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ON QUASI-IDENTITIES OF FINITE MODULAR LATTICES

In 1970 R. McKenzie proved that any finite lattice has a finite basis of identities. However the
similar result for quasi-identities is not true. That is, there is a finite lattice that has no finite
basis of quasi-identities. The problem "Which finite lattices have finite bases of quasi-identities?"
was suggested by V.A. Gorbunov and D.M. Smirnov. In 1984 V.I. Tumanov found a sufficient
condition consisting of two parts under which a locally finite quasivariety of lattices has no finite
(independent) basis of quasi-identities. Also he conjectured that a finite (modular) lattice has a
finite basis of quasi-identities if and only if a quasivariety generated by this lattice is a variety.
In general, the conjecture is not true. W. Dziobiak found a finite lattice that generates a finitely
axiomatizable proper quasivariety. Tumanov’s problem is still unsolved for modular lattices. We
construct a finite modular lattice that does not satisfy one of Tumanov’s conditions but the
quasivariety generated by this lattice is not finitely based.
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CoHFBI MOAYJISPJIBIK, TOPJIAPAbIH KBa3U-COUWKECTIKTEPi TypaJibl

1970 xbuier P. MakkeH3n Ke3-KeJreH COHFBI TODPJABIH TYIKIIIKTI CoOWKecTeHIipy Herisi 6ap
eKeHiH jroJiesieii. Ajraiina, KBa3u-ColKeCTeH Py YIIH YKCAC HOTHXKE JYPhIC eMec. SIrHu, KBa3u-
COfKeCTeHIPYIiH TYIKUIIKTI HEeri3i KoK corrbl TOp O0ap. Mocene "KBazu-coiikecTeHIIpY/IiH COHFBI
Herizzepi Kaugait courbl Topsapra ue?" B.A. Topbynos kone /I.M. CMUPHOB YCBHIHJIBL.

1984 xwpiaer B.U. TymanoB exi 601iKTeH TYPATHIH YKETKITIKTI YKar ailIbl TAITh: KEePrijiKTi Typ-
Jle, COHFBI KBa3UKOINOeiiHe TopJIap/ia KBa3u-ColKeCTeH Iy IiH COHFBI (Toyesici3) Herisi kKoK,
Conpaii-ak, 071 aKbIPFbl (MOJYISIPIBIK) TOP/BIH KBA3U-CONKECTEHIIPY/H COHFBI Herisi Gap jen
VCBIHIBI COTAH KeifiH »KoHe TeK OChl TOpJaH Maiima OosraH KBa3ukeroeiine Oy kenbeiine. 2Kambr
XKargaiiga runoresa gypoic eMec. B. JI3e6sK aKbIPJIbI TOPIBI TAIITHI, OJT AKCHOMATH3AINITAHATHIH
O3IH/IIK KBA3UKOIOEHHEH] Ty AbIPaabl. T yMAHOBTHIH MOCEIECi 9J1i e MOIYASIPJIbIK TOPJIAp VIIIH IITe-
mriyired 2KokK. Bi3 TymMaHOBTHIH 6ip KarIaiblH KAHAFATTAHILIPMANTEIH COHFBI MOJTYISIPJIBIK TOP/IHI
cajilaMbI3, Oipak OChI TOP/IAH Iaiiga O0JIFaH KBa3UKOIIOEHHEHIH TYIIK] Herisi »KoK.

Tyiiia cesaep: Top, kBazukenbeline, KBa3U-CONKECTIKTEP/IIH, COHFbI OA3UCI.

C.M. Jlymax*, O.A. Boponuna, ['K. Hypaxmerosa
Cesepo-Kaszaxcranckumii yausepcurer umenn M. Koswsibaesa, Kasaxcran, r. Ilerponasiosck
*e-mail: sveta_lutsak@mail.ru
O kBa3UTOXK/JeCTBaX KOHEYHBIX MOOYJISAPHBIX PEIIeTOK

B 1970 romy P. Makkensu mjokaszaj, 4To Jjro0as KOHEYHAs DeIlleTKa MMeeT KOHEYHBIH 0a3uc
toxtecTB. OJ[HAKO aHAJOIMYHBINA PE3y/IbTaT JiIsl KBA3UTOXKJIECTB HEBEPeH. 10 eCTh CyIIecTByeT
KOHEYHAsl PEIleTKa, KOTOpasl He MMeeT KOHEYHOro Oasmca KBasuToxkecTB. [Ipobsiema "Kakwue
KOHEYHBIE PENeTKN UMEIOT KOHedHble 6a3uchl KBa3uToxjaects?" Obita npemioxkena B.A. Topoy-
HoBbIM U JI.M. CMUDHOBBIM.
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B 1984 romy B.U. TymamoB Hares I0CTATOYHOE YCJIOBHE, COCTOSINEE M3 JIBYX YaCTeil, IpU KO-
TOPOM JIOKAJIbHO KOHEYHOE KBA3UMHOIOOOpa3ue DEIeTOK HEe UMeeT KOHEYHOro (HEe3aBUCHUMOIO)
6a3mca KBasUTOXKIECTB. TakrKe OH IIPEIIOIOXKIII, YTO KOHEeUYHas (MOIYJIspHAs) pelleTKa MMeer
KOHEYHBIN 6a31C KBa3UTOXKIECTB TOI/Ia U TOJIBKO TOIA, KOI/a KBa3UMHOI000pa3ue, IOPOXK IEHHOe
9TOIl PeIeTKoi, siBjisieTcsi MHOroobpasueM. B obiem ciydae runoresa HesepHa. B. J[3e0sk Hammen
KOHEYHYIO PEIIeTKY, KOTOpast OPOXKIAeT KOHEYHO aKCUOMATU3UPYEMOe COOCTBEHHOE KBA3UMHOIO-
obpasme. IIpobsema TymanoBa 10 cux mop He perreHa JJjis MOIYJISPHBIX perreTok. Mbl cTponm
KOHEYHYIO MOJYJISIDHYIO DEIIeTKY, KOTOpasl He YIOBJIETBOPSIET OJHOMY U3 ycjoBuit TymaHoBa, HO
KBa3UMHOI00bpa3ue, MOPOXKIEHHOE ITON PEIIeTKO, He SBJISIeTCS KOHEYHO 0a3UpPyeMbIM.
Kutouessbie cioBa: Pemerka, kBasuMHOroobpasue, KOHEUHBI 6a3UC KBA3UTOXK IECTB.

1 Introduction

Questions concerning finite basability are among the most researched and relevant topics in
universal algebra. It is well known that the finite based results begin with R.C. Lyndon,
who in 1951 proved that the algebras on a two-element universe are always finitely based.
R. McKenzie [1] in 1970 established that every finite lattice is finitely based, and generalizing
this result, K.A. Baker in 1976 proved that every finite algebra generating a congruence-
distributive variety is finitely based. There are two major directions in which Baker’s theorem
was generalized. In congruence-modular direction there was a series of results by R. Freese and
R. McKenzie, the final result by McKenzie published in 1987 states that every finite algebra
generating a congruence-modular residually finite variety is finitely based. In congruence
meet-semidistributive direction, R. Willard in 2000 proved that every finite algebra generating
a congruence meet-semidistributive residually strictly finite variety is finitely based.

Thus, according to R. McKenzie, any finite lattice has a finite basis of identities. The
similar result for quasi-identities is not true, that was established by V.P. Belkin [2]|. In 1979
he proved that there is a finite lattice that has no finite basis of quasi-identities. In particular,
the smallest lattice that does not have a finite basis of quasi-identities is the ten-element
modular lattice M5_5. In this regard, the following question naturally arises. Which finite
lattices have finite bases of quasi-identities? This problem was suggested by V.A. Gorbunov
and D.M. Smirnov [3] in 1979. V.I. Tumanov [4] in 1984 found sufficient condition consisting
of two parts under which the locally finite quasivariety of lattices has no finite (independent)
basis for quasi-identities. Also he conjectured that a finite (modular) lattice has a finite
basis of quasi-identities if and only if a quasivariety generated by this lattice is a variety.
In general, the conjecture is not true. W. Dziobiak [5] found a finite lattice that generates
finitely axiomatizable proper quasivariety. Also we would like to point out that Tumanov’s
problem is still unsolved for modular lattices.

The main goal of the paper is to present a finite modular lattice that does not satisfy one
of Tumanov’s conditions but the quasivariety generated by this lattice is not finitely based
(has no finite basis of quasi-identities).

2 Material and methods

We recall some basic definitions and results for quasivarieties that we will refer to. For more
information on the basic notions of general algebra introduced below and used throughout
this paper, we refer to [6] and [7].



S.M. Lutsak et al. 51

A quasivariety is a class of lattices that is closed with respect to subalgebras, direct
products, and ultraproducts. Equivalently, a quasivariety is the same thing as a class of
lattices axiomatized by a set of quasi-identities. A quasi-identity means a universal Horn
sentence with the non-empty positive part, that is of the form

(VZ)[p1(7) = qu(Z) A -+ Apn(T) = qn(T) = p(Z) = q(T)]

where p,q, p1,q1,--.,Pn, qn are lattice’s terms. A wariety is a quasivariety which is closed
under homomorphisms. According to Birkhoff theorem [8], a variety is a class of similar
algebras axiomatized by a set of identities, where by an identity we mean a sentence of the
form (VZ)[s(Z) ~ t(Z)] for some terms s(z) and ().

By Q(K) (V(K)) we denote the smallest quasivariety (variety) containing a class K. If
K is a finite family of finite algebras then Q(K) is called finitely generated. In case when
K = {A} we write Q(A) instead of Q({A}).

Let K be a quasivariety. A congruence « on algebra A is called a K-congruence or relative
congruence provided A/a € K. The set Cong.A of all K-congruences of A forms an algebraic
lattice with respect to inclusion C which is called a relative congruence lattice.

The least K-congruence 0k (a,b) on algebra A € K containing pair (a,b) € A x A is
called a principal K-congruence or a relative principal congruence. In case when K is a
variety, relative congruence 0k (a, b) is usual principal congruence that we denote by 6(a, b).

An algebra A belonging to a quasivariety K is (finitely) subdirectly irreducible relative to
K, or (finitely) subdirectly K-irreducible, if intersection of any (finite) number of nontrivial
K-congruences is again nontrivial; in other words, the trivial congruence 04 is a (meet-
irreducible) completely meet-irreducible element of Conk.A.

Let (a] ={z € L |x <a} ([a) = {x € L | x > a}) be a principal ideal (coideal) of a lattice
L. A pair (a,b) € L x L is called dividing (semi-dividing) if L = (a] U [b) and (a] N [b) = @
(L = (a]U[b) and (a] N [b) # @).

For any semi-dividing pair (a,b) of a lattice M we define a lattice

M,y = {(x,0),(y,1) e M x2|x € (a],y €[b)};V,A) <¢ M X 2,

where 2 = ({0,1}; vV, A) is a two element lattice.

Theorem 1 (Tumanov’s theorem [4]) Let M, N (N C M) be locally finite quasivarieties
of lattices satisfying the following conditions:

a) in any finitely subdirectly M-irreducible lattice M € M\N there is a semi-dividing pair
(a,b) such that M,_, € N;

b) there exists a finite simple lattice P € N which is not a proper homomorphic image of
any subdirectly N-irreducible lattice.

Then the quasivariety N has no coverings in the lattice of subquasivarieties of M. In
particular, N has no finite basis of quasi-identities provided M s finitely axiomatizable.

In the next section, the algebra £ and its carrier (its main set) L will be identified and
denoted by the same way, namely L.
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3 Results and discussion

Let T be a modular lattice displayed in Figure 1. And let N = Q(7T') and M = V(T') be the
quasivariety and variety generated by T, respectively. Since every subdirectly N-irreducible
lattice is a sublattice of T', we have that a class Ng; of all subdirectly N-irreducible lattices
consists of the lattices 2, M3, M3 5 and T (see Figures 1 and 2). It easy to see that Mj is
a unique simple lattice in Ny; and is a homomorphic image of 7. Thus, the condition a) of
Tumanov’s theorem is not valid for quasivarieties N C M. We show

Theorem 2 Quasivariety Q(T) generated by the lattice T is not finitely based.
To prove the theorem we modify the proof of the second part of Theorem 3.4 from [9].

T

Figure 1: Lattice T

Ms < ; < ;
M3,3 M373

Figure 2: Lattices M3, M3 3 and M;z_3

Let S be a non-empty subset of a lattice L. Denote by (S) the sublattice of L generated
by S.
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We define a modular lattice L,, by induction:

n=1.L = Mz 3and Ly = ({a1,b,¢1,¢e,d}) (see Figure 3);

n = 2. Ly is a modular lattice generated by L; U {ag,bs, c2,d} such that by = co,
<{a2,b2,02,€, b1}> = Mg, and as Vb = e A d17 dV b = dl, and by < d (see Figure 3)

n > 2. L, is a modular lattice generated by the set {a;, b;, ¢; | i < n}U{e, d} such that a;
is not comparable with a; and by for all j # i and k <n, b;_; = ¢;, ({a;, b;, ¢;}) = M; for all
i<mn, b Vd=d; foralli <n,andb, <d (see Figure 4).

One can see that L, is a subdirect product of the lattices L, ; and M3 for any n > 2.

Figure 3: Lattices Ly, Lo

Let L, be a sublattice of L, generated by the set {a;, b;, ¢; | i < n}.

Lemma 1 For any n > 1 and a non-trivial congruence 8 € ConlL,, there is 1 < m < n such
that L,,/0 = L,, or L, /0 = Ms3 provided (ay,by) ¢ 0, otherwise L,,/0 = L, .

Proof of Lemma 1.

We prove by induction on n > 2. One can check that it is true for n = 3 because of
Ls3/0 = Ly or L3/0 = Ms3 if (a1,b1) ¢ 6 and L3/0 = Ly or L3/0 = Mj for any non-trivial
congruence 6 € ConLs.

Let n > 3. And let u cover v in L, and 0(u,v) C 0. By construction of L,, we have
L,/0(u,v) =L,y or L,/0(u,v) =L, _,.

Assume (aq, b1) ¢ 6. Since for every non-trivial congruence § € ConlL,, there are u,v € L,
such that u covers v and 0(u,v) C 6, we get

L,/0 = (L,/0(u,v))/(0/0(u,v)).
Since L, /0(u,v) = L,_; we obtain
L0/022 (L, [6(u, 0))/(0/0(u,0)) = Lo 1/6,

for some 0" € Con(L,,—1). And, by induction, L,,_1/0" = L,, or L,_1/0" = Ms3 for some
m > 0. Thus L, /0 = L,, or L,/0 = M.
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Figure 4: Lattice L,, n > 2

Now assume (ay,b;) € 6. Then 6(ay,b1) = 0(u,v) and L, /0(u,v) = L, . Hence
Ln/0 = (Ln/0(u,v))/(0/0(u,v)) = L, /0,

for some 6" € Con(L; ). It is not difficult to check that L; /0’ = L for some m > 0 (see
Lemma 3.1 [9]). Thus L,,/0 = L,, or L,,/0 = L.

Corollary 1 For all n > 1, there is no proper homomorphism from L, to M3 3 and T'.

Proof of Corollary 1.

We provide the proof for a proper homomorphism from L,, into M3_3. It is not difficult
to check that the same arguments hold for a proper homomorphism from L, into 7.

Assume h : L, — M3_3, n > 1, is a proper homomorphism. Hence ker h is not a trivial
congruence on L,. By Lemma 1, L,/kerh = L,, or L,/0 = Mss or L,/kerh = L, for
some m > 1. Thus L,, = h(L,) < Ms_3. It is impossible because, by definition of L,,,
|Lpm| > |Ms_3| for all m > 1, hence L, is not a sublattice of M;_3. Obviously, M3 3 and L,
are not sublattices of M3_3. Thus there is no such homomorphism h.

Lemma 2 For every n > 2, a lattice L, has the following properties:
Z) Ln Ss Ln—l X Ln—l;
ZZ) Ln S V(M3’3) == V(T),
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iii) Ln ¢ Q(T);
iv) Every proper subalgebra of L, belongs to Q(T).

Proof of Lemma 2.

i). One can check that L,/6(a;,b;)) = L, 1 for all 1 < i < n. Since n > 2 then
0(az, bs),0(as, bs) € ConL,, and 0(az, ba) N0 (ag,bs) = A. This means that L, <; L,_1 X L,_1.

ii). One can see that 7' is a subdirect product of M3 and Mj3. Hence T' € V(M33). On
the other hand, by Jonsson lemma [10], every subdirectly irreducible lattice in V(T') is a
homomorphic image of some sublattice of 7. Hence M3 € V(T'). Thus V(Ms3) = V(T),
and, by ¢) and induction on n, we get L, € V(7).

iii). Suppose L, € Q(T) for some n > 1. Then L,, is a subdirect product of subdirectly
Q(T)-irreducible algebras. Since every subdirectly Q(T')-irreducible algebra is a subalgebra
of T', we get that L, is a subdirect product of subalgebras of 7. By Lemma 1, there is no
proper homomorphism from L, onto T or Mj_ 3. Hence L, € Q(M;) for all n > 1. It is
impossible because M3 3 < L, and M3 3 ¢ Q(M3).

iv). We prove by induction on n. It is true for n < 2 by manual checking. Let n > 2 and
let S be a maximal sublattice of L,,. Since the lattice L,, is generated by the set of double
irreducible elements {a,...,an,,c1,¢e,d}, there is 0 < i < n such that a; € S or ¢; ¢ S or
e¢Sordé¢s.

Suppose ¢; ¢ S. One can see that (S) <, 2 x Mz x L, . Since L, ; <, M} we get
(S) € Q(My) € Q(T).

Suppose e ¢ S. Then (S) <, 2 x L, <, 2 x M} € Q(M3) C Q(T).

Suppose d ¢ S. Put S, = {{a1,...,am,c1,e}, m <n, and T,,, = (S,,). One can see that
Tn/0(a;,b;) = T,,—q for all 1 <i <m. And T,,/6(a1,b1) = L,,_,. Since 0(ay,b1) N O(a;, b;) =
A, by distributivity of Con7,,, we have 6(ay,b1) N (\V/{0(ai,b;) | 1 < i < m}) = A. Since
T/ (V{0(a;, b;) | 1 < i <m}) 2T we obtain (S,,) <, T x L, | <, T x My~ € Q(T).

Suppose a; ¢ S. Since n > 1 and S is a maximal sublattice, then there are i # k # [ # i
such that 0(by, cx), 0(b;, ¢;) € ConL,,

H(bk, Ck) N Q(bl, Cl) = A
and

Ln/é’(bk, Ck) = Ln/H(bl, Cl) = Ln—l or {Ln/e(bka Ck)7 Ln/e(bh Cl)} = {Ln—17 Lr:—l}'

We provide the proof for the first case, L,/0(bx,cx) = L,/0(b;,c) = L,_1. These
isomorphisms mean that L, <, L, 1 x L,y and S < L,y X L,_1. Let hy : L, — L,
and h; : L, — L, are homomorphisms such that ker hy, = 0(by, cx) and ker by = 0(by, ;).
Since (a;,b;) ¢ 0(bx,cr) U (b, c;) then hy(S), hi(S) are proper sublattices of L,_;. And,
by induction, hg(S),h(S) € Q(T). As by, cr,b,c; € S, the restrictions of congruences
O(bk,cr)|s and 0(b, ;)]s on the algebra S are not trivial congruences on S. Moreover
O(bk,ck)ls N O(b,¢r)|ls = A. It means S <g hg(S) x hy(S). Hence S € Q(T). Since every
maximal proper subalgebra of L,, belongs to Q(T") then every proper subalgebra of L,, belongs
to Q(T).

It is not difficult to check that for {L,,/6(bg,ck), Ln/0(bi, 1)} = {Ln_1, L, ;} the same

arguments hold.
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Now we prove the main result, Theorem 2.

We use the following folklore fact which provides non-finite axiomatizability: A locally
finite quasivariety K is not finitely axiomatizable if for any positive integer n € N there is a
finite algebra L, such that L, ¢ K and every n-generated subalgebra of L, belongs to K.

We show that for quasivariety Q(T"), the lattice L,, satisfies the conditions of this fact.
Indeed, by Lemma 2(iii), L, ¢ Q(T) for all n > 1. Since L,, is generated by at least n + 1
double irreducible elements then every n-generated subalgebra of L,, is a proper subalgebra.
By Lemma 2(iv), every n-generated subalgebra of L,, belongs to Q(7). Hence Q(T") has no
finite basis of quasi-identities.

We note that there is an infinite number of lattices similar to the lattice 7.

The proof of Theorem 2 give us more general result:

Theorem 3 Suppose L is a finite lattice such that Mss £ L, T < L and L, £ L for all
n > 1. Then the quasivariety Q(L) is not finitely based.

4 Conclusion

There are three measures of the highest complexity of the structure of quasivariety lattices:
(Q)-universality, property (N) or non-computability of the set of finite sublattices, and an
existence of continuum of quasivarieties without covers in a given quasivariety lattice. The
presence in the quasivariety lattices of a continuum of elements that do not have coverings
indicates the complexity of the structure of these lattices; in this case, there is a continuum
of subquasivarieties of a given quasivariety K that do not have an independent basis of
quasi-identities with respect to K. In [11] a sufficient condition for a quasivariety K to be
()-universal, to have continuum many subclasses with the property (N), continuum many
(Q-universal subquasivarieties and continuum many subquasivarieties with no upper covers in
the lattice Lg(K) was provided. In [12] a sufficient condition for a class K to have continuum
many subclasses with the property (N) but which are not Q-universal was established. In [13]
it was proved that almost all known Q)-universal quasivarieties contain classes having property
(N).

In this paper we construct a finite modular lattice that does not satisfy one of Tumanov’s
conditions but the quasivariety generated by this lattice is not finitely based. It has no finite
basis of quasi-identities.
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