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ON QUASI-IDENTITIES OF FINITE MODULAR LATTICES

In 1970 R. McKenzie proved that any finite lattice has a finite basis of identities. However the
similar result for quasi-identities is not true. That is, there is a finite lattice that has no finite
basis of quasi-identities. The problem "Which finite lattices have finite bases of quasi-identities?"
was suggested by V.A. Gorbunov and D.M. Smirnov. In 1984 V.I. Tumanov found a sufficient
condition consisting of two parts under which a locally finite quasivariety of lattices has no finite
(independent) basis of quasi-identities. Also he conjectured that a finite (modular) lattice has a
finite basis of quasi-identities if and only if a quasivariety generated by this lattice is a variety.
In general, the conjecture is not true. W. Dziobiak found a finite lattice that generates a finitely
axiomatizable proper quasivariety. Tumanov’s problem is still unsolved for modular lattices. We
construct a finite modular lattice that does not satisfy one of Tumanov’s conditions but the
quasivariety generated by this lattice is not finitely based.
Key words: Lattice, quasivariety, finite basis of quasi-identities.
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Соңғы модулярлық торлардың квази-сәйкестiктерi туралы

1970 жылы Р. Маккензи кез-келген соңғы тордың түпкiлiктi сәйкестендiру негiзi бар
екенiн дәлелдедi. Алайда, квази-сәйкестендiру үшiн ұқсас нәтиже дұрыс емес. Яғни, квази-
сәйкестендiрудiң түпкiлiктi негiзi жоқ соңғы тор бар. Мәселе "Квази-сәйкестендiрудiң соңғы
негiздерi қандай соңғы торларға ие?" В.А. Горбунов және Д.М. Смирнов ұсынды.
1984 жылы В.И. Туманов екi бөлiктен тұратын жеткiлiктi жағдайды тапты: жергiлiктi түр-
де, соңғы квазикөпбейне торларда квази-сәйкестендiрудiң соңғы (тәуелсiз) негiзi жоқ.
Сондай-ақ, ол ақырғы (модулярлық) тордың квази-сәйкестендiрудiң соңғы негiзi бар деп
ұсынды содан кейiн және тек осы тордан пайда болған квазикөпбейне бұл көпбейне. Жалпы
жағдайда гипотеза дұрыс емес. В. Дзебяк ақырлы торды тапты, ол аксиоматизацияланатын
өзiндiк квазикөпбейненi тудырады. Тумановтың мәселесi әлi де модулярлық торлар үшiн ше-
шiлген жоқ. Бiз Тумановтың бiр жағдайын қанағаттандырмайтын соңғы модулярлық торды
саламыз, бiрақ осы тордан пайда болған квазикөпбейненiң түпкi негiзi жоқ.
Түйiн сөздер: Тор, квазикөпбейне, квази-сәйкестiктердiң соңғы базисi.

C.M. Луцак∗, О.А. Воронина, Г.К. Нурахметова
Северо-Казахстанский университет имени М. Козыбаева, Казахстан, г. Петропавловск

∗e-mail: sveta_lutsak@mail.ru
О квазитождествах конечных модулярных решеток

В 1970 году Р. Маккензи доказал, что любая конечная решетка имеет конечный базис
тождеств. Однако аналогичный результат для квазитождеств неверен. То есть существует
конечная решетка, которая не имеет конечного базиса квазитождеств. Проблема "Какие
конечные решетки имеют конечные базисы квазитождеств?" была предложена В.А. Горбу-
новым и Д.М. Смирновым.
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В 1984 году В.И. Туманов нашел достаточное условие, состоящее из двух частей, при ко-
тором локально конечное квазимногообразие решеток не имеет конечного (независимого)
базиса квазитождеств. Также он предположил, что конечная (модулярная) решетка имеет
конечный базис квазитождеств тогда и только тогда, когда квазимногообразие, порожденное
этой решеткой, является многообразием. В общем случае гипотеза неверна. В. Дзебяк нашел
конечную решетку, которая порождает конечно аксиоматизируемое собственное квазимного-
образие. Проблема Туманова до сих пор не решена для модулярных решеток. Мы строим
конечную модулярную решетку, которая не удовлетворяет одному из условий Туманова, но
квазимногообразие, порожденное этой решеткой, не является конечно базируемым.
Ключевые слова: Решетка, квазимногообразие, конечный базис квазитождеств.

1 Introduction

Questions concerning finite basability are among the most researched and relevant topics in
universal algebra. It is well known that the finite based results begin with R.C. Lyndon,
who in 1951 proved that the algebras on a two-element universe are always finitely based.
R. McKenzie [1] in 1970 established that every finite lattice is finitely based, and generalizing
this result, K.A. Baker in 1976 proved that every finite algebra generating a congruence-
distributive variety is finitely based. There are two major directions in which Baker’s theorem
was generalized. In congruence-modular direction there was a series of results by R. Freese and
R. McKenzie, the final result by McKenzie published in 1987 states that every finite algebra
generating a congruence-modular residually finite variety is finitely based. In congruence
meet-semidistributive direction, R. Willard in 2000 proved that every finite algebra generating
a congruence meet-semidistributive residually strictly finite variety is finitely based.

Thus, according to R. McKenzie, any finite lattice has a finite basis of identities. The
similar result for quasi-identities is not true, that was established by V.P. Belkin [2]. In 1979
he proved that there is a finite lattice that has no finite basis of quasi-identities. In particular,
the smallest lattice that does not have a finite basis of quasi-identities is the ten-element
modular lattice M3−3. In this regard, the following question naturally arises. Which finite
lattices have finite bases of quasi-identities? This problem was suggested by V.A. Gorbunov
and D.M. Smirnov [3] in 1979. V.I. Tumanov [4] in 1984 found sufficient condition consisting
of two parts under which the locally finite quasivariety of lattices has no finite (independent)
basis for quasi-identities. Also he conjectured that a finite (modular) lattice has a finite
basis of quasi-identities if and only if a quasivariety generated by this lattice is a variety.
In general, the conjecture is not true. W. Dziobiak [5] found a finite lattice that generates
finitely axiomatizable proper quasivariety. Also we would like to point out that Tumanov’s
problem is still unsolved for modular lattices.

The main goal of the paper is to present a finite modular lattice that does not satisfy one
of Tumanov’s conditions but the quasivariety generated by this lattice is not finitely based
(has no finite basis of quasi-identities).

2 Material and methods

We recall some basic definitions and results for quasivarieties that we will refer to. For more
information on the basic notions of general algebra introduced below and used throughout
this paper, we refer to [6] and [7].
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A quasivariety is a class of lattices that is closed with respect to subalgebras, direct
products, and ultraproducts. Equivalently, a quasivariety is the same thing as a class of
lattices axiomatized by a set of quasi-identities. A quasi-identity means a universal Horn
sentence with the non-empty positive part, that is of the form

(∀x̄)[p1(x̄) ≈ q1(x̄) ∧ · · · ∧ pn(x̄) ≈ qn(x̄)→ p(x̄) ≈ q(x̄)]

where p, q, p1, q1, . . . , pn, qn are lattice’s terms. A variety is a quasivariety which is closed
under homomorphisms. According to Birkhoff theorem [8], a variety is a class of similar
algebras axiomatized by a set of identities, where by an identity we mean a sentence of the
form (∀x̄)[s(x̄) ≈ t(x̄)] for some terms s(x̄) and t(x̄).

By Q(K) (V(K)) we denote the smallest quasivariety (variety) containing a class K. If
K is a finite family of finite algebras then Q(K) is called finitely generated. In case when
K = {A} we write Q(A) instead of Q({A}).

Let K be a quasivariety. A congruence α on algebra A is called a K-congruence or relative
congruence provided A/α ∈ K. The set ConKA of all K-congruences of A forms an algebraic
lattice with respect to inclusion ⊆ which is called a relative congruence lattice.

The least K-congruence θK(a, b) on algebra A ∈ K containing pair (a, b) ∈ A × A is
called a principal K-congruence or a relative principal congruence. In case when K is a
variety, relative congruence θK(a, b) is usual principal congruence that we denote by θ(a, b).

An algebra A belonging to a quasivariety K is (finitely) subdirectly irreducible relative to
K, or (finitely) subdirectly K-irreducible, if intersection of any (finite) number of nontrivial
K-congruences is again nontrivial; in other words, the trivial congruence 0A is a (meet-
irreducible) completely meet-irreducible element of ConKA.

Let (a] = {x ∈ L | x ≤ a} ([a) = {x ∈ L | x ≥ a}) be a principal ideal (coideal) of a lattice
L. A pair (a, b) ∈ L × L is called dividing (semi-dividing) if L = (a] ∪ [b) and (a] ∩ [b) = ∅
(L = (a] ∪ [b) and (a] ∩ [b) 6= ∅).

For any semi-dividing pair (a, b) of a latticeM we define a lattice

Ma−b = 〈{(x, 0), (y, 1) ∈M × 2 | x ∈ (a], y ∈ [b)};∨,∧〉 ≤sM× 2,

where 2 = 〈{0, 1};∨,∧〉 is a two element lattice.

Theorem 1 (Tumanov’s theorem [4]) Let M, N (N ⊂M) be locally finite quasivarieties
of lattices satisfying the following conditions:

a) in any finitely subdirectly M-irreducible latticeM∈M\N there is a semi-dividing pair
(a, b) such thatMa−b ∈ N;

b) there exists a finite simple lattice P ∈ N which is not a proper homomorphic image of
any subdirectly N-irreducible lattice.

Then the quasivariety N has no coverings in the lattice of subquasivarieties of M. In
particular, N has no finite basis of quasi-identities provided M is finitely axiomatizable.

In the next section, the algebra L and its carrier (its main set) L will be identified and
denoted by the same way, namely L.
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3 Results and discussion

Let T be a modular lattice displayed in Figure 1. And let N = Q(T ) and M = V(T ) be the
quasivariety and variety generated by T , respectively. Since every subdirectly N-irreducible
lattice is a sublattice of T , we have that a class Nsi of all subdirectly N-irreducible lattices
consists of the lattices 2, M3, M3−3 and T (see Figures 1 and 2). It easy to see that M3 is
a unique simple lattice in Nsi and is a homomorphic image of T . Thus, the condition a) of
Tumanov’s theorem is not valid for quasivarieties N ⊂M. We show

Theorem 2 Quasivariety Q(T ) generated by the lattice T is not finitely based.

To prove the theorem we modify the proof of the second part of Theorem 3.4 from [9].

T

Figure 1: Lattice T

M3

M3,3 M3−3

Figure 2: Lattices M3, M3,3 and M3−3

Let S be a non-empty subset of a lattice L. Denote by 〈S〉 the sublattice of L generated
by S.
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We define a modular lattice Ln by induction:
n = 1. L1

∼= M3−3 and L1 = 〈{a1, b1, c1, e, d}〉 (see Figure 3);
n = 2. L2 is a modular lattice generated by L1 ∪ {a2, b2, c2, d} such that b1 = c2,

〈{a2, b2, c2, e, b1}〉 ∼= M3, and a2 ∨ b2 = e ∧ d1, d ∨ b1 = d1, and b2 < d (see Figure 3).
n > 2. Ln is a modular lattice generated by the set {ai, bi, ci | i ≤ n}∪ {e, d} such that ai

is not comparable with aj and bk for all j 6= i and k ≤ n, bi−1 = ci, 〈{ai, bi, ci}〉 ∼= M3 for all
i < n, bi ∨ d = di for all i < n, and bn < d (see Figure 4).

One can see that Ln is a subdirect product of the lattices Ln−1 and M3 for any n > 2.

e d

c1 a1 b1

L1
∼= M3−3

e d1

d

c1 a1
b1 = c2 a2 b2

L2

Figure 3: Lattices L1, L2

Let L−n be a sublattice of Ln generated by the set {ai, bi, ci | i ≤ n}.

Lemma 1 For any n > 1 and a non-trivial congruence θ ∈ ConLn there is 1 < m < n such
that Ln/θ ∼= Lm or Ln/θ ∼= M3,3 provided (a1, b1) /∈ θ, otherwise Ln/θ ∼= L−m.

Proof of Lemma 1.
We prove by induction on n > 2. One can check that it is true for n = 3 because of

L3/θ ∼= L2 or L3/θ ∼= M3,3 if (a1, b1) /∈ θ and L3/θ ∼= L−2 or L3/θ ∼= M3 for any non-trivial
congruence θ ∈ ConL3.

Let n > 3. And let u cover v in Ln and θ(u, v) ⊆ θ. By construction of Ln, we have
Ln/θ(u, v) ∼= Ln−1 or Ln/θ(u, v) ∼= L−n−1.

Assume (a1, b1) /∈ θ. Since for every non-trivial congruence θ ∈ ConLn there are u, v ∈ Ln

such that u covers v and θ(u, v) ⊆ θ, we get

Ln/θ ∼= (Ln/θ(u, v))/(θ/θ(u, v)).

Since Ln/θ(u, v) ∼= Ln−1 we obtain

Ln/θ ∼= (Ln/θ(u, v))/(θ/θ(u, v)) ∼= Ln−1/θ
′,

for some θ′ ∈ Con(Ln−1). And, by induction, Ln−1/θ
′ ∼= Lm or Ln−1/θ

′ ∼= M3,3 for some
m > 0. Thus Ln/θ ∼= Lm or Ln/θ ∼= M3,3.
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e d1

d2

d

an bnbn−1 cnc1 a1 b1 c2 a2 b2 c3

Figure 4: Lattice Ln, n ≥ 2

Now assume (a1, b1) ∈ θ. Then θ(a1, b1) = θ(u, v) and Ln/θ(u, v) ∼= L−n . Hence

Ln/θ ∼= (Ln/θ(u, v))/(θ/θ(u, v)) ∼= L−n /θ
′,

for some θ′ ∈ Con(L−n ). It is not difficult to check that L−n /θ′ ∼= L−m for some m > 0 (see
Lemma 3.1 [9]). Thus Ln/θ ∼= Lm or Ln/θ ∼= L−m.

Corollary 1 For all n > 1, there is no proper homomorphism from Ln to M3−3 and T .

Proof of Corollary 1.
We provide the proof for a proper homomorphism from Ln into M3−3. It is not difficult

to check that the same arguments hold for a proper homomorphism from Ln into T .
Assume h : Ln → M3−3, n > 1, is a proper homomorphism. Hence kerh is not a trivial

congruence on Ln. By Lemma 1, Ln/ kerh ∼= Lm or Ln/θ ∼= M3,3 or Ln/ kerh ∼= L−m for
some m > 1. Thus Lm = h(Ln) ≤ M3−3. It is impossible because, by definition of Lm,
|Lm| > |M3−3| for all m > 1, hence Ln is not a sublattice of M3−3. Obviously, M3,3 and L−M
are not sublattices of M3−3. Thus there is no such homomorphism h.

Lemma 2 For every n > 2, a lattice Ln has the following properties:
i) Ln ≤s Ln−1 × Ln−1;
ii) Ln ∈ V(M3,3) = V(T );
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iii) Ln /∈ Q(T );
iv) Every proper subalgebra of Ln belongs to Q(T ).

Proof of Lemma 2.
i). One can check that Ln/θ(ai, bi) ∼= Ln−1 for all 1 < i ≤ n. Since n > 2 then

θ(a2, b2), θ(a3, b3) ∈ ConLn and θ(a2, b2)∩θ(a3, b3) = ∆. This means that Ln ≤s Ln−1×Ln−1.
ii). One can see that T is a subdirect product of M3 and M3,3. Hence T ∈ V(M3,3). On

the other hand, by Jonsson lemma [10], every subdirectly irreducible lattice in V(T ) is a
homomorphic image of some sublattice of T . Hence M3,3 ∈ V(T ). Thus V(M3,3) = V(T ),
and, by i) and induction on n, we get Ln ∈ V(T ).

iii). Suppose Ln ∈ Q(T ) for some n > 1. Then Ln is a subdirect product of subdirectly
Q(T )-irreducible algebras. Since every subdirectly Q(T )-irreducible algebra is a subalgebra
of T , we get that Ln is a subdirect product of subalgebras of T . By Lemma 1, there is no
proper homomorphism from Ln onto T or M3−3. Hence Ln ∈ Q(M3) for all n > 1. It is
impossible because M3−3 ≤ Ln and M3−3 /∈ Q(M3).

iv). We prove by induction on n. It is true for n ≤ 2 by manual checking. Let n > 2 and
let S be a maximal sublattice of Ln. Since the lattice Ln is generated by the set of double
irreducible elements {a1, . . . , an, c1, e, d}, there is 0 < i ≤ n such that ai 6∈ S or c1 /∈ S or
e /∈ S or d /∈ S.

Suppose c1 /∈ S. One can see that 〈S〉 ≤s 2 ×M3 × L−n−1. Since Ln−1 ≤s M
n−1
3 we get

〈S〉 ∈ Q(M3) ⊂ Q(T ).
Suppose e /∈ S. Then 〈S〉 ≤s 2× L−n ≤s 2×Mn

3 ∈ Q(M3) ⊂ Q(T ).
Suppose d /∈ S. Put Sm = {{a1, . . . , am, c1, e}, m < n, and Tm = 〈Sm〉. One can see that

Tm/θ(ai, bi) ∼= Tm−1 for all 1 < i < m. And Tm/θ(a1, b1) ∼= L−m−1. Since θ(a1, b1) ∩ θ(ai, bi) =
∆, by distributivity of ConTm, we have θ(a1, b1) ∩ (

∨
{θ(ai, bi) | 1 < i < m}) = ∆. Since

Tm/(
∨
{θ(ai, bi) | 1 < i < m}) ∼= T we obtain 〈Sm〉 ≤s T × L−n−1 ≤s T ×Mn−1

3 ∈ Q(T ).
Suppose ai /∈ S. Since n > 1 and S is a maximal sublattice, then there are i 6= k 6= l 6= i

such that θ(bk, ck), θ(bl, cl) ∈ ConLn,

θ(bk, ck) ∩ θ(bl, cl) = ∆.

and

Ln/θ(bk, ck) ∼= Ln/θ(bl, cl) ∼= Ln−1 or {Ln/θ(bk, ck), Ln/θ(bl, cl)} = {Ln−1, L
−
n−1}.

We provide the proof for the first case, Ln/θ(bk, ck) ∼= Ln/θ(bl, cl) ∼= Ln−1. These
isomorphisms mean that Ln ≤s Ln−1 × Ln−1 and S ≤ Ln−1 × Ln−1. Let hk : Ln → Ln−1
and hl : Ln → Ln−1 are homomorphisms such that kerhk = θ(bk, ck) and kerhl = θ(bl, cl).
Since (ai, bi) /∈ θ(bk, ck) ∪ θ(bl, cl) then hk(S), hl(S) are proper sublattices of Ln−1. And,
by induction, hk(S), hl(S) ∈ Q(T ). As bk, ck, bl, cl ∈ S, the restrictions of congruences
θ(bk, ck)|S and θ(bl, cl)|S on the algebra S are not trivial congruences on S. Moreover
θ(bk, ck)|S ∩ θ(bl, cl)|S = ∆. It means S ≤s hk(S) × hl(S). Hence S ∈ Q(T ). Since every
maximal proper subalgebra of Ln belongs toQ(T ) then every proper subalgebra of Ln belongs
to Q(T ).

It is not difficult to check that for {Ln/θ(bk, ck), Ln/θ(bl, cl)} = {Ln−1, L
−
n−1} the same

arguments hold.
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Now we prove the main result, Theorem 2.
We use the following folklore fact which provides non-finite axiomatizability: A locally

finite quasivariety K is not finitely axiomatizable if for any positive integer n ∈ N there is a
finite algebra Ln such that Ln 6∈ K and every n-generated subalgebra of Ln belongs to K.

We show that for quasivariety Q(T ), the lattice Ln satisfies the conditions of this fact.
Indeed, by Lemma 2(iii), Ln /∈ Q(T ) for all n > 1. Since Ln is generated by at least n + 1
double irreducible elements then every n-generated subalgebra of Ln is a proper subalgebra.
By Lemma 2(iv), every n-generated subalgebra of Ln belongs to Q(T ). Hence Q(T ) has no
finite basis of quasi-identities.

We note that there is an infinite number of lattices similar to the lattice T .
The proof of Theorem 2 give us more general result:

Theorem 3 Suppose L is a finite lattice such that M3,3 6≤ L, T ≤ L and Ln 6≤ L for all
n > 1. Then the quasivariety Q(L) is not finitely based.

4 Conclusion

There are three measures of the highest complexity of the structure of quasivariety lattices:
Q-universality, property (N) or non-computability of the set of finite sublattices, and an
existence of continuum of quasivarieties without covers in a given quasivariety lattice. The
presence in the quasivariety lattices of a continuum of elements that do not have coverings
indicates the complexity of the structure of these lattices; in this case, there is a continuum
of subquasivarieties of a given quasivariety K that do not have an independent basis of
quasi-identities with respect to K. In [11] a sufficient condition for a quasivariety K to be
Q-universal, to have continuum many subclasses with the property (N), continuum many
Q-universal subquasivarieties and continuum many subquasivarieties with no upper covers in
the lattice Lq(K) was provided. In [12] a sufficient condition for a class K to have continuum
many subclasses with the property (N) but which are not Q-universal was established. In [13]
it was proved that almost all known Q-universal quasivarieties contain classes having property
(N).

In this paper we construct a finite modular lattice that does not satisfy one of Tumanov’s
conditions but the quasivariety generated by this lattice is not finitely based. It has no finite
basis of quasi-identities.
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