < CR lsally, 7= 0,1,.., N, (26)
provided s™ € H* (Q)NW.

Theorem 3 Let (u,p,s) and (u},p},sy) be the solutions of Problem (1)-(5) and Problem
(16)-(19), respectively. Then

1 () = @l 12> + 1P (En) = Phllo + lIs (Bn) = sillo +
+er [V (s (tn) = sp)llo < C? (27)
provided 7 = O (h).
Proof. First, consider the difference of Problems (11)-(14) and (16)-(19) to obtain

1/2 n—1/2

—anl/Z’Snfl/Z’ (Ph) — Tay ('L_I:Z Sh 7p290h) +

(s" on) — (s, pron) + Ta (@

+7d (5”71/2, goh) — 7dy, (32_1/2, ngOh> + dy (s" — st goh) — dyp, (SZ — 52*1, p;gph> —

= (""" on) — (sh " pheen) - (28)

By applying obvious transformations and the projection defined in Lemma 4, we obtain

(Ons™ — sy, on) — (8, P — ¥n) + Ta (5271/2, Qps" 12, <Ph) -
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—Tay, (uh 1/2 L Sh 1/2,p;;g0h> + 7d (@hs”_1/2 Sy 1/2,S0h> +

Hdy (On (5" —s"71) = (sh =53 7) von) = (Ons" " = shoon) — (si ' Phon — on) -

Let ¢ = ©,5" — s and choose ), = "~ /2
- i 1/2 O™ 1/2 n—1) —n—1/2 § 1/2 & n—1
|I¢ Iy +7a 1 ran (@2, 02 gt
n— n n— 2
v [ Voo + S IV — 4 [V <

1
= 5 0l + (sh = it /2 = g2, (29)

Let us estimate the scalar products in (29):

‘a <ﬁZ*1/2,@h8n71/2,wn71/2) _a <7IZ 1/2 s 1/2 Zd}nq/z) <

i n—1/2(|2 4
< 4ry va HO +Cn, (30)

‘(Sz . nflv zwnfl/2 . wn71/2)‘

< Ch (9 + [[97 1) + OB) + o [[Vur 2 g+ O 57 = 51 [ wum 2 <

(31)

< Ch ("2 + [[v"7Y|| + ChY) +072h3 @HW” WHO.

Taking into account the inequalities (30), (31) and the assumption 7 = O (h), it follows
from (29) that

1, . e 2 n e
S 1073+ er [ Ve =20 + 2 (g2 - Va2 <

< % o5+ o (e llg + 1t + 7202) + it (32)

Summing (32) with respect to n from 1 to n, we obtain

77Z}i—l”(z) + Ch4

1 i . 1 n
LI e Y [P < L e+ L v er Y|
i=1 i=1
Applying the discrete Gronwall’s lemma yields
[l +r - [o 2] < € (Jully + 199l + Cch.
i=1

Finally, by taking into account Theorem 1, we arrive at the statement of the theorem.



126 Analysis of a finite volume element scheme . ..

3 Results

To validate the finite volume element scheme (16)-(19), the following five-spot test problem
was solved. The problem (1)-(5) in the square = [—1,1] x [—1, 1] was considered in which
an injection and a production well were placed in the lower left and upper top corner of
Q, respectively. The following dimensionless values were taken as initial data: k = 1, p,, =
po=1,7=103~v=7 =1, L =1, so(x) = 0, and the functions k, (s) were defined as
ko (s) = 82, ko (s) = (1 — 5)°

Since the exact solution to the problem cannot be found analytically, more attention is
paid to the qualitative characteristics of the solutions obtained using the scheme (16)-(19).
To programmatically construct the dual grids used in the finite volume element method,
we first introduced a quasiuniform triangulation in €. In the numerical test, the triangular
decomposition of {2 containing 357 nodes, 648 triangles, and 1004 edges was used. A coarser
grid was chosen intentionally to assess the stability of the scheme to the appearance of non-
physical oscillations. Then, in construction of the dual grid used for the velocity and pressure
equations, the algorithm given in [14] was utilized. The dual grid for the saturation equation
was built based on an algorithm presented in [21].

Firstly, the total velocity and water saturation obtained by the scheme (16)-(19) at t =
56007 are shown in Figure 1.

T =2z = = 7
0.8 // //"/;?//;'/ ;'/::;///';;('/;:// o8
M 477 g1
ol 2 s A
WS s AW Iah
:,;_WHV//////Z //;/"/;/,/// //'////'?/?,w
Wity £ 12227 S8 Lt o
ISR i
o /B Aft, calr L
!y 2 2
N S Tii
o ff// > /////,//"/ 7 ////j’ o
////////"////,/: - ///;
aturation ““T //// ,/ //f:/ T8
570301 02 03 04 05 06 07 08  96e0 / = = = —~/ —’—//, /
— S I (I i e 4

Figure 1: Numerical solution of the model problem at ¢ = 56007, saturation (left), total
velocity (right)

In our previous work [22], a stabilized finite element method was applied to solving the
problem of two-phase nonequilibrium flow. Using the model convection-diffusion equation as
an example, it was shown that the use of the standard Galerkin method can lead to the
appearance of nonphysical oscillations near the phase separation line. It is shown that their
suppression without stabilization can be partially implemented by thickening the grid near the
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discontinuity line. Stabilization of the saturation equation significantly reduces nonphysical
oscillations; however, the choice of the stabilization parameter itself is a separate problem.
Using the stabilization approach, in [22] the model problem of two-phase nonequilibrium
flow with the parameters indicated above was solved. It was noted that the stabilization of
the equation imposes an additional computational complexity associated with the need to
recalculate the stabilization parameter for each finite element at each time layer.

Due to its local conservativeness, the finite volume element scheme (16)-(19) did not lead
to the appearance of non-physical oscillations which in turn did not require the addition of
stabilizing terms in the scheme. As can be seen from Figure 1, the scheme allows obtaining
non-oscillating solutions even on a coarse mesh. In addition, the scheme turned out to be
simpler in software implementation.

4 Conclusion

Thus, in this paper, a fully discrete mixed finite volume element method was studied
for the problem of two-phase non-equilibrium flow in porous media. It was shown on a
synthetic example that the constructed method can be considered as an alternative method
that allows obtaining non-oscillating solutions to the problem without the stabilization of
the equation, and also requires less computational complexity in comparison, for example,
with discontinuous Galerkin methods. The constructed method can be generalized to solve
filtration problems with more real input data. A separate work will be devoted to this problem.
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