УДК 517.927.6

Б.Е. КАНГУЖИН, Г.М. НАЛЬЖУПБАЕВА

Kазахский национальный университет им. аль-Фараби, Алматы, Kазахстан; e-mail: kanbalta@mail.ru, nalzhuppa@list.ru

О свойствах одной задачи Штурма-Лиувилля с сингулярным потенциалом *

В гильбертовом пространстве $L^2(0,1)$ исследуются некоторые спектральные свойства обыкновенного дифференциального оператора второго порядка с сингулярным потенциалом на отрезке. При накладках некоторых условии на граничную функцию получена формула регуляризованного следа исследуемого оператора.

Ключевые слова: регуляризованный след, интегральное граничное условие, обыкновенный дифференциальный оператор, резольвента.

B.E. Kanguzhin, G.M. Nalzhupbayeva

On properties of the Sturm – Liouville operator with a singular potential

In the Hilbert space $L^2(0,1)$, we study some spectral properties of ordinary differential operator second order with a singular potential in the interval. At linings of some condition on the boundary function, a formula regularized trace of the test operator.

Key words: regularized trace, integral boundary condition, ordinary differential operator, resolvent.

Б.Е. Кангужин, Г.М. Нәлжұпбаева

Сингулярлы потенциалмен болған Штурм-Лиувилль операторының кейбір қасиеттері

 $L^2(0,1)$ гильберт кеңістігінде сингулярлы потенциалмен болған кесіндідегі екінші ретті қарапайым дифференциалдық операторының кейбір қасиеттері зерттелді. Шекаралық функцияға шарттар қою арқылы регуляризацияланған із формулаларын алуға мүмкіндік болды.

Түйін сөздер: регуляризацияланған із, шекаралық функция, екінші ретті қарапайым дифференциалдық оператор, резольвента.

Введение.

Задачи, связанные с изучением оператора Штурма-Лиувилля с сингулярным потенциалом, возникли в физической литературе. Математическое исследование таких физических моделей было начато в 60-ые годы прошлого века в работах [1], [2]. Современное состояние и новые направления развития спектральной теории таких операторов изложено в монографиях [3], [4].

В данной работе в гильбертовом пространстве $L^2(0,1)$, для произвольных элементов f и g из $L^2(0,1)$ со скалярным произведением $< f,g>:=\int_0^1 f(x)\overline{g(x)}dx$, исследуются

^{*}Работа выполнена при поддержке Комитета Науки МОН РК, грант № 0732 / ГФ.

свойства оператора Штурма — Лиувилля \mathcal{P}_k , порожденного дифференциальным выражением

$$l(y) \equiv -y''(x) + q(x)y(x), \ x \in I_0 := I \setminus \{x_0\}, \ I := (0,1), \ x_0 \in I,$$
 (1)

и удовлетворяющее краевым условиям

$$y(0) = y(1) = 0, (2)$$

$$[y(x_0)] = 0, [y'(x_0)] = \int_0^1 l(y)\overline{k(x)}dx, \tag{3}$$

где q(x) – непрерывная и вещественнозначная функция на отрезке [0,1], k(x) – граничная функция из $L^2(0,1), \overline{z}$ означает комплексное сопряжение числа $z \in \mathbb{C}$,

$$[y] = y(x_0 + 0) - y(x_0 - 0),$$

И

$$[y'] = y'(x_0 + 0) - y'(x_0 - 0).$$

Обозначим последний функционал через $\alpha(\cdot)$, т.е. $\alpha(y) := [y']$. Имеет место

Теорема 1 Резольвента оператора \mathcal{P}_k определяется по формуле

$$R_{\lambda}f(x) = R_{\lambda}^{0}f(x) + \langle f, \mathcal{P}_{0}R_{\lambda}^{0}k \rangle \mathcal{P}_{k}R_{\lambda}\varphi(x, x_{0}), \tag{4}$$

где $R_{\lambda} := (\mathcal{P}_k - \lambda I)^{-1}$, $R_{\lambda}^0 := (\mathcal{P}_0 - \lambda I)^{-1}$, $\varphi(x, x_0)$ является решением однородного уравнения $l(\varphi) = 0$ в I_0 и удовлетворяет условиям (2), $[\varphi] = 0$ и $\alpha(\varphi) = 1$.

Теорема 1 доказывается аналогично теореме о резольвентном представлении работы [8].

Класс функций, представимых в виде

$$u(x) = u_0(x) + \alpha_u \varphi(x, x_0),$$

обозначим через \mathcal{D} , где α_u – некоторая постоянная, $u_0(x) \in \mathbb{D}$:

$$u_0 \in W_2^2[0,1], \ u_0(0) = u_0(1) = 0.$$

Заметим, что для $h \in C^1(0,1)$ $\alpha(h)=0$. Тогда для произвольных $u,v \in \mathcal{D}$ справедливы разложения вида

$$u(x) = u_0(x) + \alpha(u)\varphi(x, x_0), \ v(x) = v_0(x) + \alpha(v)\varphi(x, x_0),$$
 (5)

где $u_0, v_0 \in \mathbb{D}$. Обозначим через $\xi^-(u) := u_0(x_0), \ \xi^+(u) := \alpha(u)$. С дифференциальным выражением l(u) свяжем оператор \mathcal{P}_M на $u \in \mathcal{D}$. Оператор \mathcal{P}_m определим как сужение \mathcal{P}_M на область

$$D(\mathcal{P}_m) := \{ u | u \in \mathcal{D}, \ \xi^-(u) = 0, \xi^+(u) = 0 \}.$$

Через $\mathcal{R}(\mathcal{P}_m)$ обозначим область значения оператора \mathcal{P}_m .

Класс самосопряженных задач

Следующая теорема является аналогом формулы Лагранжа.

Теорема 2 Пусть $u, v \in \mathcal{D}$. Тогда

$$<\mathcal{P}_M u, v> = < u, \mathcal{P}_M v> + \xi^-(u)\xi^+(v) - \xi^-(v)\xi^+(u).$$

Доказательство осуществляется непосредственными вычислениями с использованием разложений (5) и свойствами функции φ .

Пемма 1 Уравнение $\mathcal{P}_m u = f$ имеет решение $u \in D(\mathcal{P}_m)$ тогда и только тогда, когда найдется такое $f \in L^2(0,1)$, что для любого $v \in \mathbf{Ker} \mathcal{P}_M$ справедливо < f, v >= 0; или

$$\mathcal{R}(\mathcal{P}_m) \oplus \mathbf{Ker} \mathcal{P}_M = L^2(0,1).$$

Доказательство. Пусть $f \in \mathcal{R}(\mathcal{P}_m)$. Тогда для произвольного $v \in \mathbf{Ker}\mathcal{P}_M$ в силу аналога формулы Лагранжа имеем

$$\langle f, v \rangle = \langle \mathcal{P}_m u, v \rangle = \langle u, \mathcal{P}_M v \rangle = 0.$$

Пусть теперь найдется такое $f \in L^2(0,1)$, что для любого $v \in \mathbf{Ker}\mathcal{P}_M$

$$< f, v > = 0.$$

Несложно убедится в том, что $\varphi(x,x_0) \in \mathbf{Ker} \mathcal{P}_M$. Тогда для функции

$$u_0(x) = \int_0^1 \varphi(\xi, x) f(\xi) d\xi$$

выполнены следующие включения и равенства:

$$u_0 \in \mathbb{D}$$
; $(l(u_0))(x) = f(x)$, $x \in I_0$; $u_0(x_0) = \langle f, \varphi \rangle = 0$; $\alpha(u_0) = 0$.

То есть $u_0 \in D(\mathcal{P}_m)$. Таким образом, Лемма 1 доказана.

Лемма 2 $D(\mathcal{P}_m)$ плотно в $L^2(0,1)$.

Доказательство. Пусть функция $g \in L^2(0,1)$ ортогональна линеалу $D(\mathcal{P}_m)$. Найдем функцию v-произвольное решение уравнения $\mathcal{P}_M v = g$. Тогда для любого $u \in D(\mathcal{P}_m)$ имеем

$$0 = \langle u, g \rangle = \langle u, \mathcal{P}_M v \rangle = \langle \mathcal{P}_m u, v \rangle.$$

В силу Леммы 1 выполнено $v \in \mathbf{Ker} \mathcal{P}_M$. Поэтому $g = \mathcal{P}_M v = 0$. Лемма 2 доказана.

Теорема 3 Оператор \mathcal{P}_{θ} порожденный дифференциальным выражением l(u) = f в I_0 для $u \in \mathcal{D}$ с условием

$$\theta_1 \xi^-(u) = \theta_2 \xi^+(u) \tag{6}$$

является самосопряженным расширением оператора \mathcal{P}_m в пространстве \mathcal{D} , где $\theta = (\theta_1, \theta_2), \theta_1, \theta_2$ — некоторые вещественные числа и $\theta_1^2 + \theta_2^2 \neq 0$.

Доказательство. Так как для любых $u, v \in D(\mathcal{P}_m) < L_m u, v > = < u, L_m v >$, то по определению [5] \mathcal{P}_m – эрмитовый оператор. А в силу Леммы 2 \mathcal{P}_m – симметрический оператор. Таким образом, для того чтобы оператор \mathcal{P}_{θ} был самосопряженным, достаточно, чтобы

$$D(\mathcal{P}_{\theta}) = D(\mathcal{P}_{\theta}^*). \tag{7}$$

Это следует из непосредственных вычислений с применением Теоремы 2. Из условии теоремы следует, что хотя бы одно из чисел θ_1, θ_2 не равно нулю. Пусть $\theta_1 \neq 0$. Тогда условие (6) запишем в следующем виде $\xi^-(u) = \mu \xi^+(u)$, где $\mu = \theta_2/\theta_1$. Тогда для произвольных $u \in D(\mathcal{P}_{\theta})$ и $v \in \mathcal{D}$ имеем

$$\langle l(u), v \rangle = \langle u, l(v) \rangle + \xi^{-}(u)\xi^{+}(v) - \xi^{-}(v)\xi^{+}(u)$$

$$= \langle u, l(v) \rangle + \mu \xi^{+}(u)\xi^{+}(v) - \xi^{-}(v)\xi^{+}(u) = \langle u, l(v) \rangle + [\mu \xi^{+}(v) - \xi^{-}(v)]\xi^{+}(u).$$

Так как достаточно много функций $u \in D(\mathcal{P}_{\theta})$ для которых $\xi^+(u) \neq 0$, то из полученного следует справедливость равенства (7). Случай $\theta_2 \neq 0$ рассматривается аналогично. Таким образом, Теорема 3 доказана полностью.

Следствие 1 Для резольвенты оператора \mathcal{P}_k имеет место формула

$$R_{\lambda}f = R_{\lambda}^{0}f + \frac{\langle k, \mathcal{P}_{0}R_{\bar{\lambda}}^{0}f \rangle \mathcal{P}_{0}R_{\lambda}^{0}\varphi}{1 - \lambda \langle k, \mathcal{P}_{0}R_{\bar{\lambda}}^{0}\varphi \rangle},\tag{8}$$

которая эквивалентна формуле (4).

Следствие 2 Пусть $\theta_1 \neq 0$ и $k = -\mu \varphi$, где $\mu = \theta_2/\theta_1$. Тогда операторы \mathcal{P}_k и \mathcal{P}_θ совпадают, т.е.

$$\mathcal{P}_{-\mu\varphi} = \mathcal{P}_{(1,\mu)} = \mathcal{P}_{(\theta_1,\theta_2)}.$$

О формуле регуляризованного следа

В данном параграфе мы существенно будем использовать технику работы В.А. Садовничего и В.А. Любишкина [6], где изучались конечномерные возмущения дискретных операторов и были выведены формулы следов. В той работе возмущали действие оператора, но не область определения.

Возьмем след от обеих частей равенства (8)

$$Sp(R_{\lambda} - R_{\lambda}^{0}) = \frac{\langle \mathcal{P}_{0} R_{\lambda}^{0} k, \mathcal{P}_{0} R_{\bar{\lambda}}^{0} \varphi \rangle}{1 - \lambda \langle k, \mathcal{P}_{0} R_{\bar{\lambda}}^{0} \varphi \rangle}.$$

Пусть $\{\mu_n\}_{n=1}^{\infty}$ собственные значения оператора \mathcal{P}_k в порядке возрастания по модулю с учетом их кратностей, а $\{\lambda_n\}_{n=1}^{\infty}$ собственные значения оператора \mathcal{P}_0 в порядке возрастания, и $\{\psi_n(x)\}_{n=1}^{\infty}$ соответствующий ортонормированный базис из собственных функций оператора \mathcal{P}_0 . Тогда имеем

$$\langle k, \mathcal{P}_0 R_{\bar{\lambda}}^0 \varphi \rangle = \sum_{n=1}^{\infty} \frac{\lambda_n \langle k, \psi_n \rangle \langle \varphi, \psi_n \rangle}{\lambda_n - \lambda},$$
 (9)

$$\langle \mathcal{P}_0 R_{\bar{\lambda}}^0 k, \mathcal{P}_0 R_{\bar{\lambda}}^0 \varphi \rangle = \sum_{n=1}^{\infty} \frac{\lambda_n^2 \langle k, \psi_n \rangle \langle \varphi, \psi_n \rangle}{(\lambda_n - \lambda)^2}. \tag{10}$$

Обозначим через $d(\lambda)$ расстояние от точки λ до спектра оператора \mathcal{P}_0 .

Лемма 3 Пусть k(x) из области определения оператора \mathcal{P}_0 , т.е. $k(x) \in D(\mathcal{P}_0)$ и $\mathcal{P}_0k(x) \in W_2^p[0,1]$, где p и ϵ некоторые положительные, но сколь угодно малые числа, тогда

$$1 - \lambda < k, \mathcal{P}_0 R_{\bar{\lambda}}^0 \varphi > = 1 + k(x_0) + O\left(\frac{1}{d(\lambda)}\right), |\lambda| \to \infty.$$

Доказательство. Из (9) и непосредственными вычислениями

$$\lambda < k, \mathcal{P}_0 R_{\bar{\lambda}}^0 \varphi > = \lambda \sum_{n=1}^{\infty} \frac{\lambda_n < k, \psi_n > < \varphi, \psi_n >}{\lambda_n - \lambda}$$

$$= \sum_{n=1}^{\infty} \frac{\lambda < k, \lambda_n \psi_n > < \varphi, \lambda_n \psi_n >}{\lambda_n (\lambda_n - \lambda)} = \sum_{n=1}^{\infty} \frac{\lambda < k, \mathcal{P}_0 \psi_n > < \varphi, \mathcal{P}_0 \psi_n >}{\lambda_n (\lambda_n - \lambda)}$$

$$= \sum_{n=1}^{\infty} \frac{\lambda < \mathcal{P}_0 k, \psi_n > < \mathcal{P}_0 \varphi, \psi_n >}{\lambda_n (\lambda_n - \lambda)} = \sum_{n=1}^{\infty} \frac{\lambda < \mathcal{P}_0 k, \psi_n > \psi_n (x_0)}{\lambda_n (\lambda_n - \lambda)}.$$

Из полученного и с учетом того, что $\frac{\lambda}{\lambda_n(\lambda_n-\lambda)}=\frac{1}{\lambda_n-\lambda}-\frac{1}{\lambda_n}$ придем к

$$\lambda < k, \mathcal{P}_0 R_{\bar{\lambda}}^0 \varphi > = \sum_{n=1}^{\infty} \frac{\langle \mathcal{P}_0 k, \psi_n > \psi_n(x_0) \rangle}{\lambda_n} - \sum_{n=1}^{\infty} \frac{\langle \mathcal{P}_0 k, \psi_n > \psi_n(x_0) \rangle}{\lambda_n - \lambda}$$

$$= \sum_{n=1}^{\infty} \langle k, \psi_n > \psi_n(x_0) \rangle - \sum_{n=1}^{\infty} \frac{\langle \mathcal{P}_0 k, \psi_n > \psi_n(x_0) \rangle}{\lambda_n - \lambda}$$

$$= k(x_0) - \sum_{n=1}^{\infty} \frac{\langle \mathcal{P}_0 k, \psi_n > \psi_n(x_0) \rangle}{\lambda_n - \lambda}.$$

Тогда из справедливости оценки (не сложно проверить)

$$\left| \sum_{n=1}^{\infty} \frac{\langle \mathcal{P}_0 k, \psi_n \rangle \psi_n(x_0)}{\lambda_n - \lambda} \right| \le \frac{Const}{d(\lambda)}$$

придем к утверждению Леммы 3.

Лемма 4 Пусть выполняются условия Леммы 3, тогда

$$\langle \mathcal{P}_{0}R_{\bar{\lambda}}^{0}k, \mathcal{P}_{0}R_{\bar{\lambda}}^{0}\varphi \rangle = \frac{\widetilde{k}(x_{0})}{\lambda^{2}} + F(\lambda),$$

$$\varepsilon \partial e \ F(\lambda) = \sum_{n=1}^{\infty} \langle k, \lambda_{n}^{2}\psi_{n} \rangle \langle \varphi, \lambda_{n}\psi_{n} \rangle \left[\frac{1}{\lambda(\lambda_{n} - \lambda)^{2}} - \frac{1}{\lambda^{2}(\lambda_{n} - \lambda)} \right] u$$

$$|F(\lambda)| \leq \frac{Const}{|\lambda|d^{2}(\lambda)}. \tag{11}$$

Доказательство. С использованием несложных преобразований и применением тождества

$$\frac{1}{\lambda_n(\lambda_n-\lambda)^2} = \frac{1}{\lambda_n\lambda^2} + \frac{1}{\lambda(\lambda_n-\lambda)^2} - \frac{1}{\lambda^2(\lambda_n-\lambda)}$$

к (10) получим

$$<\mathcal{P}_{0}R_{\bar{\lambda}}^{0}k, \mathcal{P}_{0}R_{\bar{\lambda}}^{0}\varphi> = \sum_{n=1}^{\infty} \frac{\lambda_{n}^{2} < k, \psi_{n} > < \varphi, \psi_{n} >}{(\lambda_{n} - \lambda)^{2}}$$

$$= \sum_{n=1}^{\infty} \frac{< k, \lambda_{n}^{2}\psi_{n} > < \varphi, \lambda_{n}\psi_{n} >}{\lambda_{n}(\lambda_{n} - \lambda)^{2}} = \frac{1}{\lambda^{2}} \sum_{n=1}^{\infty} < k, \mathcal{P}_{0}\psi_{n} > < \varphi, \mathcal{P}_{0}\psi_{n} >$$

$$+ \sum_{n=1}^{\infty} < k, \lambda_{n}^{2}\psi_{n} > < \varphi, \lambda_{n}\psi_{n} > \left[\frac{1}{\lambda(\lambda_{n} - \lambda)^{2}} - \frac{1}{\lambda^{2}(\lambda_{n} - \lambda)} \right] = \frac{\widetilde{k}(x_{0})}{\lambda^{2}} + F(\lambda),$$

где $F(\lambda)$ удовлетворяет оценке

$$|F(\lambda)| \le \left| \sum_{n=1}^{\infty} \langle k, \lambda_n^2 \psi_n \rangle \langle \varphi, \lambda_n \psi_n \rangle \left[\frac{1}{\lambda (\lambda_n - \lambda)^2} - \frac{1}{\lambda^2 (\lambda_n - \lambda)} \right] \right|$$

$$\le Const \left(\frac{1}{|\lambda| (d(\lambda))^2} + \frac{1}{|\lambda|^2 d(\lambda)} \right).$$

Так как $d(\lambda) \leq 2|\lambda|$, по крайней мере при $|\lambda|$ больших $|\lambda_1|$, то отсюда следует доказываемое утверждение.

Известно, что $N(\lambda) = \sum_{\lambda_n \leq \lambda} 1 = O\left(\lambda^{1/2}\right)$, где $N(\lambda)$ – функция распределения собственных значений оператора \mathcal{P}_0 . Тогда существует последовательность вещественных чисел $r_n \to \infty$ такая, что $d_n \to \infty$, где $d_n = \rho(\Gamma_n, \sigma(\mathcal{P}_0))$ – расстояние от окружности $\Gamma_n = \{\lambda : |\lambda| = r_n\}$ до спектра оператора \mathcal{P}_0 .

Из Леммы 3 и Леммы 4 на окружности Γ_n следует справедливость следующей асимптотики

$$Sp(R_{\lambda} - R_{\lambda}^{0}) = \left[\frac{\widetilde{k}(x_{0})}{1 + k(x_{0})} \frac{1}{\lambda^{2}} + F(\lambda) \right]^{1/(1 + o(1))} =$$

$$= \frac{\widetilde{k}(x_{0})}{1 + k(x_{0})} \frac{1}{\lambda^{2}} + \frac{o(1)}{\lambda^{2}} + F(\lambda)(1 + o(1))$$
(12)

при $n \to \infty$.

Пемма 5 Пусть выполняются условия Леммы 3, тогда при достаточно больших п внутри контура Γ_n находится одинаковое число (с учетом кратности) собственных значений операторов \mathcal{P}_K и \mathcal{P}_0 .

Доказательство. Умножим равенство (12) на $1/2\pi i$ и проинтегрируем по контуру Γ_n . Заметим, что в силу известной теоремы Рисса

$$\frac{1}{2\pi i} \int_{\Gamma_n} Sp(R_\lambda - R_\lambda^0) d\lambda = N_1 - N_2,$$

где N_1 и N_2 – число собственных значений (с учетом кратности) операторов \mathcal{P}_K и \mathcal{P}_0 соответственно, попадающих внутрь контура Γ_n . Далее имеем

$$\frac{1}{2\pi i} \int_{\Gamma_n} \left[\frac{\widetilde{k}(x_0)}{1 + k(x_0)} \frac{1}{\lambda^2} + \frac{o(1)}{\lambda^2} \right] d\lambda = o\left(\frac{1}{r_n}\right),$$

в то время как

$$\frac{1}{2\pi i} \int_{\Gamma_n} F(\lambda) (1 + o(1)) d\lambda$$

в силу оценки (11) есть величина порядка $o(\frac{1}{d_{\pi}^2})$. Таким образом, получили

$$N_1 - N_2 = o\left(\frac{1}{r_n}\right) + o\left(\frac{1}{d_n^2}\right).$$

Устремив n к бесконечности, воспользовавшись тем, что N_1 и N_2 – целые числа, приходим к доказательству леммы.

Теорема 4 Пусть $k(x) \in D(\mathcal{P}_0^2)$ и $k(x_0) \neq -1$, тогда

$$\sum_{n=1}^{\infty} (\mu_n - \lambda_n) = \frac{\tilde{k}(x_0)}{1 + k(x_0)},$$

 $e\partial e \ \tilde{k}(x_0) = \lim_{x \to x_0} \mathcal{P}_0 k(x).$

Доказательство. Умножим равенство (12) на $\lambda/2\pi i$ и проинтегрируем по контуру Γ_n . По предыдущей лемме внутри контура Γ_n находится одинаковое число k_n собственных значений операторов \mathcal{P}_k и \mathcal{P}_0 . Тогда, используя свойства проектора Рисса, имеем

$$\frac{1}{2\pi i} \int_{\Gamma_n} \lambda Sp(R_\lambda - R_\lambda^0) d\lambda = \sum_{k=1}^{k_n} (\mu_k - \lambda_k).$$

Из теоремы Коши о вычетах заключаем, что $\frac{1}{2\pi i} \int_{\Gamma_n} \frac{\widetilde{k}(x_0)}{1 + k(x_0)} \frac{1}{\lambda} d\lambda = \frac{\widetilde{k}(x_0)}{1 + k(x_0)}$. Далее,

$$\frac{1}{2\pi i} \int_{\Gamma_n} \frac{o(1)}{\lambda} d\lambda = o(1) \text{ при } n \to \infty.$$

В силу формулы (11) заключаем, что

$$\frac{1}{2\pi i} \int_{\Gamma_n} \lambda F(\lambda)(1 + o(1)) d\lambda = O\left(\int_{\Gamma_n} \frac{1}{d^2(\lambda)} d\lambda\right).$$

Пусть $\lambda = r \exp(i\varphi)$. Тогда $d(\lambda) \ge r |\sin \varphi|$. С другой стороны, на контуре Γ_n $d(\lambda) \ge d_n$. Оценим интеграл по части окружности Γ_n , лежащей в первой четверти λ – плоскости (остальные рассматриваются аналогично).

Разобьем участок интегрирования на два участка $0 \le \varphi \le \varphi_n$, $\varphi_n \le \varphi \le \pi/2$, где угол φ_n будет выбран в дальнейшем. Воспользовавшись на первом участке интегрирования оценкой $d(\lambda) \ge d_n$, а на втором – оценкой $d(\lambda) \ge r \sin \varphi$, имеем

$$\int_{\Gamma_n} \frac{d\lambda}{d^2(\lambda)} = O\left(\int_0^{\varphi_n} \frac{r_n}{d_n^2} d\varphi\right) + O\left(\int_{\varphi_n}^{\pi/2} \frac{d\varphi}{r_n \sin^2 \varphi}\right) = O\left(\frac{r_n \varphi_n}{d_n^2}\right) + O\left(\frac{1}{r_n \varphi_n}\right).$$

Выберем $\varphi_n = \frac{d_n}{r_n}$. Окончательно получаем, что

$$\sum_{k=1}^{k_n} (\mu_k - \lambda_k) = \frac{\widetilde{k}(x_0)}{1 + k(x_0)} + o(1) + O\left(\frac{1}{d_n}\right).$$

Устремляя n к бесконечности, приходим к утверждению Теоремы 4.

Отметим, что операторы с интегральными граничными условиями были исследованы в работе [8] для обыкновенных дифференциальных уравнений высших порядков, в [7] для оператора Лапласа, а в статье [9] для бигармонического оператора.

Список литературы

- [1] *Березин*, Φ .А. Замечания об уравнении Шрёдингера с сингулярным потенциалом. / Φ .А. Березин, Л.Д. Фаддеев // ДАН СССР. 1961. Т.137. №7. С. 1011–1014.
- [2] *Минлос, Р.А.* О точечном взаимодействии для систем из трёх частиц в квантовой механике. / Р.А. Минлос, Л.Д. Фаддеев // ДАН СССР. 1961. Т.141. №6. С. 1335–1338.
- [3] Albeverio, S. Some exactly solvable models in quantum mechanics: monograph / S. Albeverio, F. Gestezy, R. Hoegh-Krohn, H. Holden. Verlag: Springer. 1988. 417 p.
- [4] Albeverio, S. Singular perturbation of differential operators: Lecture Rems Series / S. Albeverio, P. Kurasov. London: Cambridge Univ. Press. 2001. 271 p.
- [5] Hаймарк, M.A. Линейные дифференциальные операторы: монография. M.: Наука. 1969. 528 с.
- [6] Cadoвничий, B.A. Конечномерные возмущения дискретных операторов и формулы следов. / В.А. Садовничий, В.А. Любишкин // Функц. анализ и его прил.. 1986. Т.20. Вып.3. С. 55–65.
- [7] Kангужин, E. E. Корректные задачи для оператора Лапласа в проколотой области. / E. E. Кангужин, E. E. Анияров // E Мат. заметки. E –
- [8] *Кангужин, Б.Е.* Аппроксимативные свойства системы корневых функций, порождаемые корректно разрешимыми краевыми задачами для обыкновенных дифференциальных уравнений высших порядков. / Б.Е. Кангужин, Д.Б. Нурахметов, Н.Е. Токмагамбетов // Уфимский математический журнал. − 2011. − Т.3. − №3. − С. 80–92.
- [9] *Берикханова, Г.Е.* Резольвенты конечномерных возмущенных корректных задач для бигармонического оператора. / Г.Е. Берикханова, Б.Е. Кангужин // Уфимский математический журнал. 2010. Т.2. №1. С. 17—34.

References

- [1] Berezin, F.A. Zamechaniya ob uravnenii Shrodingera s singulyarnym potentsialom. / F.A. Berezin, L.D. Faddeyev // DAN SSSR. 1961. T.137. №7. S. 1011 1014.
- [2] Minlos, R.A. O tochechnom vzaimodeystvii dlya sistem iz trokh chastits v kvantovoy mekhanike. / R.A. Minlos, L.D. Faddeyev // DAN SSSR. 1961. T.141. \mathbb{N}^6 6. S. 1335 1338.
- [3] Albeverio, S. Some exactly solvable models in quantum mechanics: monograph / S. Albeverio, F. Gestezy, R. Hoegh-Krohn, H. Holden. Verlag: Springer. 1988. 417 p.
- [4] Albeverio, S. Singular perturbation of differential operators: Lecture Rems Series / S. Albeverio, P. Kurasov. London: Cambridge Univ. Press. 2001. 271 p.
- [5] Naimark, M.A. Lineynyye differentsial'nyye operatory: monograph. M.: Nauka. 1969.
 528 s.
- [6] Sadovnichiy, V.A. Konechnomernyye vozmushcheniya diskretnykh operatorov i formuly sledov / V.A. Sadovnichiy, V.A. Lyubishkin. // Funkts. analiz i yego pril.. 1986. T.20. Vyp.3. S. 55–65.
- [7] Kanguzhin, B.E. Korrektnyye zadachi dlya operatora Laplasa v prokolotoy oblasti. / B.E. Kanguzhin, A.A. Aniyarov // Mat. zametki. 2011. T.89. Vyp.6. S. 856–867.
- [8] Kanguzhin, B.E. Approksimativnyye svoystva sistemy kornevykh funktsiy , porozhdayemyye korrektno razreshimymi krayevymi zadachami dlya obyknovennykh differentsial'nykh uravneniy vysshikh poryadkov. / B.E. Kanguzhin, D.B. Nurakhmetov, N.E. Tokmagambetov // Ufimskiy matematicheskiy zhurnal. 2011. T.3. Vyp.3. S. 80–92.
- [9] Berikkhanova, G.E. Rezol'venty konechnomernykh vozmushchennykh korrektnykh zadach dlya bigarmonicheskogo operatora. / G.E. Berikkhanova, B.E. Kanguzhin // Ufimskiy matematicheskiy zhurnal. 2010. T.2. Vyp.1. S. 17–34.

Поступила в редакцию 3 сентября 2013 года