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BOUNDARY CONTROL OF ROD TEMPERATURE FIELD
WITH A SELECTED POINT

In this paper, we study the issue of boundary control of the temperature field of a rod with a
selected point. The main purpose of the work is to clarify the conditions for the existence of a
boundary control that ensures the transition of the temperature field from the initial state to the
final state. Relations connecting the boundary controls with the initial and final states, as well
as with the external temperature field are found. Such boundary controls, generally speaking,
constitute an infinite set. For an unambiguous choice of the boundary control, a strictly convex
objective functional is chosen. We are looking for a boundary control that minimizes the selected
target functional. To do this, we first investigate the existence and uniqueness of solutions to the
initial boundary value problem and the conjugate problem. And also, we present the derivation
of a system of linear Fredholm integral equations of the second kind, which are satisfied by an
optimal boundary control that minimizes a strictly convex target functional on a convex set.
Along the way, the linear part of the increment of the target functional is highlighted. Necessary
and sufficient conditions for the minimum of a smooth convex functional on a convex set are
established. The difference between the results of this work and the available ones is that in the
proposed work, the temperature field is given by the heat conduction equation with a loaded
term. As a result, the conjugate problem has a slightly different domain of definition than the
domain of the conjugate problem in the case of no load.

Key words: initial-boundary value problem, heat equation, boundary control, Green’s function,
Fredholm integral equation of the second kind, spectral properties, eigenfunction, eigenvalues.
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Tanganran HyKTeci 6ap e3eKIIleHiH TeMIepaTypaJblK epiciH mekapaJsblk backapy

Byn xymbicTa TaggasraH HyKTeci 0ap ©3€KIIeHIH TeMIEPATYPAJIbIK, OPICIH IeKapasblK, 6acKapy
mocesieci 3eprreseni. 2KyMBICTBIH HETi3I MaKCAThl — TEMIIEPATYPAJIBIK OPICTiH OaCTANKBI KYiIeH
COHFBI KYiire oTyiH KaMTaMacChl3 €TETiH ITeKapaJIblK 0aCKapyIblH 06ap OOJybl IMAPTTAPBIH aHBI-
kray. Illekapaabik Oackapyrapbl OACTANKbl KoHE (PUHAJJIBIK, KYHIepMeH, COHJaii-aK CBIPTKBI
TeMIlepaTypa epiciMeH OailJIaHBICTHIPATHIH KaTblHACTAD TabbLIIbl. MyHail mmekapaJibiK, 6ackapy-
Jiap, YKaJillbl afiTKAHIA, IEeKCI3 KUbHIL Kypaiiasl. [llekapasibik 6ackapyablH OGipereit TaH Ay bl
VIIiH KAaTaH JOHEC MakcaT (PYHKIIMOHAJ TaHIAJIaIbl. TaHga raHn Makcar (OYHKIMOHAJIB MUHU-
MyMJIAYIIBI MeKapajblk 6ackapy izgenemi. Ou1 yImiH KYMBICTAa aJIbIMEH OACTANKBI-IIIEKAPAJIBIK,
ecell IleH TYHiHecC ecenTiH IrenimMepinin 6ap 60JIybl MEeH KaJIFbI3IbIFbIH 3epTTeiiMi3. Conaii-aK
JIOHEC YKUBIHJIA KATaH JOHEC MaKcaAT (DYHKITMOHAJIBIH MUHUMYMIAYIIBI TUIM/I TIeKaPaJIbIK OacKa-
PYMEH KaHaraTTaHILIPLLIATHIH O pearolbMHBIH, €KIiHI TEKTI ChI3BIKTHI MHTErPAJIJIBIK TEeHJIEeYIep
Kyhieciniy anbHybl Kenripiaren. Ocel opaiiga Makcar (QYHKIMOHAJIBIH ©CIMIECIHIH, CBI3BIKTHIK,
Oeutiri akerHAa ral. JleHec KUbIHAA Teric JgeHec (pyHKIMOHAT MUHUMYMBIHBIH KayKeTTi XKoHe
KETKITIKTI MapTTapbl aHBIKTAJTaH. 2K YMBICTBIH HOTUKECIHIH O€riIi XKYMbICTAPIaH alibIpMAITbi-
JIBIFBI TEMIIEPATYPA OPici KYKTeJIreH MyIeci 6ap »KbUIyOTKI3TIMTIK TeH eyl apKblibl 6epiareHiri.
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Horuskecinae, Tyitinmec ecentiH >KyKTemeci GosiMaraH »Kafjiaiijga TYHIHIEC eCelTiH OOJIbICHIHAH
GipiramMa e3srerne aHbIKTAIy OOJIBICHI OOJIAJIBI.

Tvyiiin ce3aep: OacTamKpI-IIIEKAPAJIBIK, €CEIl, KBbLIYOTKI3TIMITIK TeHeyl, MeKapaJblK 0acKapy,
IM'pun byukmusicsr, exinmt TekTi PpeAroabM UHTErPAJIBIK TEHIEY1, CHEKTPIIK KACHETTED, MEH-
KT PYHKIUS, MEHITIKTI MOHIED.
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I'panunvHOe ynpaBJjieHHE TeMIIEPATYyPHBIM II0JIEM CTEP2KHS C BbIJIEJIEHHON TOYKOMI

B namnoit pabore u3ydaeTcsi BOIPOC O TPAHIYIHOM YIIPABJIEHUU TEMIIEPATYPHBIM [I0JIEM CTEPXKHS C
BbIJIeJIEHHOI TOYKON. OCHOBHAs 11€J1b pabOThl — BBISICHEHNE YCJIOBUIl CYIIECTBOBAHUS IPAHIIHOIO
yIpaBjieHusl, OOECIIeUMBAOINIEr0 IIEPEeX0J[ TEMIIEPATYPHOIO IIOJisi W3 HAYAJHHOIO COCTOSIHUS B
KOHeUYHOe cocTosinne. Hail/leHbl COOTHOIEHNUS, CBI3bIBAIONINE TPAHNIHBIE YIIPABICHUS C HAYAIb-
HBIM U (PUHATBHBIM COCTOAHUSIMHU, & TAKXKe BHEITHUM TEMIIEPATYPHBIM IOJeM. Takue TpaHuIHbIE
yIIpaBJIeHUsI, BOOOIIE TOBOPS, COCTABISIOT OECKOHETHOE MHOXKECTBO. JIjIsT OIHO3HAYMHOTO BBHIOOpA
IPAHUYIHOIO YIPABJIEHUS BBIODAH CTPOrO BBILYKJIbIA IesieBoil dyukimonaa. Uimercs rpanndHoe
yIpaBjieHne, KOTOpOe MUHUMU3UPYeT BBIOPAHHBIN IiesieBoit byHKimonasi. [ljas sToro B pabore
CHAYAJIa UCCJIEIYIOTCs CYIIECTBOBAHNE W €MHCTBEHHOCTh PEIIeHN Ha9a bHO-TPAHNIHON 3a/1a9u
U CONPSIPKEHHON 3amadn. A TakiKe, NaH BBIBOJ CHCTEMbl JIMHEHHBIX WHTErPAJIBHBIX YpPABHEHU
®perosibMa BTOPOro pojia, KOTOPBIM YJIOBJIETBOPSIET ONMTUMAJIBHOE MPAHUIHOE YIIPABJIEHUE, KOTO-
poe MUHHMH3UPYET CTPOTO BBIMYKJIBII 11eeBoit (DYHKIIMOHAJ Ha BBINYKJIOM MHOXKecTBe. [lo myTn
BbIJIeJIEHA JIMHEHasl YaCTh [IPUPAIIEHUs] [1eJIEBOro (DYHKIMOHAJA. YCTAHOBJIEHBI HEOOXOIUMBIE U
JIOCTATOYHBIE YCJOBUS MUHUMYMa, TJIAIKOTO BBIIYKJIOrO (PYHKIIMOHAJIA HA BBIMYKJIOM MHOYXKECTBE.
Otmame pe3yIbTaToOB JAHHON PabOTHI OT MMEIOIINXCH 3aK/II0YAETCS B TOM, YTO B IIPEIaracMoi
paboTe TeMIrepaTypHOE IOJIe 33/1aeTCA YPABHEHHEM TEIJIONPOBOIHOCTH C HATPYKEHHBIM TJIEHOM.
BeutesicrBue gero conpsi>keHHasl 33/1a9a UMEET HECKOJIBKO OTJIMYUTEIbHYIO 00JIACTh ONpeJIe/IeHus,
yeM 00JIaCTb OIIPeJIeJIEHUs COIPSIXKEHHOI 3a/1a9i B CJIydae OTCYyTCTBHSI HATPY3KU.

KimroueBbie ciioBa: HAYAIBHO-TPAHUYIHALA 337294 aBHEHHUE TEIJIONPOBOIHOCTH, PAHUIHOE

) )
yupasJienue, GyHKius ['puna, naTerpagbHoe ypasaenne @perosbMa BTOPOro poja, CIeKTPAIb-
Hble CBOICTBA, cOOCTBeHHAsT (PDYHKITHSI, COOCTBEHHBIE 3HAUCHUSI.

1 Introduction

In this paper, we study the issue of boundary control of rod temperature field with a selected
point xg.

up(x,t) — uge (2, 1) + au(zg, t) = f(x,t), (x,t) € Q, (1)

where @ = {(z,t): 0 <z <b, 0<t<T < +o0}.

It is assumed that at the initial moment ¢ = 0 the temperature along the rod of length b
is given by law u(z,0) = ug(z), 0 < < b, where ug(x) is a twice continuously differentiable
function. At the moment of time ¢t = T the temperature of the rod is equal to u(x,T) = vy(x),
0 < z < b, where ~y(x) is also a twice continuously differentiable function. The main purpose
of the work is to clarify the conditions for the existence of the boundary control w(0,t) = u(t),
u(b,t) = n(t), which ensures the transition of the temperature field from the state {u(z,0) =
up(z)} to the state {u(x,T) = vy(x)}. Similar problems were considered in [1,2].
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According to the optimization method, we choose the following functional

T

T
«Y[Wﬂ=||U(-,T;u,77)—7(-)||3V,;(o,b)+51/0 |N(t)|2dt+52/0 [n(t)|*dt,

where (31, 3, are positive numbers, 7 is a given function from class W3 (0,b).

The boundary control problem is as follows: it is required to find boundary controls
(u(t), n(t)) and the corresponding solution wu(z,t), that satisfies equation (1) with initial
boundary controls

uw(0,t) = p(t), wu(bt)=n(t), 0<t<T, (2)

u(z,0) = ug(x), 0<x<bh, (3)

and minimizes functional J[u, n].

Many natural and fundamental physical phenomena can be modeled by partial differential
equations (PDEs), such as heat conduction, sound, electrostatics, electrodynamics, fluid flow
and quantum mechanics in which states depend on not only time but also space, for example,
see [3-5]. In particular, heat diffusion phenomena are extended mainly in describing fluid,
thermal, and chemical dynamics, including the wide applications of sea ice melting and
freezing (6], lithium-ion batteries 7], etc. The work [8] is concerned with the problem of
boundary observer-based finite-time output feedback control for a heat system with Neumann
boundary condition and Dirichlet boundary actuator. Finite-time stabilization, which is a key
feature in the sliding mode control theory, is investigated in the work [9]. More specifically,
finite-time control for the heat equation with Dirichlet boundary condition and the Dirichlet
control is investigated in [10]. In work [11]| the heat equation with prescribed lateral and
final data is studied in half-plane and the uniqueness of the bounded solution is proved. In
work [12] the solvability problems of an nonhomogeneous boundary value problem in the first
quadrant for a fractionally loaded heat equation are studied. For parabolic equations in a
bounded domain, various aspects of inverse source problems has been studied in [13-16], etc.

The paper presents a derivation of a system of linear Fredholm integral equations of the
second kind, which optimal boundary control is satisfied. In the proposed work, for the first
time, the conjugate problem to a mixed boundary value problem for the heat conduction
equation with a loaded term is explicitly written out. As a result, it was possible to obtain
more precise information about the solutions of the conjugate problem. We note that in 1], the
solution of the mixed boundary value problem for the heat conduction equation is decomposed
by the eigenfunctions of a periodic problem with a specially selected period. In [2], the method
of work [1] is extended to the heat conduction equation with a loaded term. In this paper, the
expansion of the solution to the mixed problem for the heat equation with a loaded term is
carried out in terms of the eigenfunctions of the corresponding spectral problem. At the same
time, it is necessary to select a period and continue the solution in a wider area. Moreover,
the solution of the conjugate problem is carried out similarly to the solution of the mixed
problem for the heat conduction equation with a load.
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2 Existence and uniqueness of the solutions to the initial-boundary value problem
and the conjugate problem

Before studying the boundary control problem, it is necessary to investigate the question of
the existence and uniqueness of the solution to problem (1)—(3). To do this, select a function
w(z,t) from class Ly((0,T); W3 (0,b)) such that

w(@, t) = p(t) + 7 (0(t) - u(t).

Then, instead of studying problem (1)—(3) it is enough to study the following problem:

v(x,t) — Vg (, 1) + av(zo, t) = F(x,t), (z,t) € Q, (4)

v(0,t) =0, wv(bt) =0, (5)

v(z,0) =vo(x), 0<az<b, (6)
where

F(x,t) = f(z,t) —wi(z,1) — aw(zo, 1), vo(x) = uo(x) — u(0) — %(77(0) — 1(0)).

The solution to problem (4)—(6) is sought in the form

v@,t) = 3 du®)erlt).

k>1

Here {4} is the system of root functions of the following eigenvalue problem

— 22 () + ap(z) = Ap(z), 0<z<b, (7)

p(0) =0, ¢(b) =0. (8)
In this case gr(x) = @r(x,\g), where {A;} is a sequence of eigenvalues of (7)-
(8). The eigenfunctions ¢r(x) = ¢(z,A\y) and the biorthogonal system of functions
{wk(:c) = %} are defined by formulas:

sin \/Xxo
sin vV Az vV

VA +a)\—a(1 — cos vV Azg)
sin V(b — )

Vo ;
U(x,\) = sin \/X\ﬁbx_ %o) cos V\(zg — )

sin vV \(zg — ) _1—cosVA(b— () _sinvV\(zg — 2)
+ A (cos\/a(b—xo)—a S )—a 7

cos VA(b — ) — cos VAb — @ (1 — cos VA(b — 20)) (1 — cos VAo)

A
A+ @ (1 — cos vV Azg)

o(r,\) = (1 —cosVAz), 0<z<b,

To < x < b,

Q,D(I, /\) =

X , 0 <2 <,
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The acceptable values of parameter A are selected according to the conditions A — a(l —
cos vV Azg) # 0, A+ a(l — cosvAzg) # 0. Each function f(x) from L,(0,b) is decomposed
into a Fourier series by the system {4} :

f@) = Crl(f)pr(x),

k>1

where Ck(f) = <f, wk>7 k > 1.
In this case, the Fourier coefficients {dy(t), & > 1} in terms of system {px(x)} of the
solution v(x,t) satisfy equations

dek(t) + Adi(t) = Di(t), >0 (9)
and initial conditions
di,(0) = d. (10)

Here {Dy(t)} and {d;o)} are sequences of Fourier coefficients in terms of system {p} of
functions F'(x,t) and vo(x). Relations (9)—(10) imply the following representation

t
di(t) = dVe ™ 4 / e DD (r)dr, > 0. (11)
0

Thus, problem (4)—(6) has a solution v(z,t), representable in the form

oo, t) = 3 diB)on(@), (12)

k>1

and the coefficients dy(t) are calculated by formulas (11). Thus, we can formulate the following
statement.

Theorem 1 Let vy(x) be a twice continuously differentiable function on a finite segment
[0,b], and the matching conditions vo(0) = wve(b) = 0 are satisfied. Suppose also that
F(z,t) = L*((0,T); L2(0,b)). Then there is a solution v(x,t) of problem (4)—(6), which can be
represented as a Fourier series (12), the coefficients {di(t)} of which are found by formulas

(11).

Remark 1 Note that vo(z) is decomposed into a Fourier series by the system {p} and the
corresponding Fourier series on [0,b] converges uniformly. This follows from the fact that
vo(z) belongs to the domain of operator B. The monograph [17] contains theorems on the
uniform convergence of spectral decompositions in such cases.

We denote by G(z,&,t) = > e Ml (x)r(€), the function that represents the Green
k>1
function of the Dirichlet problem for the heat equation with the selected point [18]. Then the

statement follows.
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Corollary 1 Let the conditions of Theorem 1 be satisfied. Then there exists a solution u(zx,t)
of problem (1)—(3), which can be represented in the form

u(e,t) = / uo(€)G(, €, 1)dE + / dr / F(6.7)G (..t — 7)dE — up(0) / G, €, 1)de
— ug b t b
—M/O gG(x,g,t)dg—a/o [L(T)dT/O Gz, &t — 7)de

_3/0 (n(r) _W))czr/o £G(x,€.t — 7)dE.

We now formulate and prove a uniqueness theorem for a solution.

Theorem 2 Let the conditions of Theorem 1 be satisfied. Then problem (4)—(6) has a unique
solution.

Proof 1 The idea of this proof is borrowed from the work of V.A. Il’in [19]. Let r(x) be one
of the eigenfunctions of operator B*. We denote by ®(x,t) any of the functions of the form

O(x, 1) = r(x)f(1),

where f(t) is a function that is continuously differentiable on the entire numerical axis, which
15 equal to zero for all t > ty, where ty is some number less than T.

Let v(z,t) be a solution to problem (4)—(6) for FF' =0, vy = 0. Let consider integral

o_/ / (vr(2,1) — Vo, t)+av(:c0,t))<1>(a:,t)dtd:c:/Obr(:c)dx/OTvt(:c,t)f(t)dt

f dt/va dx—/b ( )dx( (z, t)f(t)‘OT—/OTv(x,t)ft(t)dt>
/f dt/obva;tB* // (&, O)r(2) fy(t)dtda
+ X /0 /0 o(z, (@) f(t)dtdz, (13)

where \ is the eigenvalue of operator B* corresponding to eigenfunction r(z).
Let us continue v(x,t) on domain t < 0, by setting it equal to zero there. Then, taking
into account that f(t) =0 fort > to, relation (13) can be rewritten in the form

/0 /_OO v(z, t)r(z) (—fi(t) + Af(2)) dtdx = 0. (14)

We fix any & > 0. Then function f(& +1) is a priori equal to zero for t > ty. In equality
(14) we substitute f(& +t) instead of f(t). Then for all £ = 0 we have equality

/0 /_OO v(z, t)r(z) (—fe(§ + 1) + Af(E+t)) ditdz = 0. (15)
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From (15) it follows

/ / (z,t)r(x) f(€ + t)dtde = c- X, €= 0. (16)

However, for £ >ty and t > 0 the function f(§+t) = 0. Therefore, it follows from relation
(16) that ¢ = 0. Therefore, we have the equality

/Ob /_OO o(z, ) (@) F(€ + D)dtdz = 0, €3 0. (17)

Since the system of eigenfunctions {i(x, \r), k = 1} of operator B* is complete in space
Ly(0,b), equalities (17) imply

/ v(z, t) f(E+t)dt =0 in space Ly(0,D).
0
In particular, for & =0 we find that
T
/ v(x,t)f(t)dt = 0.
0

The latter equality holds for any function f(t), that has the properties described above.
Therefore v(x,t) =0 for 0 < x <b, 0 <t <T. Theorem 2 is completely proved.

Therefore, the conjugate problem to problem (4)—(6) takes the form

(0, 8) — U, t) = En,), (2,) €Q, (18)

v(0,t) =0, WY(bt)=0, t>0, (19)
\I/(JI() +0 t) \I](l’o ) t >0,

{ V(x4 0,t) = Wu(xg —0,t) + O‘fo t)dz, t>0, (20)

U(z,T)=Vp(z), 0<x<b. (21)

Thus, we can formulate the following statement.

Theorem 3 Let Vp(x) be a twice continuously differentiable function on a finite segment
[0, 0], moreover, for WUr(x) the matching conditions (19)—(20) are satisfied. Suppose also that
E(xz,t) € L*((0,T); Ly(0,b)). Then there is a solution V(z,t) to problem (18)—(21), which
can be represented as a Fourier series dual to series (12).

Theorem 3 implies the following statement.

Corollary 2 Let the conditions of Theorem 3 be satisfied. Then there exists a solution V(z, )
to problem (18)—(21), which can be represented in the form

b T b
\Il(z,t):/o \IJT(f)G(f,x,T—t)d§+/t dT/O E& )G x, T —T)d€.
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Now we formulate and prove the uniqueness theorem.

Theorem 4 Let the conditions of Theorem 3 be satisfied. Then problem (18)—(21) has a
unique solution.

The proof of Theorem 4 repeats the proof of Theorem 2. Let r(z) be one of the
eigenfunctions of operator B. We denote by ®(x,t) any function of the form

O(x,t) = r(f)f(1),

where f(t) is a continuously differentiable function on the entire numerical axis, which is
equal to zero for all ¢t < ¢y, where ¢y is some positive number. Further, the reasoning from
the proof of Theorem 2 is repeated.

3 Necessary conditions for maintaining the final temperature regime
In this section, we study the boundary control problem I:
Wiz, 1) = Waa(2,t) + aW (2o, 1) = f(z,1), (2,1) € Q. (22)

W(z,T)=ur(x), 0<xz<b, (23)

Statement of the boundary control Problem I:

Let W (z,t; f,ur) be an arbitrary solution of problem (22)—(23). We denote the boundary
controls corresponding to W (z, t; f,ur), by u(t) = W(0,t; f,ur) and n(t) = W(b,t; f,ur), as
well as by ug(z) = W(x,0; f,ur) the initial temperature regime.

What necessary conditions do pu(t), n(t), uo(z), satisty if W(x, t; f,ur) satisfies (22)—(23)?

This boundary control Problem I corresponds to a given final temperature regime ur(z).
To answer the question posed, it is convenient to introduce solutions ¥ (x,t) = ¥(x,t; Ur) to
conjugate equation

—Uy(x,t) = VUpp(x,t) =0, (x,t) €Q, xF# xo, (24)

with conditions

U(0,t) =0, W(bt)=0, t>0, (25)
U(xg+0,t) = ¥(zo —0,1), (26)
U (29 +0,1) = W(xo — 0,8) + @ [ W(E, t)de, t>0,
and the final temperature distribution
U(z, T)=Vr(x), 0<z<b (27)

for an arbitrary function ¥z (z) from class W3[0, b].
Lemma 1 For an arbitrary solution u(x,t) = u(x,t; f, u,m,ug) of equation

(2, 1) — uge(x, t) + au(zo, t) = f(x,t), (z,t) € Q, (28)
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with boundary conditions

w(0,t) = pu(t), u(b,t)=n(t), T>t>0, (29)
and with the initial temperature distribution

u(z,0) = up(x),0 < x < b, (30)

the following integral relation is valid

/OT /Ob Flz, )0 (z, t)dzdt = /Ob <u<x,T)\1:T(x)—uo(x)—wx,o)) di

—/T ()T (0, D)t + /Tn(t)\lfz(b, Dt

where W(x,t) = V(x,t; Uy) is the solution to conjugate problem (24)—(27) for an arbitrary
Uy (z) € W2[0,0].

Let us formulate another useful lemma.

Lemma 2 For an arbitrary solution v(z,t) = v(x,t; f, u1,m1,v7) of equation

V(1) — v (2, t) + av(zo, t) = f(2,t), (2,t) € Q, (31)
with boundary conditions
v(0,t) = pa(t), w(bt) =m(t), T >t>0, (32)

and with the final temperature distribution
v(x, T) =vr(z), 0<z<b, (33)

the following integral relation is valid

/OT /Obf(w,t)mdwdt = /Ob (or(@)¥r(@) — vz, 0)¥(2,0)) da

—/ ul(t)\Ifx(O,t)dt—i—/Tm(t)\lfx(b, t)dt,

where V(z,t) = V(x,t; Yr) is the solution to conjugate problem (24)—(27) for an arbitrary
\I’T(l‘) c W22[0, b]

We now formulate an important statement.
Theorem 5 For the solution u(z,t) = u(x,t; f, 1u,n,up) to problem (28)—(30) and for the

solution v(z,t) = v(z,t; f, u1,m,vr) to problem (31)—(33) the following integral identity is
valid

/0 (1 () = (1)) GalE, b, T — £)dt — / (1a(t) — (1)) Gal£,0,T — t)dt

_ /O (0(2,0) — ug(x)) G(&, 2, T)dz, VE e (0,b), (34)

where G(z,€,t) = > e Mo (x)r(€) is a Green’s function.

k>1
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Proof 2 Lemmas 1 and 2 imply the integral identity

b
0=-— /0 (v(z,0) — up(x)) ¥(x,0)dz

- / () — (£)) T, (0, Dt + / (1 (£) — () T, (b, Dy, (35)

for all U(z,t) at any Vr(x). Corollary 2 implies that

b
\I/(x,t):/o V(&G x, T —t)dE.

Therefore, relation (35) takes the form

b—

_/0 (v(x,O)—uo(x))dI/o U (©)G(E, z, T)de

b—

= [ Gu) = weyar [ F@C 0.7 e

b—

+/0 (nl(t)—n(t))dt/o U (6)Gal€,b, T — t)de.

Rearranging the order of the integrals, we obtain the equality

- / (a(t) — p(t)) Cal€.0.T — t)dt — / (v(z.0) —uo<x>>G<s,x,T>dx}ds 0.

Since U (&) is an arbitrary function from W2[0,b], then relation (34) follows from the last
equality. Theorem 5 is completely proved.

This implies the following statement.

Corollary 3 Let u(z,t) = u(z, t; f, u,n,up) and v(z,t) = v(x,t; f, p1, m, vr) are solutions to
problems (28)—(30) and (31)—(33), respectively. If ug = v(z,0), z € (0,b), then the following
identity is valid

/0 (1 (1) = (1)) (€, b, T — £)dt — / (a(t) — (1) G, 0,T — )dt =0, V€ € (0,0).

4 Optimality criteria

In this section, the target functional is investigated.
b
T, ) = / u(@, T ) — y(@)Pda
0

b
# [ W o) e+ 5 "Rt + / "
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)), where h(0) = 0,

Let us take arbitrary controls (u(t),n(t)) and (u(t) + h(y),n(t) + q(t
(3) by u(z,t; p,m) and

¢(0) = 0. We denote the corresponding solutions of problem (1)-
w(z,t; u+ h,n+ q). Let us introduce the notation

Au(z,t) = u(z, t;p+ h,n+q) — u(z, t; pw,n).

Then from (1)—(3) it follows

9 52

aAu @Au + aAu(zg, t) =0, (z,t) €Q, (36)
Au| _ =h(t), Au|_, =q(t), t>0, (37)
Au|,_, =0, 0<z<b (38)

Arguing as in the proof of Theorem 1, we obtain the representation

Au(z,t) = %/0 (q(1) — h(T))é%Kl(w t—T1)dr — % q(1)Ko(z,t — T)dT

0

—a <1 — %) /Ot h(T)Ko(x,t — T)dT + /Ot h(T)%K@(ZE,t —7)dr,

where Ko(z,t) = 32 B0t . o (2), Ky(z,t) = 32 BVe 2t - o ().

k>1 k>1
Consider the increment of the target functional J[u, ).

AT [p,n) = Q/Ob Re ((u(x, T;p,n) — 7(30)) Au(z, T)) dx

Q/Ob Re ((uz(x,T; W, m) — %(x)> aiAu(x,T)) dz + 2/, /OT Re <Mh(t)> dt

+252/0 o (it dt+o<\// (1h(O) + la(t |>)

= 2/0 Re <(u(x,T; wyn) — ’y(ac)) Au(z, T)) dx
+ 2Re ((uz(x, T;p,m) — 'yx(x)> Au(z, T)) :;Z

2 "Re (el T = 7)) (7))

+261/0TRe<()h()>dt+2Bz/0 e (n(B)alt dt+o(\// (1h(£)[2 + lq(2) >)

= 2Re ((wlb. T pt,m) = 70)) a(T)) = 2Re ( (w20, T3 1,m) = 7(0) ) A(T))
Z/Ob Re (AU(%T) [— (um(w,T;mn) - %x(x)) + <U(fv,T; 14,1) — 7(55)”) dx
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v2n [ e (0no) v, [ Re (it w+o(¢/’h )12+ la(0)2)d )

(39)

where

= T
5 (VI o + Pt
lim 7
eh=0 [y (1RO + |q(t)[)dt
Let us introduce the solution W(x,¢; u,n) of the following conjugate problem (18)—(21) at

E(z,t) =0, Up(x) = (—% + I) (u(z,T; pu,m) — y(x)) . For further purposes, we transform
the integral

T 2 -
:/ dt/ a—Au(x t) — aAu(zo, t)| Y(z,t; u,n)dx
0 o | 0x?

T b 82 R
—i—/ dt/ @Au(x,t) - aAu(a;o,t)] U(z, t; pu,n)de
0 T

T (1)7 o
—i—/ dt/ Au(z,t) =V (x,t; p,n)dz

rx=x9—0

=0

r 0 _— 0 ————~

z=b
+ {QAU(:E, OV (z,t; p,n) — Au(x,t)ﬁllf(x,t; u,n)}
8‘7: r=x09+0
T —
Au(zo, t)V(w, t; p,m)dt

to OV (x,t; ) | OV (b p,1)
d A ) ) ] Y d
+/0 t/xo u(z,t) ( 507 + BT T

T a— T a—
:/0 h(t)%\l’((lt;u,n)dt—/o Q(t)%\lf(b,t;u,n)dt-

+
o
o\Q

Thus, the following relation is true

) /Ob Re (Au(x, 7) [—dd—; + 1} (u(z, T i) — ’y(x))) da

s /O "Re (h(%%m) gt -2 /0 "Re (q@)a%m> it
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From the last relation and equality (39) it follows that the increment of the target functional
will take the form

ATl ) = 2Re (|u(b.Ts,m) = 7.0)] (7)) = 2Re ([0 T 0.m) = 7.0 | h(T))

o /0 "Re (h(t)%m) gt -9 /O "Re (q@%W) it

+ 28 /OT Re (mh(t)> dt + 2, /OT Re (@q(t)) dt +73 \//OT(|h(t)|2 + lq(t)]2)dt

Thus, we were able to isolate the linear part of the increment of the target functional
AJ [, n]. Necessary and sufficient conditions for the minimum of a smooth convex functional
Jp,m] on a convex set U = {u(t),n(t) : u,n € W3[0, T]} [20] are given in the following
statement.

Theorem 6 Let (u*(t),n*(t)) € U and gives a minimum to functional J[w,n]. Then the
following inequality must be

2Re (|, (b. T, 77) = 70| a(1) ) = 2Re ([0, 75 2%, 77) = 7.(0)| (1))
o / "Re (h(t) %W) g9 / " Re (qu)a%w) "
+ 26 /OT Re (u*—(t)h(t)) dt + 26, /OT Re (n*—(t)q(t)> dt = 0.

for all h,q € W3[0, T] with conditions h(0) = q(0) = 0. Moreover, since J [u,n] is convex on
U, the above necessary condition is also sufficient for (u*(t),n*(t)) € U.

5 System of linear integral equations for optimal boundary control

In this section, we derive a system of linear Fredholm integral equations of the second kind,
which are satisfied by the optimal boundary control

(n* (), n"(t)) € U.

Since in Theorem 6 the functions h(t) and q(x) are arbitrary from W3[0,7] and
independent of each other, we can write the system of relations

0
—W(0,t; u*, ") + fip*(t) =0, T >t>0,

Oxa (40)
{ ug W (b, t; 11", ") = 72(b), (41)

Now, according to Corollary 2, we have the representation
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T T
w(e, T i ") = / Hy(e,T — 1) (7)dr + / Ha(z, T — 1) (r)dr + Hy(2),
0 0

where

b b
iet=n) = [ (1-5) Glagt-nie Balet-n =5 [ G-
0 0

Hy(x,1) = /0 uo(€)G(z, €, 1)dE + /0 dr /0 F(6,7)G . 6,1 — )
—u(0) / G 1y — ol / £G(r. &, TE.

Further, Corollary 3 implies the representation
b
d -
— (= 22 W& Tsp 0" = 1) GE 2. T = 1)

dg
+ (&, T 1% ") —v(&))jg (&, T — ))Eiz
b 2 R
b [ e i) < 2(0) (- g+ 1) GlE R T e

T
:/ (T —71,2,T —t)u dT+/ Q2T — 1,2, T — t)n*(7)dT + Q3(x, 1),
0

where
(T —71,2,T — fo ( 862 )G(ﬁ,x,T—t)Hl(f,T—T)df,
2
OuT — 70,7 — 1) — [ (_8‘9—52 ) G(& 0T — (€, T — 7).
02 - o2 .
— 2 (g + 1) CER T =00 — 110 (-~ +1) CEa. T~ 0.

Thus, relations (40) and (41) imply the required system of linear integral equations with
respect (4 (£), 7 (1))

Bip(t) + fo PUT —7,T — )yp*(r)dr + [} PIT —7,T — t)i*(r)dr = P{(t),
B (t) + [ PNT — 7, T — )p*(r)dr + [ PUT — 7, T — t)n*(7)dr = PY(1),

where
0
Pf”(T—T,T—t):%Ql(T—T,x,T—t) ,
9 i
P;(T —T,T—t) = a_xQ2(T — T,.T,T— t) z:a, Pg(t) = %Q;g(x,t) w:a,
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6 Conclusion

The results of the work, the boundary control of the temperature field of the bar with
a selected point can be useful in solving the problem of stabilization a loaded parabolic
equation using boundary control, which can be used in problems of mathematical modeling
using controlled loaded differential equations.
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