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CONVOLUTIONS GENERATED BY THE DIRICHLET PROBLEM OF THE
STURM-LIOUVILLE OPERATOR

This paper is devoted to approximations of the product of two continuous functions on a finite
segment by some special convolutions. The accuracy of the approximation depends on the length
of the segment on which the functions are defined. These convolutions are generated by the Sturm-
Liouville boundary value problems. The paper indicates that each boundary value problem for a
second order differential equation generates its own individual convolution and its own individual
Fourier transform. At that the Fourier transform of the convolution is equal to the product of
the Fourier transforms. The latter property makes it possible to approximately solve nonlinear
Burgers-type equations by first replacing the nonlinear term with a convolution of two functions.
Similar methods of studying nonlinear partial differential equations can be found in the works of
A. Y. Kolesov, N. H. Rozov, V. A. Sadovnichy.

In this paper, we construct a concrete convolution generated by the Dirichlet boundary value
problem for twofold differentiation. The properties of the constructed convolution and their
connection with the corresponding Fourier transform are derived. In the final part of the paper,
the convergence of convolution is proved (g(x)sin(z)) * (f(x)sin(x)) defined on a segment C|0, b]
to the product g(z)f(x) with b tending to zero for any two continuous functions f(x) and g(x).
Key words: approximation, convolution, boundary value problems, Dirichlet problem, Fourier
transform.
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IItypm-JInyBuiaas onepaTtopbiHbIH Jupuxie ecebiHeH TybIHAANTBHIH YilipTKijiep

By »kyMbIc aKbIpJIbI KeCiH/Ii/Ie aHbIKTAIFaH apHaiibl YHIpTKiIepi 6ap exi y3imiccis dyHKIUSHBIH,
KOOEHTIHIICIHIH alllIPOKCUMAIUSICHIHA apHAJFaH. Beplired (OyHKIUSHBIH KYBIKTAY /I KeCiH-
JiHIH y3bIHALIFbIHA OaitmanbicThl. By yitiprkisep IIrypm-JInyBumas merTik ecebineH TybIHIAN-
et 2Kymbicta ekinrmm perTi auddepeHnuaiIbk, TeHIey VIMH 9poip MIeTTiK ecenTiH O3iHiH XKeKe
yitipTkici Mmern @ypbe TypIeHIipyiHiH TYBIHIATHIATHIHBIH Kopcereai. CoHbIMeH KaTap, OyJ1 yiipr-
KineH anbiarad @ypbe TypaeHaipyi @ypbe TYpJeHipyiepiHiH kebeliTingicine TeH. COHFBI KaCUeT
ekl (DYHKIUSHBIH, YiPTKICIHIH CHI3BIKTBI €MeC MYIIECIHIH aJibH-aj1a aJMacThIPy apKbLIbl Biop-
repc TUMTI ChI3BIKTHI €MeC TeHJIEYJIePi 2Ky bIKTAII IeNryre MyMKIiHJIIK 6epei. lepbec TybIHIBLIADEI
6ap ChIBBIKTHI eMec auddepeHIuaIbK, TeHaeyaepl 3eprreyai ykcac oaicrepin A.FO. Komecos,
H.X. Posos, B.A. Cagopuuuunii-yiepais enoekrepiner tabyra 6oJ1abl.

ZKywmpicta exi ecenenren muddepennmarn yirin Jupuxie merTik ecebineH TybIHIaraH HaKTHI
yitipTki KypbLiagsl. Kypbuiran yitlipTkinin kacueTTepi KoHe ojapabiH, Oypbe TypJeHipysepi-
MeH OGaiiiaHbichl KepceriireH. 2KymbicTbie conrbl Gemiminge C[0,b] KeciHziciHie aHBIKTAJFaH
(g(x)sin(z)) * (f(x)sin(z)) yitiprkici ymin ke3 kesare eki ysimiccis f(z), g(z) dyurnusnaps-
ubiH g(z) f(x) kebelTicinig b HOJITe YMTBUIFAHIAFl KUHAKTHLIBIFDL JIDJICJICHIeH.

Tyiiin ce3aep: xkybikTay, yiipTKi, merTik ecern, Jupuxie ecebi, @ypbe Typrenmipyi.
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CBepTku, mopoxkgaemblie 3aga4deii Jdupuxie oneparopa IItypma-JInyBumiaas

Hacrosimmast pabora mocBsinena anmpoKCUMAIA TPOM3BEICHNS IBYX HEIPEPBIBHBIX HA KOHETHOM
oTpe3ke (DYHKIMIT HEKOTOPBIMH CIIEIIUAIBHBIMA CBEPTKAMU. TOYHOCTD MPHUOJINKEHIS 3aBUCUT OT
JUIMHBI OTPe3Ka Ha KOTOPOM 3a/aI0TCst PYHKIHIA. DTU CBEPTKHU TOPOXKIAIOTCS KPACBBIMY 38/ [adaMU
Irypma-JIuysuis. B pabore ykasbiBaeTcs, UTO KaxKJiast KpaeBas 3a1a4a i JuddepeHinaib-
HOT'O ypaBHEHMsI BTOPOr'O MOPsIJIKA MOPOXKIAET CBOIO WHIUBUIYAJBHYIO CBEPTKY M CBOE WHIMBULY-
ajpHOe peobpasoBanne Pypre. [Ipwuem mpeodpazoBanne Pypbe OT CBEPTKH PABHO MIPOU3BEIE-
uuto npeobpazoBannit Pypoe. [locsienmee cBOTCTBO MO3BOIIET TPUOJIMIKEHHO PEIIATH HEJINHEHHbIE
ypaBHeHUs1 Tulla Broprepca, mpeaBapuTeIbHO 3aMEHUB HEJIMHEHHBI YJIeH CBEPTKOU ABYX (DyHK-
nmit. [lomobHbIe MeTO/IBI NCCIeIOBAHNS HEJTUHENHDBIX MM depeHITnaIbHBIX YPABHEHUH ¢ TaCTHBIMEI
IPOM3BOIHBIMU MOXKHO HaiiTu B paborax A. FO. Kosecosa, H. X. Pososa, B. A. CagoBanuero.

B pabore crpouTcs KOHKpeTHasl CBEPTKA, MOPOXK/IEHHAs KpaeBoil 3amadeir Jlupuxiie st 1ByX-
KpaTHOro auddepeHnpoBanns. BrIBeeHbI CBOCTBA MOCTPOEHHONW CBEPTKU W CBI3b UX C COOT-
BeTcTBYyIOmMNM peobpasoBannem Pypobe. B 3akmoanTebHOM 9acTu pabOThHI JOKA3AHA CXOTAMOCTD
ceeptku (g(z)sin(x)) * (f(x)sin(x)) onpenenennoit va orpesku C|0,b] k npoussenennto g(z) f(x)
npu b crpemsimeMcst K HyJII0 JJTst JIFOObIX JBYX HenpepbiBHbIX dyHKmil f(z) n g(x).

KuroueBsie ciioBa: npubJimKeHne, CBepTKa, KpaeBble 3a/1aun, 3aja4a Jlupuxie, npeobpasoBanue
Dypoe.

1 Introduction

In this paper, we are interested in the approximation of nonlinear terms of differential
operators by some special convolutions. To motivate our research, let’s consider the Burgers
equation for simplicity

ou(t, )
ot

2
—|—u(t,x)aug;x) _ 0 gf;’””), 0<z<b t>0 (1)

on a finite segment (0, b) with kinematic viscosity v. Replacement

equation (1) leads to the form

2
%ij(t,x)\/ﬂavgéﬁ) _ 0 1(;(;275), 0<&<by/y, t>0. (3)

Whereas as kinematic viscosity v and the Reynolds number are mutually inverse, then there
is a critical viscosity value v,.. When v > v, the fluid flow will be steadily laminar. Movement
at v < v, becomes unstably turbulent. Thus, for small values v there is a movement of the
liquid acquiring a turbulent character. If v — 0, then the length of the interval [0, by/V]
becomes a small quantity. In this case, it becomes possible to approximate of the nonlinear

term v(t,a:)%téf) by some special convolution v; * g—zso(f)). Here vy1(t,&) = v(t)so(&),

where so(&) - fixed function. By convolution we mean some two-dimensional, associative,
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bilinear operation consistent with the corresponding Fourier transform. In other words, if F
is Fourier transform, then the equality

F(fxg)=Ff Fg (4)

is rightly for the convolution we introduced. Then for small values v equation (3) can be
approximated by its approximation

oW (t,£) oW (t,€) PPW(t,¢€)
L e sie) s (T a) = THEE 5)

Property (4) makes it possible to solve equation (5) efficiently by the method of separation
of variables. Similar schemes used in works [3|-[14].

A wide set of convolutional operations generate boundary value problems for linear
differential operators. In mathematical physics, the solution of an inhomogeneous equation
Au = f is written as a convolution of two functions u = € * f, where ¢ is the corresponding
fundamental solution [3]|. Under the convolution is understood to be the bilinear a (possibly
noncommutative) operation without the right annulators. When there is an inverse operator
A~1 then the convolution associated with the linear operator A has nonzero divisors. If
the operator A corresponds to a boundary value problem in a bounded domain, then
the convolution may depend on its boundary conditions. For example, the convolution
corresponding to the operator Bj in the function space Ly(0,1) has the following form

(f x5, 9)(x) = /j flz —t)g(t)dt + %/ f(L+x—t)g(t)dt.

Here the operator B; corresponds to the boundary value problem

—iz—i = f(z), 0 <z <1, y(1) = hy(0).

The resolvent of the By operator has a convolutional representation
oM

(B1 — M) f(x) = (ex xp, f)(x), whereey(t) = ihh o (6)

The convolution *p, defined by formula (6) depends on the boundary parameter h. A more
difficult example is given [4]. In the Hilbert space L,[0, 1], we define the operator B, generated
d*u(x)

by the differential expression [u = s
x

, 0 <z <1, and the domain of definition

’

D(Bs) = {u € W2[0,1] : u(0) = 0, w'(1) = u(1)} .

The spectral properties of operator are studied in detail in the work of N. I. Tonkin [5]. The
convolution generated by the operator B is defined by the formula

1

@ @) =5 [ are=0f@d+ [ gw—1+070d

—x
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+/Oxg(a:—t)f(t)dt—%/0 xg(1—x—t)f(t)dH%/Oxg(ut—x)f(t)dt.

In this case, the resolvent of operator B, has the convolutional representation

sin(v/At)
VA(cos(vVA—1))
In [6, 7, 8, 9] we can find convolutions generated by first-order differential operators with

integral boundary conditions. In the works of M. V. Ruzhansky and his co-authors [4, 10, 11,
12|, convolutions generated by

(By — M) f(2) = (e *B, [)(x), where e\(t) =

1. Operators whose root elements form a Riesz basis in the corresponding space.
2. Riesz basis of the Hilbert space are investigated.

In [8], the construction of explicit convolution formulas uses representation of the Green
function. Usually, the Green function G(z,t) is a two-place function, while the fundamental
solution £(t) is a one-place function. When deriving an explicit convolution formula, it is
necessary to express the two-place function G(x,t) linearly in terms of the one-place function
e(t), and it is allowed to use integration and differentiation operations [13].

In the future, we will need a convolution generated by the periodic problem. For the
operator B3 corresponding to the periodic problem

—y— f(x), 0 <z <1, y(0) =y(1), y(0) =4'(1)

convolution *p, has the following form

T T 1
(Fe9)w) = [ Fa=tg(ies [ ot feoig(oies [ fQrt-opg(oies [ f1o-goe
0 0 T
The resolvent of the *p, operator has a convolutional representation

(Bs = AI)7' f(z) = (ex #p, f)(2),

where
e () = — sin(v/\x)
g 2VA(1 — cos(vV/X))

In the future, the convolution *p, is re denoted by *.

2 Integral representation of the solution to the Dirichlet problem of the Sturm-
Liouville operator

The main result of this section is stated in the following lemma.

Lemma 1 In the function space Ly(0,b) is studied the Dirichlet problem for the Sturm-
Liouville equation

—y"(x) = My(z) + f(z), 0 <2 <b (7)
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y(0) =0, y(b) = 0. (8)

The solution to problem (7)-(8) at 0 < x < b has the representation
1 x x X x
y(z) = ——— {/ sin VA(b — z + T)dT/ f(t)dt + / sin V(b — z — T)dT/ f(t)dt} +
2sin vAb L Jo r 0 -

1

+m{/ dg/sm\/_b—tJrf)f( )dt+2sm\/_b/ dg/:sm\/i(b—t—g)f(t)dt}.
9)

In the functional space Lo(0,b), we denote by B the Sturm-Liouville operator, which
corresponds to the Dirichlet problem (7)-(8).Then the right part of formula (9) determines
of the resolvent of operator B.

Proof of Lemma 1. First, let us check that the right part of relation (7) satisfies
boundary conditions (8). For this, it is necessary to denote the right part of relation (9) by
u(z). Then direct substitution into u(z) the values x = 0 and = = b leads to the equalities

u(b) = m {/Obsm Vardr /be(t)dt— /Obsm Vardr /be(t)dt} _

Now need to check that the function u(z) is a solution of equation (7). For this we calculate
the corresponding derivatives.

o () = —m\/x{/jcosﬁ(b—x—i—ﬂdr/jf(t)dt—/Ozcos\/X(b—w—T)dT/jf(t)dt}—l—

1 v v
. B 1 T b .

_m {/Omsin\/X(b—x—T)dT/Txf(t)dt—/Oxsin\/X(b—x+7)/jf(t)dt}—f($)~

The identity is used here

/ox sin VA(b — &+ 7)dr / f<t>dt—/: sin VA(b -z — r)dr / fwdr= /_ * /: Dt (0

Then the equality follows required v”(x) = —Au(x) — f(z) . Thus, Lemma 1 is completely
proved.
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3 Convolutions generated by the Dirichlet problem of the Sturm-Liouville
operator

In this paragraph, the convolution formula is given, which corresponds to the Dirichlet
problem of the Sturm-Liouville operator.

For any two functions f(x), g(x) € L2(0,b) introduce a convolution, which at 0 < z < 3

is determined by the formula

(%)) :/Oxg(b—:c—kT)dT/jf(t)dt—i—/Oxg(b—x—T)dr/jf(t)dt—i—

- i / b+ Dt + / Ca / L=t — (0 (10)

T b—¢ T b
- e ), oo-i-aswa- [ac [ oere-nroa

b
and at 5 < x < b is determined by the formula

b—x

(g* f)(x) = /Ozg(b—x—i-T)dT/j f(t)dt—i—/o g(b—x — T)dT/j f(t)dt—

—X

[ st r-oyir / s+ [ [ oo+ s (1)

¢ b—¢ 3 b v b
n /0 e / g(b—t—€)f(t)dt — /0 de [ gtre—b)f(t)dt— / ¢ / g(t+E—b)f(t)dt.

b=¢

The convolution introduced by us is linear for each argument and has associativity properties,
at the same time, this convolution is not commutative.

Definition 1 We will say that * convolution is generated by the operator B if its resolvent
(B — M)~ has the following convolutional representation

(B =) f(x) = (ex = f)(2),

where €y 1is the corresponding fundamental solution.

In functional space Ls(0,b) the Sturm-Liouville operator corresponding to the Dirichlet
problem (7) - (8) is denoted by B.

Lemma 2 The convolution given by formulas (10)-(11) is generated by the operator B.
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Proof of Lemma 2. According to Lemma 1, the resolvent of operator B is given using the
right side of formula (9). In this paragraph, we will rewrite the right part of formula (9) in a
convenient form for further research:

If0<$<g,then

u(z) = m{/Omsin\/X(b—x+7‘)d7/jf(t)dt+/Oxsin\/X(b—m—T)df/jf(t)dt}Jr
+m {/Oxdg/xbsinﬁ(b—t+£)f(t)dt+/Omdg/zgsinﬁ(b—t—g)f(t)dt}_

x b
25111\/_19{/ dg/ sin V(b —t — ¢ )f(t)dt+/0 de b_gsm\/X(tJrﬁ—b)f(t)dt}.
Ifg<x<b,then

u(z) = m {/0 sin VA(b— z + 7)dr / F#)dt + /OH sin V(b — z — 7)dr / f(t)dt} _

—m{/b:sin\/X(erT—b)dT/Tmf(t)dt—/Oxdg/:sin\/X(b—tJrf)f(t)dt}+

| § o pbee oo
+m {/0 df/x sm\/X(b—t—g)f(t)dt—/o d¢ bésm\/X(H—f—b)f(t)dt}—

1 o
_M/g df/x sin VA(t + & — b) f(¢)dt

It is easy to notice that the value of the resolvent (B — AI)~!f(z) coincides with u(z).
On the other hand, the solution has a convolutional representation

u(z) = (g f)(z),

sin \/Xx
2sin Vb

where g(x) = Lemma 2 is completely proved.

4 The Fourier transform generated by the operator B

The poles of the resolvent (B — A\I)~! determine the eigenvalues of the operator B. Since

(B—=M)~"f(x) = (g f)(=), (12)
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sin vV \x
2 sin \/Xb

representation (12) that the poles of the resolvent (B — AI)~! are zeros of the function
sin v/ Ab = 0. Tt follows that zeros have the form

where g(x) = is the appropriate fundamental solution. It follows from the

M = b—2k2 k=0,+1,... (13)

A more detailed analysis shows that )\g is the eliminable singular point of the resolvent
(B—XI)™!
2
Thus, the resolvent (B — AI)~! has only simple poles \; = Z_ka’ k=1,2,.... In order to

find their corresponding eigenfunctions of the operator B, we need to calculate

b
res(B — M) f(z) = —%sin@ f(z)sin W—ktdt
A b b Jo b

The direct calculation of the residue at the point A = A, leads to the formula

k kt
r/\es(B — M) Hf(x) = —~ sin u/ f(x)sin Ldt
k

1y '
:< 1)26;127rk {/0 Slnﬂ-—bk(l’_TdT/ f dt+/0 SlnTk(m_FT)dT/T‘ f(lf)dt}‘i‘

| (D™ ok ”WW {/ dg/ sm—t— ()dt+/0xd§/x sin%k(t+£)f(t)dt}_
2k {/ £t dt{/ s1n%’“<t—§>d§+/Oxsm%’“(tmdgﬂ -

b T
_2rk [ dt/ 2sin 7%kxcos %deT+/ f(t)dt/ 2sin 7%ktcos %kfdg} =
0

2
= ;k{ /f Sinﬂ—kxsinﬂ—ktdt /f sinﬂ—kxsin%ktd]

:——/f sinﬁ—kxsin%md ———sinﬂ/f sinﬁ—ktdt

It follows from this that the system of eigenfunctions of the operator B has the

Tr . 27x . 37X
form {sin —, sin —, sin —
b Y Y

2 2 ...}, corresponding Fourier coefficients are calculated by the

formulas

be(f) = —r/\es(B M)t / f(t) smTktdt kE=1,2,.
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5 The relation of the Fourier transform and convolution generated by the
operator B

Take two functions f and g from Ly(0,b) and decompose them according to the system of

mr . 2mx . 3mx
eigenfunctions {sin —, sin —, sin —,

. 7 7 ...}, as a result , we have

Z bk Sin 71'_]51'

i b;(g) sin @

7j=1

Now calculate the convolution (g * f)(x), to do this, we formulate an auxiliary statement.

Lemma 3 For any k and j, the equality is true

xr . T
— k _:()7]'{/i )
sin —— * sin = # ]
sme*sin%—l,k:j

b
Proof of Lemma 3. By definition, at 0 < z < 3

k v k v it
sin o *sin@ = / sin 7T—(b— x—i-T)dT/ sin 2% g+
b b ), sy

x L x it z b k 't
+/ Sin%(b—l’—T)dT/ sin%dt—k/ d§/ sin%(b—t—i—&)sin%dt—l—
0 T 0 x

e ' r b .
Y T Py L S
0 w b b o : b 2
— [ de [ sin T 46— b)sin .

0 b—¢ b b

b
For — < = < b, the statement of Lemma 3 is checked similarly. Lemma 3 is fully proved.

Immediately follows by Lemma 3

(g* f)(z Zbk



A. Abibulla et al. 67

6 Approximation of multiplication by convolution

Let f, g be two arbitrary functions both defined and continuous on the segment [0, b]. Denote
by g1(x) and fi(z)
g1(z) = g(2)sin(z), fi(z) = f(2)sin(z).

Theorem 1 For any two functions f and g continuous on [0, b] is the limiting relation rightly
lim [(g1 % f1)(w) — g() f(2)] = 0,V € [0,0].

Consider the difference
R(z) = (g1 % f1)(z) — g(2) f(z)

Proof of Theorem 1. Introduce the notation

Ri(z) = /0 " g(b—a-+7) sin(b—z-+7)dr / " P sin(t)di— /0 " o) sin(b—z-+7)dr / " F(@)sin(t)dt,

Ry(z) = /Oxg(b—a:—T) sin(b—z—7)dr /$ f(t) sin(t)dt—/ogcg(x) sin(b—x—7)dr /35 f(zx)sin(t)dt,
x b x b

Rs(x) :/o dﬁ/ g(b—t+€)sin(b—t+E) f(t) sin(t)dt—/o g(x)dﬁ/ f(z) sin(b—t+&) sin(t)dt,

Ra(z) = /0 "de / ? (bt =€) sin(b—t—&) £(¢) sin(t)dt— /0 " gln)de / ? F(2) sin(b—t—&) sin(t)dt,

x b—¢ x b—¢
Re(z) = /0 de / G (b—t—€) sin(b—t—€) f (t)sin(t)dt— /0 g@de | F(x)sin(b—t—¢) sin(t)dt,

b
2
b b

Re(z) = /0 "de [ sty s ) @) sin(tyie- /O " g(w)de [ J@)sin(ereb) sty

Note that

For the upper estimate of R(x), it is necessary to estimate the values of Ry(x), Ra(x), ...,
Rg(x) from above. Now we evaluate the module of the function |R;(z)| from above

| R ()] =

/Ox g(b—x+71)sin(b—z + 7)dr /TI f(t)sin(t)dt — /Om g(z)sin(b — x + 7)dr /T:r f(z) sin(t)dt‘ =

= | /Ox g(b—x+71)sin(b—x + 7)dr /x (f(t)sin(t) — f(z)sin(t)) dt+
+/0xg(b—:c+7-) sin(b—x—i—r)dr/xf(x) sin(t)dt—/oxg(a:) sin(b—x+r)dr/xf(x) sin(t)d
Ry()] = | /0 g(b—x + 7)sin(b— z + 7)dr / (F(t)sin(t) — f(x)sin(t)) di—

- /UI (gb—xz+71)—g(x))sin(b — x + 7)dr /1’ f(z)sin(t)dt] <
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<

/Ox g(b— 2+ 7)sin(b — & + 7)dr / (F(t) sin(t) — f(z)sin(t)) dt‘ +

+

/Ox (9b—z+71)—g(x))sin(b — x + 7)dr /m f(x) sin(t)dt' <
S/x |g(b—x+7‘)||sin(b—x+7')|d7‘/x|f(t)—f(x)||sin(t)|dt+
/ lglb—xz+7)—g(x )||sm(b—x—i—7|dr/ |f ()] |sin(t)] dt <

/ygb—x+TydT/ F(8) |dt+/ gb—z+7) — |d7/ ()] dt.

If0<x<—

Ri(2)] < / |g(b—w+7)|d7/m|f(t)—f(-r)|dt+/oz |g<b_x+7>_g<x>|d7/m|f(m>|dt.

Since f,g € C[0,b], then |f(x)| < My, |g(x)| < M,. Therefore

Ry(a y<M/ dT/ £(t) ydt+Mf/ (b — 2 +7) — g(a)| (z — 7)dr.

We consider that the length of the segment [0, b] very small, then the inequalities are fulfilled
b
lf(t) = f(x)| <e, |gb—x+7T)—g(x)|<e,VO<T <2< 5

T T T 2
| Ry ()| gd\/[g/ dT/ dt+€Mf/ (:L‘—T)dTZE(Mg—i-Mf)%,
0 T 0

if the value b enough small. In an anological way , the values are estimated from above

|Ro ()|, |R3(x)|, |Ra(x)|,|R5(x)|,| R¢(x)| . Thus Theorem 1 is proved.

7 Conclusion

The article presents the convolution generated by the Dirichlet problem for the operator
of twofold differentiation. This convolution makes it possible to approximate nonlinear
expressions depending on two continuous functions. The accuracy of the approximation
depends on the length of the segment on which these two functions are defined. Replacing
nonlinear expressions with convolution allows applying the Fourier method to nonlinear
partial differential equations.
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