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EVOLUTION EQUATIONS OF MULTI-PLANET SYSTEMS WITH
VARIABLE MASSES

In celestial mechanics and astrodynamics, the study of the dynamical evolution of exoplanetary
systems is the relevant topics. For today more than 3,000 exoplanetary systems are known. In
this paper, we study the dynamic evolution of extrasolar systems, when the leading factor of
evolution is the variability of the masses of gravitating bodies. The problem of n + 1 spherically
symmetric bodies with variable masses is considered in a relative coordinate system, this bodies
inter-gravitating according to Newton’s law. The quasi-elliptical motions of planets whose orbits
do not intersect during evolution are investigated. It is believed that the mass of bodies under
consideration varies isotropically by various known laws with different velocities. The mass of the
parent star is considered to be the most massive than its planets and the origin of the relative
coordinate system is in the center of the parent star. Due to the variability of the masses, the
differential equations of motion become non-autonomous and the task is difficult. The problem
is investigated by methods of perturbation theory. The canonical perturbation theory based on a
periodic motion over a quasi-canonical section is used. Canonical equations of motion are obtained
in analogues of the second Poincare system, which are effective in the case when the analogues of
eccentricities and the analogues of the inclination of the orbital plane of planets are sufficiently
small. The secular perturbations of the planets, which determine the behavior of the orbital
parameters over long time intervals, are studied.

The evolutionary equations of many planetary systems with isotropically varying masses in
analogues of the second system of Poincare variables are derived in an analytical form which
are obtained using the Wolfram Mathematica computer algebra system. This takes into account
the effects of the decreasing mass of the parent star and the growth of the masses of the planets due
to the accretion of matter from the remnants of the protoplanetary disk. For the three-planetary
problem of four bodies with variable masses, the evolutionary equations in dimensionless variables
are obtained explicitly. In the future, these results will be used to study the dynamics of the three-
planet system K2-3 in the non-stationary stage of its evolution.

Key words: variable mass, perturbation theory, evolutionary equations, exoplanetary systems,
Poincare elements.

M./I>x. Munrnutaes, A.B. Komepbaesa*
On-Papabu arpiggarsl Kazax YaTTeik YHuBepcureri, AiMarsl K., Kazakcran
*e-mail: kosherbaevaayken@gmail.com
MaccaJjsiapbl e3repMesii Kol IJIaHeTAJIbl >KYyleJep/aiH, 9BOJIIOIUAIIBIK, TeHaey/Iepi

AcrniaH MeXaHMKACBIHJIA YKOHE aCTPOJUHAMUKAA SK30ILIAHETA bl XKYHeHiH JIMHAMUKAJIBIK, 9BOJIIO-
[USICBIH 3epTTey 63eKTi TakbIpbiln. Kasipri tanga 3000-HaH apThIK 9K30IJIaHETAJbI XKYyiie Gesrii.
Byn x)xyMbIcTa rpaBuTaIus apKbLIbl 9CEPJIECETIH JeHeIeP/IiH MaCCATAPBIHBIH, afHBIMAJIBLIBIFBI 9BO-
JTIOIIASTHBIH, YKEeTEKI (paKTOpPhl PETiHIe KApaCThIPLIIFAH Ke3Je KYH Kyieci ChIPTHIHIAFBI OacKa
Ja Kyliesepaid, IUHAMHUKAJIBIK, 3BOJIONUICH 3eprreseni. CalblCThIpMa/Ibl KOOPAUHATAIAD YKYii-
eciHJie HHIOTOH 3aHbI OOMBIHINA ©3apa 9CEepJIeCeTiH alHbIMAIbI MACCAJIbl C(hepasblK CUMMETPUSIIIBI
JIEHEeJIEP MoceJIeci KapacThIPhLIaJIbl. DBOJIIONKS Ke3iH e IJIaHeTaJIapIblH opouTajtapsl 6ip-6ipiMeH
KUBLTBICIIAUTHIH KBA3WJITUIITUKAJIBIK, KO3FAJIBIC 3epTTesesi. KapacThIpblIaThiH JIeHEIePIiH, Mac-
caJlapbl OPTYPJI KBULIAMIBIKIIEH Oe/Irii opTypJii 3aHABLIBIKTAD OOUBIHITIA U30TPOIITHL TYPIE ©3-
repejii Jient canajajbl. OpTajblK >KYIIBI3IBIH MACCAChl OHBIH, TJIaHETAJaAPBIHBIH MacCaJapblHaH
oJITe-Kaliia YIKeH JIen aJIblHAbI, 2KOHE CaJbICThIPMAJIBI KOOpAMHATAIAD KYieciniy 6ac HykTeci
OPTAJIBIK, KYJIJBI3JIBIH IEeHTPiHJIe OpHaacaabl. Maccaaap/ibiH alfHbIMAJIBLIBIFA ecebingie qudde-
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PEHITHAJIBI KO3FAJIBIC TEHJIeyJIepi aBTOHOM/IBI eMeC TYPre €HeJi »KoHe ecell KUbIHaabpl. Mocese
YHBITKY TEOPUSICHI dIicTepiMeH 3epTresie . KBa3snKOHYCTHIK KuMa OOMBIHIIA alepPUOITHI KO3FAJIBIC
HEri3iH/e KAHOH/IBIK VHBITKY TEOPHUSICHI KOJIIAHBLIAIbI. JKIEHTPUCATET AHAJOITAPHI MEH IIIaHe-
Ta OPOUTACHIHBIH, KOJIOEYIK OYPBIMIBIHBIH aHAJIOTTAPBI 2KETKUNKTI AeHreiime Kimmi mama Oosran
Ke3jie THIMII O0JIbIT TaObLIaThIH [lyankapeHin exinmi KyHeciHin anaaIorTapbl aPKbIIbI KAHOHIBIK,
KO3FaJIbIC TeHJEeyl aJIbIH/Ibl. YaKbITTBIH YJIKEH MHTEDPBaJbIHIA OpOuTa IapaMerpJepiniy e3repicin
AHBIKTAyFa MYMKIHJIIK O€peTiH MJIaHETAHBIH FACBIPJBIK YIBITKYbI 3€PTTETIHE/I].

"Wolfram Mathematica" kommbroTepJiik airebpa KoMeriMeH Maccaiapbl B30TPOITHI ©3TePETiH KOt
ILUTAHETAJIbl KYHeHIH 3BoJonusiblk TeHaeyaepl [lyankape aliHbIMaJIBLIAPBIHBIH, €KIiHI Kyiteci
AHAJIOrTaphl APKBLIBI AHAJIUTHKAJBIK, TypJie Kesaripisared. COHbBIMEH KaTap, TPOTOILIAHETAJBI JINCK
KAJIIBIKTAPBI OOJIIIEKTEPIHIH, aKKPelusachl ecebiMeH TJaHeTa MaCCACHIHBIH OCYi KOHE OPTAJIBIK,
JKYJIBI3JIBIH, MACCACBIHBIH, a3a10 9CepJiepl ecerke aJibIHaJIbl. AWHBIMAJIBI MACCAJbl TOPT JIEHEHIH,
VI TLTAHETAJIbI MICeJIeCi VIMH OJIMEeMCI3 MmaMa apKbLIbI IBOIIONUSIBIK, TEHJIEYIeD AHBIK, TYPJe
aapHabl. EHAIT Ke3ekTe asbiaran HoTHKeaep K2-3 ymr mranerasnbl yKyHeCiHiH CTallmOHAD eMec
IBOJIIONUS KE3EHIH/E JITNHAMUKAJIBIK, IBOJIIONNACHIH 3€PTTEY YIIMH KOJIIAHBLIA b

Tvyitlin ce3mep: ailHbIMAJIBI MAacCCa, YUBITKY TEOPHUSCHI, SBOJIONUAJIBIK TEHIEYIIED, SKI0IIaHETAJIbI
XKyienep, Ilyankape ssemenTTepi.

M. Ix. Munriubaes, A.B. Kormepbaesa*
Kaszaxckwuit Hanmonanbubiit Yausepcurer umenn aib-Papabu, . Anmarsr, Kazaxcran
*e-mail: kosherbaevaayken@gmail.com
DBOJIIOIIMOHHBIE YPABHEHUSI MHOTO IJIAHETHBIX CHUCTEM C IIEPEMEHHBIMU MacCaMH

B mebecHoll MexaHVWKe W B aCTPOIMHAMUKE U3yUeHHe JTUHAMUYECKYIO IBOJIIOIUIO SK30ILIAHETHBIX
cucreM akTyajbHas TeMa. Ha ceromusmtauit ners m3BectHo 60s1ee 3000 9K30MIaHETHBIE CUCTEMBI.
B macrosmieit pabore ucciaeayeTcs IUHAMAYIECKAs IBOJIIONNSA BHECOTHEIHBIX CHCTEM, KOTIA BEJIy-
M (HAKTOPOM SBOJIIOIUN SIBJISETCS IEPEMEHHOCTD MACC I'PABUTUPYIOMUX Tesl. PaccMarpuBaeTcs
B OTHOCHUTE/ILHOM CUCTEeMe KOOPIUHAT 3a/a49a ChepUIeCKuil CUMMETPUIECKUX T C IIePEeMEHHBIMU
MacCaMH, B3aUMOTPABUTHUPYIONINE II0 3aKOHYy HbIOTOHA. lcciienyercs KBa3UJLIMIITUICCKIE
JIBUYKEHUS TIJIaHeT OPOUTHI KOTOPBIX B XOJI€ SBOJIIONUN He repecekarorcs. CInTaercs, 9To Macca
paccMaTPUBAEMBIX TEJI H3MEHSETCsI H30TPOITHO IO PA3INIHBIM H3BECTHBIM 3aKOHAM C PA3IMIHBIMEI
ckopocTsaMu. Macca poauTeabCcKOl 3Be3/bI CUMTaeTCs Hambojiee MACCUBHBIM 4YeM €€ IJIAHETHI U
HA4YaJI0 OTHOCUTEJBHON CHCTEMBI KOODJIMHAT HAXOJUTCA B IEHTPE DPOIUTEIHCKON 3Be3ibl. I13-3a
repeMeHHOCTH Mace JAudepeHnnabHble YpaBHEHUs JIBUYKEHUsI CTAHOBUTCS HEABTOHOMHBIMU U
3ajada ycaoxkHsercs. lIpobiema wmcceayercss MeTOIaMU TEOpUU BO3MYyIeHus. Vcmosb3yercs
KAHOHUYECKAs TeOpHsl BO3MYIIEHUS HA 0a3e almephoOIUIeCKOTO JIBUKEHUs 110 KBA3UKOHUIECKOMY
cedennio. KanoHm4yeckne ypaBHEHUs JBI2KEHUS IOy YEHBI B aHAJIOTaX BTOPOil cucrembl [Iyankape,
KoTOpble 3(PDEKTUBHBI B CiIydae, KOIJIAa AHAJIOIH SKCIEHTPUCATETOB M AHAJOIM HAKJIOHHOCTH
OpOUTATBLHON IIJIOCKOCTH TIJIAHET JOCTATOYHO MaJibl. Vlccie yoTcss BEKOBbIe BOBMYIIIEHUS TLIAHET,
KOTOpPBIE OIPEJIENISIOT TIOBE/IEHNE OPOUTAJIBHBIX MAPAMETPOB Ha OOJIBIINX WHTEPBAJIAX BPEMEHHU.

B anasmTmyeckoM BuUEe NPUBEIEHBI SBOJIIOIMUOHHBIE YDPABHEHUS MHOIO IIJIAHETHBIX CHCTEM C
M30TPOIHO M3MEHSIIONIMUCT MACCAMHU B aHAJIOrax BTOPOH cmcreMbl mepeMmennbix [lyankape, Ko-
TOpPBIE TIOJIyYeHbI C UCIIOJIb30BAHMEM CHUCTEMBI KOMIIbIoTepHOI ajareopnr "Wolfram Mathematica".
IIpu sToMm yumrhIBaroTCs 3D@PEKTH YOBIBAHMA MACChl POJUTEJHCKON 3BE3Ibl M POCTa Mace
IJTAHET U3-33 aKKPEIUU BEIECTBA U3 OCTATKOB MPOTOIIAHETHOrO jucka. JIms Tpex maaHeTHO
3aJla9d YeThIpeX TeJ C IEePEMEHHBIMU MacCaMH, B $BHOM BHJIE€, IOJYYEHBI 3IBOJIIOIUOHHBIE
ypaBHeHUS B Oe3pa3MEpHBIX IIePEMEHHBIX. B JajbHeiIneM 3T pe3y/IbTaTbl OyIeT WCIIOIh30Ba-
HBI JIJIs M3y Y€Hnsl JUHAMUAKY TPeX IJIaHeTHOH cucrembl K2-3 B HecTamoHapHOil sTame ee SBOJIIOIIH.

KuroueBbie cjioBa: lepeMeHHas Macca, TeOPUsl BO3MYIIEHUS, SBOIOIUOHHBIE YPABHEHU, K30~
IJIAHEeTHBIE CHCTEMBI, 3jleMeHThI [lyarkape.
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1 Introduction

Multi-body problem is one of the center problem in celestial mechanics. Let us short review of
more interesting work about this problem that are close to our topic. In paper [1]| three body
problem was researched and algorithm of solving equation in osculating elements was given,
here perturbing acceleration smaller than main acceleration caused by the induced of the
central body gravity. In article [2] integrability of the N body problem was described. In [3| the
problem of deriving theory of motion of four planet around center star was considered. Here
Hamiltonian was given in the Poisson series in the osculating elements of the second Poincare
systems. The expansion in series was constructed up to third power of a small parameter.
A relevant problem is the problem of formation planetary systems. In work [4] the orbital
evolution of two planetary system of three bodies Sun-Jupiter-Saturn was investigated. The
Hamiltonian written in osculating elements is represented in Poisson series expansion over
all elements.

In [5] orbital evolution of asteroids Phaethon clusters was studied, taking into account
perturbations from eight major planets, the dwarf planet Pluto, the influence of the Yarkovsky
effect, the flattened Sun and relativistic effects. In article [6] dynamical evolution of orbits
due to pressure of solar radiation was investigated. In [7| the authors analyzed dynamical
evolution of young pairs of asteroids in close orbits. In work [8] evolution of planetary systems
was studied. The averaged equations of motion was derived analytically up to third power of
a small parameter for the case of a four planetary system. Here the system of Sun-Jupiter-
Saturn-Neptune is considered.

In [9] and [10] the authors described a methodology for detection the initial orbits of
exoplanet using the curve radial velocity of parent star and obtained an algorithm for solving
the equations of two body problem in the form of series and proved that the serieses converges
to solving the equations for small values of eccentricity.

In work [11] the orbital evolution of the three-planet exosystem as HD 39194 and the four-
planet exosystems as HD 141399 and HD 160691 (u Ara) are studied. In result the authors
have derived an averaged semi-analytical theory of second-order motion by the masses of
exoplanets. Here multi-planetary problem is considered. The equations of motion are given
in the Jacobi coordinates and written in the elements of the second Poincare system.

In celestial mechanics and astrodynamics one of the relevant topics is the study dynamical
evolution of non-stationary gravitational exoplanetary systems. For today 3677 exo-systems
and 4903 confirmed exoplanets are known [12].

In this paper, in difference to the above-mentioned works, the dynamical evolution of
multi-planetary systems is researched, when the leading factor of evolution is the variability
of the masses of the celestial bodies themselves.

The particular case — two planetary problem of three bodies with variable masses was
considered in work [13].

The motions are studied in a relative coordinate system, with the origin in the center of
the parent star. The canonical perturbation theory is used, which elaborated on the base a
periodic motion over quasi-canonical section [14|. Dimensionless evolutionary equations are
obtained in analogues of the second Poincare system.
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2 Materials and methods

2.1 The problem statement and differential equations of motion

We will consider the motion of n + 1 (n > 3) bodies, which inter-gravitating according to
Newton’s law, in a relative coordinate system with the origin in the center of the parent
star, whose axes are parallel to the corresponding axes of the absolute coordinate system.
The bodies will be considered spherical with isotropically varying masses. We introduce the
following notation: S — the parent star of planetary system — the center body, P;, (i =
1,2,...,n) — planets. The positions of the planets are such that P, — the inner planet relative
to the P, 1 planets, but the outer, relative to P,_;. We will assume that such positions of the
planets are preserved during of the evolution and their orbits don’t intersect.
The law of varying of mass is considered to be known and different:

mo = mo(t), my=my(t),...,m, =my(t) (1)

where, mg = mg(t) — mass of parent star S, m; = m;(t), — mass of planet P;.
The motion equations of n planets in the relative coordinate system are written as the
following [14-15]:

-, (mo +my) =, ;=T T .

Tl:—fr—?rl—l—fz:m] T—ﬁ s (Z,j:1,27,n) (2)
]:1 J J

where, f — the gravitational constant, 7;(x;, y;, z;) — the radius-vector of planet P;, in summing

the sign "stroke" means that i # j, r;; — the mutual distances of the center of spherical bodies:

rij = \/(1‘1 — @)+ (Y —vi)? + (25— 2)? =1y (3)

We will use the methods of the canonical perturbation theory, elaborated on the basis of
the aperiodic motion over a quasi-canonical section [14]. Canonical equations are convenient
for studying non-stationary gravitating systems.

Based on differential equations of planetary motion written in the relative coordinate
system , it is possible to write the canonical equations of motion in the osculating analogues
of the second system of canonical Poincare variables [16-17|:

Aiy Ny & miy pin G (4)
The system of canonical equations has the form
\_OR b OWi i OR 0w,
COON 2N 0N CoN ON
. OR: oW, - OR: OW;
n; = = - ) §2 = = ) (5>
0¢; 0¢; on; on;
. OR; ow; . OR;  OW;

@ Opi B 0pi’ b= 0q; B 5%'
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where, the Hamilton function has the form

2
. po 1 mo(to) + mi(to)
R; :__—_W’L tyAh X ia)\h iy i) 5 i = = ’Lt 6
; A2 220 ( §irDis Nis i, @) 5 Y, Ty E— Yi(t) (6)

7

here, pio = f(mo(to) + mi(to)) = const — gravitational parameter of unperturbed motion at
the initial moment of time to, W;(t, Ay, &, pi, i, M3, i) — perturbing function.

In work [16] a scheme for expressing perturbing functions via osculating elements was
presented . In the article [18] obviously expansion of the perturbing function in analogues
of the second system of canonical Poincare variables were obtained up to the second power
of small parameters including, for n — planetary systems with variable masses. The equations
of secular perturbations in the general case are also obtained

/MZ() éWV(SeC)

Y2A3 oN; ’

aW(sec . aW(sec)
o — — 7
771 a I £l a/rh I ( )
. _am sec) o 8W sec)
q; = 8}%’ ) bi = a(h .

The obviously form of the obtained evolutionary equations of the problem of multi bodies
with variable masses is as following

I

i—1 , - n : .

. 1% 1 1 H 3y A3

&=f m3<im+ = ns>+f m ( By + )——‘
szl A,L \ AzAs Z k Az \/A Ak 2’}/1/L120

k=i+1

i1 - ’ n -
ITés 11 TTék I 39 A3
ﬁi = _f E e ( “ 61 + = fs) - f E m ( kk& & 5 ) gz
s=1 Az vV AzAs — g Az V A Ak g 271M2

i—1 n

. is 4 ds ik [ i 4k

pi=—f> mB ( ——>—f m.B ( ——) 8
; VTV N/ W 2 by 1A 4V/KAL ®)

k=i+1

i—1
i Di ik Pk
1Y mB w1 Y Bt (- )
f ; ! (4AZ~ 4\/—AA> / Z U4 aV/AR,

5 (sec)
. o aM/i .
o _ A =
A fyfA? ON; i =0 ()

here, index s — denotes the inner planet relative to the investigated planet, and the index k
— the outer one.

For n planetary problem of multi-bodies with variable masses the system of canonical
equations represent 4n-linear non-autonomous equations with complex coefficients. The
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explicit form of non-autonomous coefficients of equations — @ are cumbersome, for
internal and external perturbing planets they are written separately. They are described
in detail and given in the work [18]. These coefficients, in turn, depend on the Laplace
coefficients. The Laplace coefficients can be calculated exactly and expressed throughout
elliptic integrals of the first and second kind [19].

The resulting system of canonical equations is divided into two separate subsystems
[18]. The first subsystem defines the equations of secular perturbations for eccentric elements
(&, m:), and the second one for oblique elements (p;, ¢;). The linearity of the system of non-
autonomous differential equations significantly ease the study of the canonical system of
differential equations in the formulation under consideration.

From the last equation @D follows

A; = const or a; = const (10)

Note that ); is calculated after integrating equations .

Remark that when the analogues of eccentricities and the analogues of the inclination of
the orbital planes of planets are small enough, the equations of secular perturbations (8) —
@ are convenient for describing the dynamic evolution of planetary systems with variable
masses.

2.2 Dimensionless differential equations of motion

For the calculation we use the following dimensionless quantities:

d / a; m;
t"=1=uwt — | = af=—, mi=— 11
14, (dT) ()7 7 CL1’ 7 mOO’ ( )
where, t* — dimensionless time, a; — dimensionless distance, m; — dimensionless mass, mgy =
mo(to) = const —the mass of the parent star at the initial moment of time, a; = a;(ty) = const
— the semi major axis of the planet P; at the initial moment of time, the value of w; is defined
as follows:

vV fmoo

wy = ——55— = const. (12)
aq
Accordingly, we write down the period of the planet P; at the initial moment of time in
Earth years

2 2
T1:—7T: T a‘i’/zzconst:k‘l. (13)
w1 Jmoo

Then, taking into account the relations [14], [16]

A= Sl M =L+
&=\ 2@l /1= cosm, = —\/2y/Fy/a@(1—/T-¢) sinm,

\/Qw/,uz Vain/1—€e?(1—cosi;) cos, ¢;= —\/2,/ui0\/a_“/1—e?(1—cosii)sinQi,
l - - nl[¢z( ) qbz(ﬂ)] - QZ + wi,

(14)
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where
a;, €, i, wi, SN, ¢i(n) (15)

the osculating elements of the aperiodic motion over the quasi conic section, we can write

&= f;(fmooa1)1/4> i = U;k(fmooal)l/A‘, bi = p:(fmooa1)1/4> q; = q;k(fmooal)l/A‘ (16)

32 3//A>k3
Ai = /Fmogy/arAr, 15— 2 (17)

zMzO 2% Nz’o

At the same time, dimensionless eccentric and oblique elements have the form

&= \/2\/,@ \/_* (1—+/1—¢€?)cosm,

(18)
77;*:—\/2,/%\/_ \/1—6 smﬂi,
P = \/Qw/,u;‘o\/a_;‘\/l—e?(l—cosz’i)cosQi, (19)
q = —\/21 /ujfo\/a_;“ 1 —e?(1 — cosi;)sin ),
A = ViioV/ai, iy =1+ % = const. (20)
00

Using the introduced notation - and the relations — , we proceed to
dimensionless variables.

In equations , by reducing the left and right sides of the equation by a common
multiplier w;(fmgoa;)*/* = const, we obtain the evolution equations in dimensionless
quantities.

For the convenience of writing, omitting the symbol (x), we rewrite the equations in
dimensionless variables in the following form

i—1 ; n
=3 1137 T3 3 T I ) v A
i s 7 % i)
& — " (A»n \/AA > mk(A i VA; Ak 2% ,uzn

s=1 k=i+1
1—1 n
st st sz H;k 3,}// A3
r_ i kk ik
n;, = ;ms < fz /—A A f ) kzl;rl ( gz /—AZAk gk’) 272 Hl()&’ (21)
-1

is [ i ik [ i dk
— N " m,B B )
;m 1 (4A 4\/_AA ) k_z i (4Ai 4\/—AiAk>

i—1
/ is [ Pi ik Pk
. = SB B — .
% ;m ! (4/\ 4\/—AA ) Z Mk (4A 4\/—AiAk)

k=i+1

At the same time, the expressions IT%, TT1#, Ik T in equations and the Laplace

coefficients retain their form. But, they are already dimensionless quantltles.
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3 Results

3.1 Dimensionless evolutionary equations of the three-planetary problem of four bodies
for numerical calculations

Now we will explicitly write dimensionless evolutionary equations for the special case when
n = 3. The planet P, is affected only by the outer planets (s = 0, k = 2, 3), and for planet P,
we take into account the influence of one inner planet (s = 1) and one outer planet (k = 3).
For planet P, there is only the influence of the outer planets (s = 1,2, k = 0).

The system of equations of eccentric elements consists of six equations

& = (Dy* + Dy + DY) -m + Dy -y + Dy s,
0 = —(Dy* + Dy + D}) - & = Dy* - & — Dy° - &,
& =Dy + (D3 + D5 + D3) - ma + DY’ - s, (22)
= —Dp' & —(Dy' + Dy° + D) - & — Di° - &,
& =Dy -+ Dy i+ (Dy + Dy* + DF) -1,
nh=—Dy' & =D& — (Dy' + Dy + D3) - &,
Similarly, we obtain a system of equations for oblique elements
Py = —({1221’2 + £§’3) g+ 1111211’2 o+ {l%lg g3,
= G 3 = HE B
p,2 :H1’2'1q1 - (HQ’Q—IF H272)3' QQ+H1’2'3Q37 (23)
Ps = H1’3-1q1 A 3-2q2 — 3T Hy :22 o
¢s=—Hy" -p1— Hy" -po+ (Hy + Hy”) - ps,
The following notation is introduced in equations and
' NNy 2 A; ’ 2/v%zo Y
ik _ lkai’k ik _ lkaik (25)
O Y U S VR
, , 9(1+ ; 21 31+« ; 3
s = © (o + ) - 20 M gy 2o, BULG) ope, 3 ou
8 80@;€2 16 By, 16 (26)
, 3 1. 150, +6 . 3 9
sz — _ sz _sz ik Czk o Czk _Czk
kk 4057,]{ 0 2 1 80[3k, 0 20[ka 1 8 2
ik 2a;; dA ik 2a;; cos AddA
BO = 2 9 3/2° Bl = 2 9 3/27
T (aryi) ) (14 oz, — 2, cos \) 7 (ar i) / (14 oz, — 204, cos \)
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™

ik 2a;7; cos 2 dA
BQ = 2 2 3/27
™ (ar k) , (14 of, — 204, cos \)
i 2(ain)’ dA o 2(am)? cos AdA
m (ar k) / (14 oz, — 204, cos \) T (axyr) / (14 oz, — 24, cos \)
(27)
ik _ 2 (a;;)? / cos 2Ad\ ik _ 2 (a;;)? / cos 3N\
2 )’ J (1+ a2, — 2a, cos A2 S ()’ / (1+ a2, — 2ay, cos A2
where the following conditions are met for the outer planets (i < k)
Vili
Qi = = oy(t) < 1. 28
* Vkak +() (28)

For the inner planets , the designations are as follows
~ m I m, 1132 3AY A7 (1)

Dis _ Dis — i AN 29
1 ASAi’ 2 Az ) 3 2/11120 Vi ) ( )
; 1 m,BY* ; 1 m,BY*

HbS — = s=1 Hbs — = s—1 30
1 4 \/ma 2 4 Az ) ( )
1 91 +a?) .21 . 3(1+ak) .. 3

Hz's —— ngs st _ S Czs _Czs (2 Czs _Czs
18 8 ( 0 + 2 ) 805723 ) 0 + ].6 1 + 8062'3 2 + ].6 3 (31)
is 3ais is 1 is 15 + 6041-5 is 30us s 9 1S

I = _TBO - 531 + TCO - Tcl - gCQ ;

1S 20’573 dA is 2@575 COS )\d)\
By = ~)2 2 3/27 1= ~)2 2 3/27
7 (ai7s) ) (1+af, — 2ai5cos A) 7 (@) / (14 af, — 2a45cos \)

™

is 20575 cos 2 d\
By = 2 9 3/2°
7 (aivs) J (14 ai, — 2a45 cos \)
o 2(agys)? [ dA o 2(ag)’ [ cos AddA
CO == 3 9 5/2° Cl = 3 2 5/27
7 (@i;) / (1+ af, — 2ay5cos ) (@) (14 af, — 2a45cos \)
(32)
o 2(agys) [ cos 2AdA o 2(ag)’ [ cos 3AdA
Cy = 3 9 5/2° 3 = \3 2 5/27
7 (ai;) / (14 a2, — 2ay5scos \) 7 (a;7;) / (14 a2, — 2a45cos \)
In formulas ~ (32)), the following conditions are met for the inner planets (s < )
Qs = L% — (1) < 1 (33)

1A
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4 Discussion

The resulting system of canonical equations is divided into two separate subsystems.

The first subsystem defines the equations of secular perturbations for eccentric
elements. The second subsystem contains equations for oblique elements. The linearity
of the obtained non-autonomous canonical systems of differential equations -
significantly ease the study of the problem in the formulation under consideration.

Note that equations @D determining the mean longitude \; of the planets is calculated
after integrating equations and .

The obtained systems of differential equations - in dimensionless variables will
be further used to analyze the effects of mass variability on the dynamic evolution of specific
planetary systems by numerical methods.

5 Conclusion

In the work using the symbolic computing system "Wolfram Mathematica" [20-21],
evolutionary equations are obtained in explicit analytical form, in dimensionless variables
for the three-planetary problem of four bodies system with isotropically varying masses.
Differential equations are described in analogues of the second system of canonical Poincare
elements.

The obtained evolutionary equations will be used to study the dynamic evolution of
extrasolar planetary systems. This will take into account the effects of the decrease in the
mass of the parent star and the increase in the mass of the planets due to the accretion of
matter from the remnants of the protoplanetary disk.

Acknowledgments
This research has been funded by the Science Committee of the Ministry of Education
and Science of the Republic of Kazakhstan (Grant No. AP14869472).

References

[1] Sannikova T.N., Kholshevnikov K.V., "Motion in a Central Field in the Presence of a Constant Perturbing Acceleration
in a Co-moving Coordinate System" , Astronomy Reports, 59(8) (2015): 806-817.

[2] Sokolov L.L., Kholshevnikov K.V., "Ob integpipyemocti zadachi N tel [On the integrability of the N-body problem|",
Astronomy Letters, 12(7) (1986): 557-561.

[3] Perminov A.S., Kuznetsov E.D., "The Implementation of Hori-Deprit Method to the Construction Averaged Planetary
Motion Theory by Means of Computer Algebra System Piranha", Mathematics in Computer Science, 14(2) (2020):
305-316. DOI: 10.1007/s11786-019-00441-4.

[4] Kuznetsov E.D., Kholshevnikov K.V., "Orbital’'naya evolyuciya dvuplanetnoj sistemy Solnce — Y Upiter — Saturn [Orbital
evolution of the Sun — Jupiter — Saturn bi - planetary system|", Vestniks of Saint Petersburg University, 1(1) (2009):
139-150.

[5] Kuznetsov E.D., "Orbital evolution of phaethon cluster", Meteoritics & Planetary Science, 56 (2021): 1.

[6] Belkina S.O., Kuznetsov E.D., "Orbital flips due to solar radiation pressure for space debris in near-circular orbits" , Acta
Astronautica, 178 (2021): 360—369. https: //doi.org/10.1016/j.actaastro.2020.09.025\

[7] Kuznetsov E.D., Rosaev A.E., Plavalova E., Safronova V.S., Vasileva M.A., "A Search for Young Asteroid Pairs with
Close Orbits", Solar System Research, 54(3) (2020): 236-252. DOI: 10.1134/s0038094620030077.


https://doi.org/10.1016/j.actaastro.2020.09.025

Minglibayev M.Zh., Kosherbayeva A.B. 45

(8]

(]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

20]

[21]

Perminov A., Kuznetsov E., "The orbital evolution of the Sun—Jupiter—-Saturn—Uranus—Neptune system on long time
scales" , Astrophysics and Space Science, 365(8) (2020): 144. DOI: 10.1007/s10509-020-03855-w.

Kholshevnikov K.V.; Mullari A.A., Tolumbaeva D.A., Vavilov D.E., "Opredelenie pervonachal’nyh orbit vnesolnechnyh
planet metodom luchevyh skorostej: zamknutye formuly [Determination of the initial orbits of extrasolar planets by the
method of radial velocities: closed formulas|", Vestniks of Saint Petersburg University, 1(3) (2011): 143-152.

Kholshevnikov K.V., Tolumbaeva D.A., Mullari A.A., "Opredelenie pervonachal’nyh orbit vnesolnechnyh planet metodom
luchevyh skorostej: stepennye ryady [Determination of the initial orbits of extrasolar planets by the method of radial
velocities: power series|", Vestniks of Saint Petersburg University, 1(1) (2011): 166-172.

Perminov A.S., Kuznetsov E.D., "Orbital’'naya evolyuciya vnesolnechnyh planetnyh sistem HD 39194, HD 141399 I HD
160691 [Orbital evolution of extrasolar planetary systems HD 39194, HD 141399 and HD160691]|", The Astronomical
Journal, 96(10) (2019): 795-813. DOI: 10.1134/S1063772919090075.

https: //exoplanets.nasa.gov /|

Prokopenya A., Minglibayev M., Shomshekova S., "Computing Perturbations in the Two-Planetary Three-Body Problem
with Masses Varying Non-Isotropically at Different Rates", Mathematics in Computer Science, 14(2) (2020): 241-251.
https://doi.org/10.1007/s11786-019-00437-0.

Minglibayev M.Zh., Dinamika gravitiruyushchikh tel s peremennymi massams i razmerami [Dynamics of gravitating bodies
with variable masses and sizes|] (LAP LAMBERT Academic Publishing, 2012): 224. Germany. ISBN:978-3-659-29945-2.

Minglibayev M.Zh., Kosherbayeva A.B., "Differential equations of planetary systems", Reports of the National Academy
of Sciences of the Republic of Kazakhstan, 2(330) (2020): 14—-20. https://doi.org/10.32014,/2020.2518-1483.26.

Minglibayev M.Zh., Kosherbayeva A.B., "Equations of planetary systems motion", News of NAS RK. Physical-
mathematical series, 6 (2020): 53—-60.

Minglibayev M. Zh., Mayemerova G.M., "Evolution of the orbital-plane orientations in the two-protoplanet three-body
problem with variable masses" , Astronomy Reports, 58(9) (2014): 667—677. DOI: 10.1134/S1063772914090066.

Prokopenya A.N., Minglibayev M.Zh., Kosherbayeva A.B., "Derivation of evolutionary equations in the multi-body
problem with isotropically varying masses using computer algebra", Programming and Computer Software, 48(2) (2022):
1-11.

Charlier K., Nebesnaya mekhanika [Celestial mechanics| [Tekcr| / Perevod s nem. V.G. Demina; Pod red. prof.
B.M. Shchigoleva [Translated from German by V.G. Demin; Edited by prof. B.M. Shchigolev| (Moscow: Nauka, 1966):
627.

Wolfram S., An elementary introduction to the Wolfram Language (New York: Wolffram Media, Inc., 2017): 324. ISBN:
978-1-944183-05-9.

Prokopenya A.N., Reshenie fizicheskih zadach c ispolzovaniem sistemy Mathematica [Solving physical problems using the

Mathematica system] (BSTU Publishing, Brest., 2005): 260.


https://exoplanets.nasa.gov/
https://doi.org/10.1007/s11786-019-00437-0
https://doi.org/10.32014/2020.2518-1483.26

	Introduction
	Materials and methods
	The problem statement and differential equations of motion
	Dimensionless differential equations of motion

	Results
	Dimensionless evolutionary equations of the three-planetary problem of four bodies for numerical calculations

	Discussion
	Conclusion

