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THE STATE OF THE PROBLEM OF THE JOINT MOVEMENT OF FLUID
IN THE PORE SPACE

This article discusses the problems of studying the issue of joint motion of liquids in the porous
space. The article provides the construction of a mathematical model of the theory of filtration,
which describes phase transitions. The main difficulty in constructing this model is associated with
the fact that free interphase boundaries create regions that change over time, and it is required to
find the temperature or concentration fields of substances in them. In this case, the coordinates of
the considered phase boundaries are not initially specified and must be calculated already in the
process of solving. For this, a derivation of the averaged equation for the problem of finding the
rupture surface during the movement of two incompressible viscous liquids in the pores of the soil
skeleton was proposed. The article deals with the case when the skeleton is an absolutely rigid body.
The rationale was given for the choice of an averaged filtration model instead of a microscopic one.
The main research methods are classical methods of mathematical physics, functional analysis and
computation methods of the theory of partial differential equations, as well as difference methods.
The formulation of the problem is given, and the definition of a generalized solution for solving
the problem is provided. Next, an averaged model is derived and the existence of at least one
generalized solution to the problem is proved.

Key words: Stefan problem, difference scheme, numerical methods, phase boundary, sorption,
adsorption, surfactant, relaxation time, averaged model, microscopic model, macroscopic model,
joint motion of liquids.
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Keyek keHicTiriH/eri cyfbIKTBIKTAPABIH, Oip/ieCKeH KO3FAJIbIChI TyPaJibl

Maxkasana cumarTajgraH 3ePTTEeYIiH MAKCAThl KEYeKTiI KeHICTIKTeri CYHBIKTBIKTAP/IBIH OipJleCKeH
KO3FAJIBICHI TYpPaJibli MacesieHi 3epTTey Oobn Tabblaaapl. Makasraga das3asblk aybICyaapabl Ch-

MATTANTHIH CY3y TEOPUSICHIHBIH MATEMATHKAJIBIK, MOJIEIHIH, KYPbLIBICH KAPACTHIPBLIAIBL.
Byn mMomenbai Kypyaarbl 0acTbl KUBIHIABIK 00C mHTepdAa3asblK, IeKapajgap YaKbIT OTe Keje

e3repeTiH aiiMa KTap/bl KypalTbIHIbIFbIHA OailJIaHBICTBI KOHE OJlap TeMIlepaTypa ©epiCTepiH
HEMeCe 3aTTap/blH KOHIEHTPAIUIChIH Tabyabl KaxkeT ereqi. by xarnaiina (asajbik OeJIiMHIH
KapaCTBIPBIIFAH IEKAPAJIAPBIHBIH, KOODIUHATTAPHI OACTAIKBIIA OPHATHIIMAFAH JKOHE IIeIIiM
OapBICHIHIA €CeNTeNyi KepeK.

Out yIiH TOIBIpaK, KAHKACHIHBIH, TECIKTEPIH/IE €Ki ChIFBIIMANRTHIH TYTKBIP CYHBIKTHIKTHIH KO3FAJIbI-
CBbI Ke3iHje chIHy OeTiH Taby ecebiHiH opTala TEeHJEYiH aly YChIHBLIIbI. By MOe bl Kypy/1ars
6acTbl KUBIHJBIK, 00C MHTep(dAa3a/bIK IIeKapajiap YaKbIT OTe Kejie o3reperid aiiMakTap/bl Kypaii-
TBIH/IBIFBIHA OANIAHBICTHI YKOHE OJIAPIAFbl 3aTTaPIbIH TEMIIEPATyPAChl MEH KOHIIEHTPAIUASICHIHBIH,
epicrepin Taby kepek. Bysn xarmaiina dazanapablH KapacThIPLUIFAH IEeKaPAJIAPBIHBIH KOOD-
JIMHATTAPBI OACTAIIKBIA KOPCETLIMEreH YKOHE OJIap/bl IIenry GapbiChiHIa ecenTestyi kepek. Ou
YIIIiH TONBIPpAK, KAHKACBIHBIH TECIKTEPiH/I€ €Ki ChIFBIIMANTHIH TYTKBIP CYHBIKTBIKTHIH KO3FaJIBIChI
Ke3iHJIe KBIPTBLTY OeTiH Tady VIMH OpTallla TEeHJIEYl aly YChIHbLIIBL. Makaiaia KaHKa MYJIJIeM
KATThI OOJIFAH KaF1aiibl KapacThipblirad. Herisri 3eprrey ojicTepine MaTeMaTUKAJIBIK, (DU3HKAHBI
KJIACCUKAJIBIK 9JIicTepl, (DYHKINOHAJIIBIK Tajumay koHe aepbec muddepeHnnaiaplK, TeHIeyIep
TEOPUSICHIHBIH €CEeITey dJIiCTePi, COHBIMEH KaTap aflbIPBIMJIBIK, 9JIiCTEPL KaTa/Ibl.
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Tyiiin cesnep: Credan ecebi, ailLIpMAIIBLIBIK, CXeMaChl, CAHIBIK 9icTep, PasablK, eKapa, copo-
nwust, ajcopOiusi, 6eTTiK-0eJICeH Il 3aT, peJlaKkcalus YaKbIThl, OPTAINa MOJIE/b, MUKPOCKOIHUSIJIBIK,
MOJIENTb, MAKPOCKOIHUSITIBIK, MOJIETh.
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CocTosiHrEe BOIMPOCAa COBMECTHOI'O ABUXKEHUS YKUJIKOCTEl B IOPOBOM IHPOCTPAHCTBE

[esibro mcciiefOBaHMs, OMUCAHHOTO B JIAHHON CTAThe, SIBJISIETCS] M3YyUYEHUEe BOIPOCA O COBMECTHOM
IBUKEHUN KHUJKOCTel B IOPUCTOM INPOCTPAHCTBE. B craTbe paccMaTpuUBaeTCs ITOCTPOEHUE
MaTeMaTUIeCKON MOIESN TeOPUH (DUIBTPAINU, ONUCHIBAIONIeil (da3oBbie mepexonnl. OCHOBHas
TPY/HOCTH IIPU ITOCTPOEHUU ITOM MOJIEJIM CBSI3aHA C TEM, 9TO CBOOOJHBIE MeK(a3HbIe TPAHUIIBI
06pasyroT 00J1acTH, U3MEHSIIOIINECs BO BDEMEHH, I OHU TPEOYIOT HAXOXKIEHUS MTOJIeil TeMIIepaTyphl
WJIM KOHIIEHTPAIUHU BEIeCTB.

[Ipu »TOM KOOpIMHATBEI PaCCMATPUBAEMBIX T'DAHUIl pa3fena (a3 W3HAYAJIbHO He 3aJaHbl U
JOJIKHBI OBITh PACCUMTAHBI B XO/€ perreHus. J[jist 9Toro ObLI IPEeJIoXKeH BBIBOJ, YCPEIHEHHOTO
YPaABHEHUST 33J[a9l O HAXOXKJIEHUM MOBEPXHOCTH PA3PBIBA MPU JIBUXKEHUH JBYX HECKUMAEMBIX
BABKHUX JKHUJKOCTEH B IOpax CKejieTa TPyHTa. B JaHHON cTaThbe pacCMaTPUBAIOTCS BOIPOCHI
U3y4deHnusd COBMECTHOI'O JIBU2KEHUSA )KI/I,ZLKOCTGI?‘I B IIOPUCTOM IIDOCTPaHCTBeE. B CTaTbe IPUBEIECHO
IIOCTPOEHME MATEMATHIECKOH MOJIE/N Teoprur (PUIHTPAIME, OIMCHIBAOIIEH (Da30BbIe EPEXO/IHI.
OcHOBHasI TPYIHOCTH IIPU MOCTPOEHWM JAHHONH MOJIEJIN CBsi3aHA C TE€M, 9TO CBOOOJHBIE MEXK-
dazuble TpaHUIBl 00PA3YIOT 00JIACTH, U3MEHSIOIIMECS BO BPEMEHH, W HEOOXOJAMMO HAWTH B
HUX TIOJIsI T€MIEPATypbl W KOHIEHTPAIMU BeIecTB. 1Ipu 3TOM KOODJMHATHI PACCMATPUBAEMBIX
rpanut, ¢da3 U3HAYAIHLHO He YKA3aHbl M JIOJDKHBI OBITh BBIYHACIEHBI B IIPOIECCE UX PEIICeHUs.
st 9Toro OBLIO NPEJTIOKEHO MOJIYIUTh YCPEJHEHHOE YPaBHEHUE Il 3aJ1a9d HAXOXK/ICHUS
IMOBEPXHOCTU PA3pbIBa DU IBUKEHUHN JIBYX HECKMMAEMBIX BI3KUX JKHUJIKOCTEHl B OTBEPCTHUSIX
IIOYBEHHOI'O CKeJjieTa. B cTaThe PacCMOTPEH CJIydaii, KOTa CKEJIET siBJIeTCs abDCOIOTHO TBEPIBIM
TesioM. OCHOBHBIMEM METOJIAMU HCCJIEOBAHUS SIBJISIIOTCST KJIACCHIECKIE METOJ/IbI MATEeMaTHIECKON
duszuky, OYHKIMOHAJBHBI AHAJIN3 W BBIYUCJIUTEIbHBIE METOJbl TEOPUN YPABHEHWII YaCTHBIX
[IPOM3BO/IHBIX, 8 TaKyKe PA3HOCTHBIE METOJIbI.

Kuarouesbie cioBa: 3amada Credana, pa3HOCTHas CXeMa, YNCIEHHBIE METOIbI, TPaHUIIa pas3esa
da3z, copbrust, amcopbIms, MTOBEPXHOCTHO-AKTUBHOE BEIECTBO, BPEMSI PETAKCAIINN, YCPeTHEeHHAST
MOJIeJIb, MUKPOCKOIINYECKas MOJEb, MAKPOCKOIIMIECKAS MOJIE/Ib.

1 Introduction

For a better and more complete understanding of the processes that occur during oil
production, it is necessary to simulate liquid flow in porous media. Modeling is commonly
used to develop optimal reservoir development methods, as well as to select suitable well
locations, and of course to test various oil recovery technologies. Mathematical models of
filtration are based on the laws of mechanics of multiphase media and contain systems of
partial differential equations.

As a rule, the mathematical model is also supplemented with auxiliary equations depending
on the properties of the porous medium.

A numerical study of liquid filtration has been carried out in many works. It can be pointed
out that the main problems of such problems are associated, first, with the nonlinearity of the
obtained systems of equations. If we turn to the definition, then the theory of poroelasticity
studies the joint mechanism of fluid flow and the change in porous media. In this case, the
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main mathematical models of the theory of filtration, as a rule, are supplemented by the
Lame elasticity equation for the displacements of the medium. [1] Such mathematical models
of poroelasticity contain systems of nonlinear, nonstationary systems of partial differential
equations. For the approximate solution of boundary value problems, as a rule, numerical
methods are used.

The equations of poroelasticity, which were obtained by M. Biot and C. von Terzaghi, for
a certain time served as the basis for solving problems in the field of poroelasticity. These
equations take into account the movement of not only the fluid in the pores, but also the solid
skeleton. Later, some authors such as R. Burridge and J. Keller, E. Sanchez-Palencia and T.
Levy, proposed the derivation of the poroelasticity equations, which are based on the laws
of continuum mechanics and averaging methods. First, using the classical laws of continuum
mechanics, the joint motion of the elastic skeleton and fluid in the pores is described at the
microscopic level, and then approximating models are found using the averaging theory.

2 Materials and methods

The main methods of this research are the classical methods of mathematical physics,
computational methods of the theory of partial differential equations, functional analysis,
as well as difference methods. In practice, methods are also widely used that explicitly track
the movement of interphase boundaries. All these methods are based on the use of the finite
difference method, in this case, the calculations are carried out on uniform or non-uniform
grids. [2] Tt is always determined between which nodes of the computational grid the moving
border is at the moment, or through which node the border passes. The joint motion of elastic
skeleton and fluid in pores in the area €2 is described by R. Burridge and J. Keller, T. Levy
using the following mathematical model:

%(pv) +V(pv ®v— xPr+ (1 —x)Ps) = pF, (1)
dp
ot + V(pv) =0 )

where V - u is the divergence u, the matrix a @ b is defined as (a @ b)c = a(bc) for vectors a, b
and c, x is the characteristic function of the pore space, 2, Py, Ps is the stress tensors of the
liquid and solid components, v is the velocity of the medium, p is the density of the medium
and F is the given vector distributed mass forces. Equations (1) and (2) are understood as
integral identities and contain dynamic equations for the liquid component:

dv dp
— =VP F — =0 3
P Vf+p,dt+va (3)

in Q¢ for t > 0, the dynamic equations for the solid component are given below:

dv

d
por = VP, + pF. Py oV = 0 (4)

dt
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in ) for t > 0, and the condition for the continuity of normal stresses then looks like this:

(P,—P;)-n =0

on the common boundary "porous space rigid skeleton"I'(¢), where nis the unit normal to
I'(t). To describe the joint motion of two inhomogeneous fluids in an elastic skeleton, we
will supplement our dynamic system with the transport equation for the density p®(z,t) of a
mixture of liquid and solid components:

a _

=0, (5)

We also supplement this system with the initial condition:

p(x,0) = ps,x € Qg, p(x,0) = pf, x € fo (6)

The resulting problem is highly nonlinear and contains an unknown quantity, that is, the
interface between the pore space and the rigid skeleton. [3| In our case, the solid and liquid
components do not mix. Therefore, the free boundary I'(¢) is a contact discontinuity surface,
and it can be determined from the Cauchy problem:

X =SV = 0 x(@,0) = xolo) (7)

is true for the characteristic function x in the region €2 for ¢ > 0.
Theorem Let By, B.B; be three Banach spaces, where

By C B C By.

By, By are reflective. Nesting By C Bis compact Then let

w{o

Proof. We use the norm of the space W

B
v € Ly, (0,T, By), a—;’ € L, (0,7, Bl)} .

L, (0,T, By)

v
ol 20,7 5o} + | 57

Then we get a Banach space. It’s obvious that W C L, (0,7, B) Then the nesting W C
L,,(0,T, B) is compact.

3 Problem statement

If problem (1), (6), (7) can be solved, then such a given mathematical model will be useless
for practical use, since the function x changes its values from 0 to 1 on a scale of several
microns. Although, the problem, in general, should be considered in an area of about several
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tens or hundreds of meters [4,5] In this case, you can consider and apply the averaging of this
model. But then our problem (1), (2), (7) will become unsolvable. In this case, we propose to
apply the linearization of the main dynamical system according to the scheme proposed by
R. Burridge and E. Sanchez-Palencia, that is, we approximate the characteristic function y
of the liquid part 2; by its value at the initial moment of time, as well as the free boundary
['(t) by its initial position I'y. In what follows, we suppose that v ~ %—7%”, where w is the vector
of displacement of the medium, we get:

0 0*w
a(pv) >~ prXo + ps(1 — xo) e

where p¢, p, are the densities of the liquid in the pores and the solid skeleton:
Py = 2uD(x,v) — pll.

P, = 2\D(z,w) — plI.

Here D(z,v) is the symmetric part of Vv, II is the unit tensor, w is the vector of
displacement of the medium, as p we denote the dynamic viscosity, through v we denote
the bulk viscosity, and A is the Lame elastic constant. [6] Let {(z) be the characteristic

x

function of the region Q. Then the resulting x“(z) = &(z)x(%) will be the characteristic
function of the liquid region 2} in dimensionless variables

x w t F
rT—= =, w—=—, t=- F = —
L L T g
where L is the characteristic size of the physical area, 7 is the characteristic time of the
physical process, and ¢ is the value of the acceleration of gravity. In this case, our dynamic
system will take the following form:

eagw €

0
P = x‘a,D(z, —w) + (1 = xarD(xz,w) — pII. (9)

ot

Vw = 0. (10)

Special cases of linearization of problem (1) (2), (7) have been studied by many scientists,
such as, for example, Buckingham, Buchanan-Gilbert-Lin, Keller, Levy, Sanchez-Hubert,
Sanchez-Palencia. The problem of averaging for compressible mean linearized systems was
most fully investigated in the works of the scientist A.M. Meirmanov. [3,7,8] He proposed
a classification based on the dependence on the values of dimensionless criteria, which are
presented below:

lima,(e) = .
e—0
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li_r}%a,i(e) = Ho-
11_1)%&)\(6) = Ao

Filtration of a liquid is a very slow process, the medium speed is usually between 3 and 5
meters per year. Therefore, the process time is just very long and a, ~ 0. And, for example,
for fast processes such as water hammer, a, ~ 1, or a, ~ 0.

In this case, we can neglect the inertial terms in (9) and restrict ourselves to the following
equation:

VP + ¢°F = 0. (11)

In order to describe the joint motion of two inhomogeneous fluids, we supplement the
system of equations (9) - (11) with the following transport equation:

ap° ow

BT + vVp© = 0, V= (12)

Supplement with the initial condition the equation for the density p¢ of a mixture of liquid
and solid components:

106(‘7:70) = ps; S QS? pe(‘r70) = p]%’ T < Q? <13>

The simplest case of our system (9) - (11) will consider the case when a rigid skeleton is
an absolutely rigid body. Then it is characterized by the following equality:

)\OZOO.

Then the system of equations consists of the Stokes equations:
Vo = 0, (14)
V(a,D(z,v) —plI)+ o F = 0 (15)
for the pressure p and velocity v of the fluid in the region 2; at ¢ > 0 and the equality

v =20 (16)

in a solid skeleton 2.
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4 Formulation of main result

Combining all the results, we formulate them together in the form of one theorem.

Theorem Let the triple (w(x,t), p(x,t), p(x,t)) be a generalized solution of the M M
model. Then:

1) the sequences {w}, {Vw}, {v°}, {Vo}, {p}, and {Vp‘} converge weakly in Lo(S2r)
to the functions w,Vw, v = Eg;((?w/at), Vv = V(EQ; (Ow/0t)), p, p, Vp  respectively;
2) the limit functions are a solution of the averaged system of equations in the Qr region,
consisting of the continuity equation

Let Q € R? be a bounded region with boundary S, which was obtained by periodic
repetition of the unit cell €Y', where € > 0 is a small parameter,

Y=Y,UY,UuyUaY, Y =(0,1) x (0,1), €Y =(0,¢) x (0,¢)

where v = 9Y; U 0Y} is the Lipschitz boundary between two sets Y; and Y. Let ﬁ; be the
periodic repetition of unit cell 6?]”, and Q¢ is the periodic repetition of €Y. Then

Q=500 UT

where I' = 9 Q5 N 0 € is a periodic repetition of the boundary €y. Let the region Y; be
completely surrounded by the region Y}, that is

Y;NnoY =0.

In the region 2, the mathematical model of the joint motion of an incompressible fluid
and an elastic incompressible skeleton at the microscopic level has the form

Ow*®
V'(XEMUD(%E) + (1 =x9)XD(z,w) — pl)+pF = 0. (17)
V-w =0, 2€Q, t>0. (18)

ref), t>0.

dp®  0p° N ow*
dt Ot ot

-Vp* =0, z€Q,t>0. (19)

Xw(z,0) = 0 at x € Q. (20)

w(z,t) = 0 at € S=00, t>0. (21)
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X P (z,0) = po(x), = €. (22)

where w(z,t) = (wf(x,t),ws(z,t)) is the vector of displacement of the continuous medium,
p(z,t) is the pressure in the continuous medium, D(z, w) is the symmetric part of the gradient
of the vector w (stress tensor), I is the unit matrix, x“(x) is the characteristic function of the
pore space, X(z) po is the dimensionless viscosity of the fluid, A¢ is the dimensionless Lam
constant.

V-w =0 (23)

averaged equations of angular momentum

V.- P+ pF =0. (24)
Where
Ow !
P =mn;y: D(z, E) +ny: D(x,w)+ | ng(t—7: D(z,w(x,7))dr — pl
0

and the averaged transport equation

dp 0Op Ow

= g V=0 p=mps+(1-mp, (25)

supplemented by boundary
w(z,t) =0, z €S, te(0,7T).

dp
— =0 S, 0.7).
o , xes, te(0,7T)

and initial conditions
w(z,0) =0, z €.

p(x,0) = mpo(z), =€ Q.

where n; is a fourth rank tensor, is symmetric and positive definite, n is the unit outward
normal vector to the S boundary. The system of equations (23) - (25), supplemented with
boundary and initial conditions, is nothing more than Musket’s averaged model of the joint
motion of fluid and pore space.
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5 Conclusions

When studying the Rayleigh-Taylor instability in hydrodynamics, the following stages are
traced: linear, asymptotic, intermediate, regular, and turbulent. The most investigated is the
Rayleigh-Taylor instability for the case where there is a flat interface. The linear stage is well
studied in the works of Rayleigh, Taylor and Lewis, the regular asymptotic stage is studied
in the works of Birkhoff. But the analytical apparatus of mathematics for the analysis of the
Rayleigh-Taylor instability is not enough. Experimental studies are very laborious and can
be obtained only numerically. [9,10] Numerical approaches are based on the use of velocity-
pressure variables and current-vortex velocity or velocity-vortex velocity variables. Also, the
formulation of the problem makes it easy to extend the numerical methods for calculating
plane flows to the three-dimensional case. But the continuity equation for an incompressible
fluid contains velocity components, so there is no direct relationship with pressure. In the
course of computer simulation, it was revealed that the motion of fluids, which is described
by the system of equations (17) - (19), depends on the following parameters: the ratios
0= p;f / py, where ,0:[ and py, are the densities of the upper and lower liquids, respectively,
wh, p~ the viscosity of the liquids, \g the Lamii elastic coefficient, and the pore size €, that
is, the Rayleigh-Taylor instability is observed, as in the case when the walls of the region are
a solid. Numerical calculations were carried out for various values of A, §, and a constant
value of the viscosity of liquids and for the same €, § = 1.25 unit cell size:
for e =2- 107°, X\ — 0 there is a change in the interface between the liquids;
fore=2-107°, A =0.5, & — oo there is a change in the interface between the liquids;
fore=2- 107%, A = 0.5, § — 1 no change in the interface between the liquids is observed.
The state of the issue of joint motion of liquids in the porous space was investigated. The
rationale was given for the choice of an averaged filtration model instead of a microscopic
one. New microscopic mathematical models of the motion of viscous incompressible liquids
of various viscosities in the pore space are derived.
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