IRSTI 27.39.21

DOI: https://doi.org/10.26577/JMMCS.2022.v114.i2.05

Zh.M. Onerbek*

Eurasian National University, Kazakhstan, Nur-Sultan e-mail: onerbek.93@mail.ru

ON THE BOUNDEDNESS OF THE RIESZ POTENTIAL AND ITS COMMUTATOR'S IN THE GLOBAL MORREY TYPE SPACES WITH VARIABLE EXPONENTS

The paper considers the global Morrey-type spaces $GM_{p(.),\theta(.),w(.)}(\Omega)$ with variable exponents p(.), $\theta(.)$, where $\Omega \subset R^n$ is an unbounded domain. The questions of boundedness of the Riesz potential and its commutator in these spaces are investigated. We give the conditions for variable exponents $(p_1(.),p_2(.))$, $(\theta_1(.),\theta_2(.))$ and on the functions $(w_1(.),w_2(.))$ under which the Riesz potential I^{α} , will be bounded from $GM_{p_1(.),\theta_1(.),w_1(.)}(\Omega)$ to $GM_{p_2(.),\theta_2(.),w_2(.)}(\Omega)$. The same conditions are obtained for the boundedness of the commutator of the Riesz potential in these spaces. In the case when the exponents p,θ constant numbers, the questions of boundedness of the Riesz potential and its commutator in global Morrey spaces were previously studied by other authors. There are also well-known results on the boundedness of the Riesz potential in global Morrey-type spaces with variable exponents, when the domain $\Omega \subset R^n$ is bounded.

Ж.М.Онербек

Л.Н.Гумилев атындағы Еуразия ұлттық университеті, Қазақстан, Нұр-Султан қ. e-mail: onerbek.93@mail.ru

Көрсеткіштері айнымалы глобальді Морри типтес кеңістіктердегі Рисс потенциалы және оның коммутаторының шенелгендігі туралы

Бұл жұмыста p(.), $\theta(.)$ көрсеткіштері айнымалы глобальді Морри типтес кеңістіктер $GM_{p(.),\theta(.),w(.)}(\Omega)$ қарастырылады, мұндағы $\Omega\subset R^n$ -шенелмеген облыс. Көрсетілген кеңістіктердегі Рисс потенциалы және оның коммутаторының шенелгендігі туралы сұрақтар зерттеледі. $(p_1(.),p_2(.))$, $(\theta_1(.),\theta_2(.))$ көрсеткіштері және $(w_1(.),w_2(.))$ функцияларына I^α Рисс потенциалы $GM_{p_1(.),\theta_1(.),w_1(.)}(\Omega)$ кеңістігінен $GM_{p_2(.),\theta_2(.),w_2(.)}(\Omega)$ кеңістігіне шенелген болуының шарттары алынды. Рисс потенциалының коммутаторына да көрсетілген кеңістіктерде дәл осы сияқты шенелгендігік шарттары алынды. p,θ көрсеткіштері тұрақты болатын жағдайда Морри типтес кеңістіктердегі Рисс потенциалы және оның коммутаторының шенелгендігі туралы сұрақтарын басқа авторлар бұрын зерттеген. $\Omega \subset R^n$ шенелген облыс жағдайындағы көрсеткіштері айнымалы глобальді Морри типтес кеңістіктердегі Рисс потенциалының шенелгендік шарттары туралы да белгілі.

Түйін сөздер: глобальді Морри типтес кеңістіктер, айнымалы көрсеткіш, Рисс потенциалы, Рисс потенциалының коммутаторы, оператордың шенелгендігі.

Ж.М.Онербек

Евразийский национальный университет имени Л.Н.Гумилева, Казахстан, г. Hyp-Султан e-mail: onerbek.93@mail.ru

Об ограниченности потенциала Рисса и его коммутатора в глобальных пространствах типа Морри с переменным показателем

В работе рассматриваются глобальные пространства типа Морри $GM_{p(.),\theta(.),w(.)}(\Omega)$ с переменными показателями p(.), $\theta(.)$, где $\Omega \subset R^n$ - неограниченная область. Исследуются вопросы ограниченности потенциала Рисса и его коммутатора в указанных пространствах. Получены условия на переменные показатели $(p_1(.),p_2(.))$ и $(\theta_1(.),\theta_2(.))$ и на функции $(w_1(.),w_2(.))$ при которых потенциал Рисса I^α , будет ограничен из $GM_{p_1(.),\theta_1(.),w_1(.)}(\Omega)$ в $GM_{p_2(.),\theta_2(.),w_2(.)}(\Omega)$.

Такие же условия получены для ограниченности коммутатора потенциала Рисса в рассматриваемых пространствах. В случае, когда показатели p, θ постоянные числа, вопросы ограниченности потенциала Рисса и его коммутатора в глобальных пространствах Морри ранее были исследованы другими авторами. Так же известны результаты об ограниченности потенциала Рисса в глобальных пространствах типа Морри с переменными показателями, когда область $\Omega \subset \mathbb{R}^n$ ограниченная.

Ключевые слова: Глобальные пространства типа Морри, переменный показатель, потенциал Рисса, коммутатор потенциала Рисса, ограниченность операторов.

1 Introduction

1.1 Review of studies by other authors

The Morrey space $M_{p,\lambda}$ was introduced in [1] in connection with the study solutions of differential equations with partial derivatives. The boundedness of integral classical operators of harmonic analysis in global Morrey-type spaces $GM_{p,\theta,w}$ with constant exponents p, θ was well studied ([2]-[5]). The boundedness of classical integral operators in the Lebesgue spaces wih variable exponent was studied in [6]-[7]).

The Morrey-type space $\mathcal{M}_{p(.),\lambda(.)}$ with variable exponents is also well studied in [8]. The generalized Morrey-type space $M_{p(.),w(.)}(\Omega)$ with variable exponent in the case of a bounded domain $\Omega \subset \mathbb{R}^n$ were introduced and studied in [9] and [10], in the case of an unbounded domain $\Omega \subset \mathbb{R}^n$ were studied in [11].

The Riesz potential I^{α} with exponent α is defined by :

$$I^{\alpha}f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-\alpha}} dy, 0 < \alpha < n.$$

The boundedness of the Riesz potential in generalized Morrey-type spaces with variable exponent was studied in [9] and [10] in the case of a bounded domain $\Omega \subset \mathbb{R}^n$ and in [11] in the case of an unbounded domain $\Omega \subset \mathbb{R}^n$.

Here and below, we denote by B(x,r) the ball with center $x \in \mathbb{R}^n$ and radius r > 0, $\tilde{B}(x,r) = B(x,r) \cap \Omega$, $\Omega \subset \mathbb{R}^n$.

The space $BMO(\Omega)$ is defined as the space of all integrable functions f with finite norm

$$||f||_{BMO} = ||f||_* = \sup_{x \in \Omega, r > 0} |B(x, r)|^{-1} \int_{\tilde{B}(x, r)} |f(y) - f_{\tilde{B}(x, r)}| dy,$$

where $f_{\tilde{B}(x,r)} = |\tilde{B}(x,r)|^{-1} \int_{\tilde{B}(x,r)} f(y) dy$.

Let $b \in BMO(\Omega)$. The commutator of the Riesz potential is defined by

$$[b, I^{\alpha}]f = I^{\alpha}(bf) - b(I^{\alpha}f) = \int_{\mathbb{R}^n} \frac{(b(y) - b(x))}{|x - y|^{n - \alpha}} f(y) dy, 0 < \alpha < n.$$

The boundedness of the commutator of the Riesz potential in weighted Lebesgue spaces with variable exponent was studied in [12].

Zh.M. Onerbek 55

1.2 Basic definitions. Preliminary results.

Let p(x) be a measurable function on $\Omega \subset \mathbb{R}^n$ with values on $(1, \infty)$. Assume that

$$1 < p_{-} \le p(x) \le p_{+} < \infty \tag{1}$$

where

$$p_{-} = p_{-}(\Omega) = \underset{x \in \Omega}{esinf} p(x),$$
$$p_{+} = p_{+}(\Omega) = \underset{x \in \Omega}{essup} p(x).$$

We denote by $L_{p(.)}(\Omega)$ the space of all functions f(x) measurable on Ω such that

$$J_{p(.)}(f) = \int_{\Omega} |f(x)|^{p(x)} dx < \infty,$$

where the norm is defined as follows

$$||f||_{p(.)} = \inf \{ \eta > 0, J_{p(.)} \left(\frac{f}{\eta} \right) \le 1 \}.$$

For details on the Lebesgue space with variable exponent, see [6]. $\mathcal{P}(\Omega)$ is the set of measurable functions p(x) for which $p:\Omega\to[1,\infty)$, $\mathcal{P}^{\log}(\Omega)$ is the set of all measurable functions p(x) satisfying the local logarithmic condition:

$$|p(x) - p(y)| \le \frac{A_p}{-\ln|x - y|}, |x - y| \le \frac{1}{2}, x, y \in \Omega,$$

where the constant number A_p does not depend on x and y. $\mathbb{P}^{\log}(\Omega)$ is the set of all measurable functions p(x) satisfying (1) and local logarithmic condition. In the case where Ω is an unbounded set, we denote by $\mathbb{P}^{\log}_{\infty}(\Omega)$ a subset of the set $\mathbb{P}^{\log}(\Omega)$ satisfying the logarithmic conditions at infinity:

$$|p(x) - p(\infty)| \le A_{\infty} ln(2 + |x|), x \in \mathbb{R}^n.$$

Let Ω be a bounded open set, $p \in \mathbb{P}^{\log}(\Omega)$, and $\lambda(x)$ a function measurable on Ω with values on [0, n]. Morrey spaces $\mathcal{L}_{p(.),\lambda(.)}(\Omega)$ with variable exponents p(.), $\lambda(.)$ were introduced [8] with the norm

$$||f||_{\mathcal{L}_{p(\cdot),\lambda(\cdot)}(\Omega)} = \sup_{x \in \Omega, t > 0} t^{-\frac{\lambda(x)}{p(x)}} ||f||_{L_{p(\cdot)}(\tilde{B}(x,t))}.$$

Let w(x,r) be a positive measurable function on $\Omega \times (0,l)$, where $\Omega \subset \mathbb{R}^n$ is a bounded domain, $l = diam\Omega$. The generalized Morrey space $M_{p(.),w(.)}(\Omega)$ with variable exponents on a bounded domain $\Omega \subset \mathbb{R}^n$ were defined in [9] with norm

$$||f||_{M_{p(.),w(.)}(\Omega)} = \sup_{x \in \Omega, r > 0} \frac{r^{-\frac{n}{p(x)}}}{w(x,r)} ||f||_{L_{p(.)}(\tilde{B}(x,r))}.$$

Let w(x,r) be a measurable function : $\Omega \times (0,l) \to [0,\infty)$, where $\Omega \subset \mathbb{R}^n$ bounded domain, $l = diam\Omega$, measurable function $\theta(r) : (0,l) \to [1,\infty]$. Morrey type spaces $M_{p(.),\theta(.),w(.)}(\Omega)$ with variable exponent on a bounded domain $\Omega \subset \mathbb{R}^n$ were defined in [10] with the norm

$$||f||_{M_{p(.),\theta(.),w(.)}(\Omega)} = \sup_{x \in \Omega} ||w(x,r)r^{-\frac{n}{p(x)}}||f||_{L_{p(.)}(\tilde{B}(x,r))}||_{L_{\theta(.)}(0,\delta)}.$$

Let w(x,r) be a positive measurable function on an unbounded domain $\Omega \subset \mathbb{R}^n$. The generalized Morrey space $M_{p(.),w(.)}(\Omega)$ with variable exponent was defined in [11] with the norm

$$||f||_{M_{p(.),w(.)}(\Omega)} = \sup_{x \in \Omega, r > 0} \frac{||f||_{L_{p(.)}(\tilde{B}(x,r))}}{w(x,r)}.$$

We introduce global Morrey-type spaces with variable exponents on unbounded domains. Let's put

$$\eta_p(x,r) = \begin{cases} \frac{n}{p(x)}, & \text{if } r \leq 1; \\ \frac{n}{p(\infty)}, & \text{if } r > 1. \end{cases}$$

Let $p \in P^{log}_{\infty}(\Omega)$, w(x,r) be a positive measurable function on $\Omega \times [0,\infty]$, where $\Omega \in \mathbb{R}^n$, the measurable function $\theta(r):(0,\infty) \to [1,\infty)$. Global Morrey space with variable exponents $GM_{p(.),\theta(.),w(.)}(\Omega)$, where $\Omega \subset \mathbb{R}^n$ unbounded domain, defined as the set of functions $f \in L^{loc}_{p(.)}(\Omega)$ with finite norm

$$||f||_{GM_{p(.),\theta(.),w(.)}(\Omega)} = \sup_{x \in \Omega} ||w(x,r)r^{-\eta_p(x,r)}||f||_{L_{p(.)}(\tilde{B}(x,r))}||_{L_{\theta(.)}(0,\infty)},$$

for $1 \leq \theta(r) < \infty$, with finite norm

$$||f||_{GM_{p(.),\infty,w(.)}(\Omega)} = ||f||_{M_{p(.),w_1(.)}(\Omega)} = \sup_{x \in \Omega, r > 0} w(x,r) r^{-\eta_p(x,r)} ||f||_{L_{p(.)}(\tilde{B}(x,r))},$$

for $\theta(r) = \infty$.

Note that the space $GM_{p(.),\infty,w(.)}(\Omega)$ coincides with the generalized Morrey-type space $M_{p(.),w_1(.)}(\Omega)$ with variable exponent, where $w_1(x,r) = \frac{r^{\eta_p(x,r)}}{w(x,r)}$.

In the case of $w(x,r) = r^{-\frac{\lambda(x)}{p(x)} + \eta_p(x,r)}$ we denote the indicated space by via $GM_{p(.),\theta(.)}^{\lambda(.)}$:

$$GM_{p(.),\theta(.)}^{\lambda(.)}(\Omega) = GM_{p(.),w(.),\theta}|_{w(x,r)=r^{-\frac{\lambda(x)}{p(x)}+\eta_p(x,r)}},$$

$$||f||_{GM_{p(.),\theta(.)}^{\lambda(.)}(\Omega)} = \sup_{x \in \Omega} ||r^{-\frac{\lambda(x)}{p(x)}}||f||_{L_{p(.)}(\tilde{B}(x,r))}||_{L_{\theta(.)}(0,\infty)}.$$

If p(.) = p = const, $\theta(x) = \theta = const$, then the space $GM_{p(.),\theta(.),w(.)}(\Omega)$ coincides with the well-known global Morrey space $GM_{p,\theta,w}(\Omega)$ (see, for example, [4]). The following lemma gives a sufficient condition under which the space $GM_{p(.),\theta(.),w(.)}(\Omega)$ is not trivial.

Lemma 2.1. Let

$$\sup_{x\in\Omega}||w(x,r)||_{L_{\theta(.)}(0,\infty)}<\infty.$$

Then the space $GM_{p(.),\theta(.),w(.)}(\Omega)$ is not empty.

Proof. It suffices to show that the space contains bounded functions. Let |f(x)| < C, using the well-known inequality $||1||_{L_{p(.)}(B(x,r))} \ll r^{\eta_p(x,r)}$ (see, for example, [11]), we obtain

$$||f||_{GM_{p(.),\theta(.),w(.)}(\Omega)} = \sup_{x \in \Omega} ||w(x,r)r^{-\eta_p(x,r)}||f||_{L_{p(.)}(\tilde{B}(x,r))}||_{L_{\theta(.)}(0,\infty)} <$$

$$< \sup_{x \in \Omega} ||w(x,r)r^{-\eta_p(x,r)}||C||_{L_{p(.)}(\tilde{B}(x,r))}||_{L_{\theta(.)}(0,\infty)} < C \sup_{x \in \Omega} ||w(x,r)||_{L_{\theta(.)}(0,\infty)} < \infty,$$

57 Zh.M. Onerbek

this means that $f \in GM_{p(.),\theta(.),w(.)}(\Omega)$.

Lemma 2.1 is proved.

The following theorem was proved in [11]. Theorem 1.1 Let $p \in \mathbb{P}_{\infty}^{log}(\Omega)$, $0 < \alpha < n$, $\frac{1}{q(x)} = \frac{1}{p(x)} - \frac{\alpha}{n}$ and positive measurable functions w_1 and w_2 satisfy the condition

$$\int_{r}^{\infty} \frac{essinf_{t \le s < \infty} w_1(x, s)}{t^{1 + \eta_p(x, t)}} dt \le C \frac{w_2(x, r)}{r^{\eta_q(x, r)}},$$

where C does not depend on x and r. Then the operator I^{α} is bounded from $M_{p(.),w_1(.)}(\Omega)$ to $M_{q(.),w_2(.)}(\Omega).$

 R^n be a bounded domain, $l = diam\Omega$. Denote by $\mathcal{W}(\delta, l)$ the set Let $\Omega \subset$ of pairs of measurable functions (θ, w) for which there exists $\delta \in (0, l)$ such that $\inf_{x \in \Omega} \|w(x,.)\|_{L_{\theta(.)}(\delta,l)} > 0.$

The following theorem gives a sufficient condition for the boundedness of the Riesz Potential in Morrey-type spaces with variable exponents $p(.), \theta(.), w(.)$ over bounded domains |10|.

Theorem 1.2. Assume that $p, \alpha \in \mathcal{P}^{\log}(\Omega)$ and $\alpha > 0$, $(\alpha p(.))_+ = \sup_{x \in \Omega} \alpha p(x) < n$, $\frac{1}{p_2(x)} = \frac{1}{p_1(x)} - \frac{\alpha}{n}$, $1 < \theta_1^- \le \theta_1(t) \le \theta_1^+ < \infty$, $1 < \theta_2^- \le \theta_2(t) \le \theta_2^+ < \infty$ for any 0 < t < l. Suppose there exists $\delta > 0$ such that $\theta_1(t) \le \theta_2(t)$, $t \in (0, \delta)$, $(\theta_1, w_1) \in \mathcal{W}(\delta, l)$. Denote $\theta_1(\xi) = \inf_{s \in (\xi,l)\theta_1(s)}$. If

$$\sup_{x \in \Omega, 0 < t < \delta} \int_0^t \left(w_2(x,\xi) \right)^{\theta_2(\xi)} \left(\int_t^{\delta} \left(\frac{r^{\alpha(x)-1}}{w_1(x,r)} \right)^{\left[\tilde{\theta}_1(\xi)\right]'} dr \right)^{\frac{\theta_2(\xi)}{\left[\tilde{\theta}_1(\xi)\right]'}} d\xi < \infty,$$

then the operator I^{α} is bounded from $M_{p_1(.),\theta_1(.),w_1(.)}(\Omega)$ to $M_{p_2(.),\theta_2(.),w_2(.)}(\Omega)$.

We will need the following theorems on estimating the norm of the Riesz potential and its commutator over the ball, which were proved in [11], [12] respectively.

Theorem 1.3. Let $p \in \mathbb{P}_{\infty}^{log}(\Omega)$ and α satisfy the condition $0 < \alpha < n$, $\frac{1}{g(x)} = \frac{1}{p(x)} - \frac{\alpha}{n}$. Then the following estimate holds

$$||I^{\alpha}f||_{L_{q(.)}(\tilde{B}(x,t))} \le Ct^{\eta_q(x,t)} \int_t^{\infty} r^{-\eta_q(x,r)-1} ||f||_{L_{p(.)}(\tilde{B}(x,r))} dr, \tag{2}$$

where C does not depend on $x \in \Omega$ and t > 0.

Theorem 1.4. Let $\Omega \subset \mathbb{R}^n$ be an unbounded domain, $0 < \alpha < n, p \in \mathbb{P}^{log}_{\infty}(\Omega)$, $p_+ < \frac{n}{\alpha}$ $\frac{1}{q(x)} = \frac{1}{p(x)} - \frac{-alpha}{n}, \ b \in BMO(\Omega).$ Then

$$||[b, I^{\alpha}f]||_{L_{q(.)}(\tilde{B}(x,t))} \le C||b||_{*} t^{\eta_{q}(x,t)} \int_{t}^{\infty} (1 + \ln \frac{r}{t}) r^{-\eta_{q}(x,r)-1} ||f||_{L_{p(.)}(\tilde{B}(x,r))} dr, \tag{3}$$

where C does not depend on $x \in \Omega$ and t > 0.

Let u and v be positive measurable functions on R_+ . The conjugate Hardy operator is defined by

$$\tilde{H}_{v,u}f(r) = v(x) \int_{r}^{\infty} f(t)u(t)dt, x \in R_{+},$$

where $R_+ = (0, +\infty)$. Suppose a is a fixed positive number. Let $\theta_{1,a}(r) = essinf_{y \in [r,a)} \theta_1(y)$,

$$\tilde{\theta}_1(r) = \begin{cases} \theta_{1,a}(r) & \text{if } r \in [0,a]; \\ \overline{\theta}_1 = const & \text{if } r \in [a,\infty); \end{cases}$$

 $\theta_1 = essinf_{r \in R_+} \theta_1(r), \ \Theta_2 = essup_{r \in R_+} \theta_2(r).$

The following theorem was proved in [13].

Theorem 1.5. Let $\theta_1(r)$ and $\theta_2(r)$ be positive measurable functions on R_+ and there exists a positive number a such that that $\theta_1(r) = \overline{\theta}_1 = const$, $\theta_2(r) = \overline{\theta}_2 = const$ for all r > a, inequalities $1 < \theta_1 \le \widetilde{\theta}_1(r) \le \theta_2(r) \le \Theta_2 < \infty$ hold almost everywhere on R_+ . If

$$G = \sup_{t>0} \int_0^t [v(r)]^{\theta_2(r)} \left(\int_t^\infty u^{\tilde{\theta}_1'(r)}(\tau) d\tau \right)^{\frac{\theta_2(r)}{(\tilde{\theta}_1)'(r)}} dr < \infty, \tag{4}$$

hen the operator $\tilde{H}_{v,u}$ is bounded from $L_{\theta_1(.)}(R^+)$ to $L_{\theta_2(.)}(R^+)$.

2 The main results

Theorem 2.1. Let $p(.) \in \mathbb{P}_{\infty}^{log}(\Omega)$ and a constant number α satisfy the conditions $\alpha > 0$, $(\alpha p(.))_+ = \sup_{x \in \Omega} \alpha p(x) < n$, $\theta_1(r)$ and $\theta_2(r)$ are positive measurable functions on R_+ and there exists a positive number a such that $\theta_1(r) = \overline{\theta}_1 = const$, $\theta_2(r) = \overline{\theta}_2 = const$ for all r > a, inequality $1 < \theta_1 \le \tilde{\theta}_1(r) \le \theta_2(r) \le \Theta_2 < \infty$ are executed almost everywhere. Suppose that the functions $p_1(x)$ and $p_2(x)$ satisfy the equality $\frac{1}{p_2(x)} = \frac{1}{p_1(x)} - \frac{\alpha}{n}$, positive measurable functions w_1 and w_2 satisfy the condition

$$T = \sup_{x \in \Omega, t > 0} \int_{0}^{t} (w_{2}(x, r))^{\theta_{2}(r)} \left(\int_{t}^{\infty} \left(\frac{s^{\alpha - 1}}{w_{1}(x, s)} \right)^{\left[\tilde{\theta}_{1}(r)\right]'} ds \right)^{\frac{\theta_{2}(r)}{\left[\tilde{\theta}_{1}(r)\right]'}} dr < \infty.$$
 (5)

Then the operator I^{α} is bounded from $GM_{p_1(.),\theta_1(.),w_1(.)}(\Omega)$ to $GM_{p_2(.),\theta_2(.),w_2(.)}(\Omega)$. Proof of Theorem 2.1. Using Theorem 1.3, we have

$$||I^{\alpha}||_{GM_{p_{2}(.),\theta_{2}(.),w_{2}(.)}(\Omega)} = \sup_{x \in \Omega} ||w_{2}(x,r)r^{-\eta_{p_{2}}(x,r)}||I_{\alpha}f||_{L_{p_{2}(.)}(B(x,r))}||_{L_{\theta_{2}(.)}(0,\infty)} \le C \sup_{x \in \Omega} ||w_{2}(x,r)\int_{r}^{\infty} t^{-\eta_{p_{2}}(x,t)-1}||f||_{L_{p_{1}(.)}(B(x,t))} dt||_{L_{\theta_{2}(.)}(0,\infty)}.$$

Denote

$$\tilde{H}_{v,u}f(r) = v(r)\int_{r}^{\infty} g(t)u(t)dt,$$

where

$$v(r) = w_2(x, r),$$

$$g(t) = \frac{w_1(x, t)}{t^{\eta_{p_1}(x, t)}} ||f||_{L_{p_1(.)}(B(x, t))},$$

$$u(t) = \frac{t^{\eta_{p_1}(x, t) - \eta_{p_2}(x, t) - 1}}{w_1(x, t)} = \frac{t^{\alpha - 1}}{w_1(x, t)},$$

Zh.M. Onerbek 59

for every fixed $x \in \Omega$. Then condition (4) has the form (5), which, according to Theorem 1.5, implies that the operator $\tilde{H}_{v,u}f(r)$ is bounded from $L_{\theta_1(.)}(0,\infty)$ to $L_{\theta_2(.)}(0,\infty)$. Finally, we have

$$||I^{\alpha}f||_{GM_{p_{2}(.),\theta_{2}(.),w_{2}(.)}(\Omega)} \leq CT \cdot \sup_{x \in \Omega} ||w_{1}(x,t)t^{-\eta_{p_{1}}(x,t)}||f||_{L_{p_{1}(.)}(B(x,t))}||_{L_{\theta_{1}(.)}(0,\infty)} =$$

$$= CT \cdot ||f||_{GM_{p_{1}(.),\theta_{1}(.),w_{1}(.)}(\Omega)},$$

this means that the operator I^{α} is bounded from $GM_{p_1(.),\theta_1(.),w_1(.)(\Omega)}$ to $GM_{p_2(.),\theta_2(.),w_2(.)(\Omega)}$. Theorem 2.1 is proved.

Theorem 2.2. Let $p(.) \in \mathbb{P}_{\infty}^{log}(\Omega)$ and a constant number α satisfy the conditions $\alpha > 0$, $(\alpha p(.))_+ = \sup_{x \in \Omega} \alpha p(x) < n$, $\theta_1(r)$ and $\theta_2(r)$ are positive measurable functions on R_+ and there exists a positive number a such that $\theta_1(r) = \overline{\theta}_1 = const$, $\theta_2(r) = \overline{\theta}_2 = const$ for all r > a, inequality $1 < \theta_1 \le \tilde{\theta}_1(r) \le \theta_2(r) \le \Theta_2 < \infty$ are executed almost everywhere. Suppose that the functions $p_1(x)$ and $p_2(x)$ satisfy the equality $\frac{1}{p_2(x)} = \frac{1}{p_1(x)} - \frac{\alpha}{n}$, positive measurable functions w_1 and w_2 satisfy the condition

$$B = \sup_{x \in \Omega, t > 0} \int_0^t \left(\frac{w_2(x, r)}{r} \right)^{\theta_2(r)} \left(\int_t^\infty \left(\frac{s^\alpha}{w_1(x, s)} \right)^{\left[\tilde{\theta}_1(r)\right]'} ds \right)^{\frac{\theta_2(r)}{\left[\tilde{\theta}_1(r)\right]'}} dr < \infty.$$
 (6)

Then the commutator $[b, I^{\alpha}]$ is bounded from $GM_{p_1(.),\theta_1(.),w_1(.)}(\Omega)$ to $GM_{p_2(.),\theta_2(.),w_2(.)}(\Omega)$. Proof of Theorem 2.2. According to Theorem 1.4, we have

$$\begin{split} ||[b,I^{\alpha}]f||_{GM_{p_{2}(.),\theta_{2}(.),w_{2}(.)}(\Omega)} &= \sup_{x \in \Omega} ||w_{2}(x,r)r^{-\eta_{p_{2}}(x,r)}||[b,I_{\alpha}]f||_{L_{p_{2}(.)}(B(x,r))}||_{L_{\theta_{2}(.)}(0,\infty)} \leq \\ &\leq C \sup_{x \in \Omega} ||\frac{w_{2}(x,r)}{r} \int_{r}^{\infty} t^{-\eta_{p_{2}}(x,t)} ||f||_{L_{p_{1}(.)}(B(x,t))} dt||_{L_{\theta_{2}(.)}(0,\infty)}, \end{split}$$

here we use the inequality $1 + ln\frac{t}{r} < \frac{t}{r}$ for t > r > 0. Denote

$$\tilde{H}_{v,u}f(r) = v(r) \int_{r}^{\infty} g(t)u(t)dt,$$

where

$$\begin{split} v(r) &= \frac{w_2(x,r)}{r}, \\ g(t) &= \frac{w_1(x,t)}{t^{\eta_{p_1(x,t)}}} ||f||_{L_{p_1(.)}(B(x,t))}, \\ u(t) &= \frac{t^{\alpha}}{w_1(x,t)}, \end{split}$$

for every fixed $x \in \Omega$. Then condition (4) takes the form (6), from which, according to Theorem 1.5, it follows that the operator $\tilde{H}_{v,u}f(r)$ is bounded from $L_{\theta_1(.)}(0,\infty)$ to $L_{\theta_2(.)}(0,\infty)$. Finally, we have

$$\|[b,I^{\alpha}]f\|_{GM_{p_{2}(.),\theta_{2}(.),w_{2}(.)}(\Omega)} \leq CB \cdot \sup_{x \in \Omega} \|w_{1}(x,t)t^{-\eta_{p_{1}}(x,t)}\|f\|_{L_{p_{1}(.)}(B(x,t))}\|_{L_{\theta_{1}(.)}(0,\infty)} =$$

$$= CB \cdot ||f||_{GM_{p_1(.),\theta_1(.),w_1(.)}(\Omega)},$$

which means that the commutator $[b, I^{\alpha}]$ is bounded from $GM_{p_1(.),\theta_1(.),w_1(.)}(\Omega)$ to $GM_{p_2(.),\theta_2(.),w_2(.)}(\Omega)$.

Theorem 2.2 is proved.

3 Conclusion

We have obtained the sufficient conditions for the boundedness Riesz potential and its commutator the global Morrey-type spaces with variable exponents.

We gave the conditions for variable exponents $(p_1(.), p_2(.)), (\theta_1(.), \theta_2(.))$ and on the functions $(w_1(.), w_2(.))$ under which the Riesz potential I^{α} , would be bounded from $GM_{p_1(.),\theta_1(.),w_1(.)}(\Omega)$ to $GM_{p_2(.),\theta_2(.),w_2(.)}(\Omega)$.

References

- [1] C.B. Morrey. On the solutions of quasi-linear elliptic partial differential equations // Trans.Am.Math.Soc. –1938.– Vol.43, Pp. 126-166.
- [2] V. Burenkov, V.Guliyev. Necessary and sufficient conditions for boundedness of the Riesz potential in the local Morrey-type spaces // Potential Anal. 2009. Vol.31, Pp.1-39.
- [3] V. Burenkov, V.Guliyev. Necessary and sufficient conditions for boundedness of the Riesz potential in the local Morrey-type spaces // Doklady Ross.Akad.Nauk.Matematika. 2007. Vol.412, No.5, Pp. 585-589 (in Russian).English transl. in Acad.Sci.Dokl.Math. 2007. Vol.76.
- [4] V. Burenkov. Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces // Eurasian. Math. J. 2012. Vol.3, No.3, Pp. 11-32.
- [5] V. Burenkov. Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces // Eurasian. Math. J. 2013. Vol.4, No.1, Pp. 21-45.
- [6] L.Diening, P.Harjulehto, P.Hasto, M.Ruzicka. Lebesgue and Sobolev spaces with variable exponents // Monograpgh. 2010. – Pp. 1-493.
- [7] L.Diening Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L_{p(.)}$ and $W_{k,p(.)}$. // Math.Nachr. 2004. Vol.268, Pp.31-43.
- [8] A. Almeida, J. Hasanov S. Samko. Maximal and potential operators in variable exponent Morrey spaces // Georgian. Math. J. 2008. Vol. 15, No. 2, Pp. 195-208.
- [9] V. Guliyev,S.Samko, J.Hasanov Boundedness of the maximal, potential type and singular integral operators in the generalized variable exponent Morrey spaces. // Math.Scand. 2010. Vol.107, Pp. 285-304.
- [10] V. Guliyev, S. Samko, J. Hasanov. Boundedness of maximal, potential type, and singular integral operators in the generalized variable exponent Morrey type spaces // J. Math. Sciences. 2010. Vol. 170, No. 4. Pp. 423-442.
- [11] V. Guliyev,S.Samko. Maximal, potential, and singular operators in the generalized variable exponent Morrey spaces on unbounded sets // J.Math.Sciences. – 2013. – Vol.193, No. 2. – Pp. 228-247.
- [12] V. Guliyev, J.Hasanov, X.Badalov. Commutators of Riesz potential in the vanishing generalized Morrey spaces with variable exponent // J.Math.Sciences. 2019. Vol.22, No. 1. Pp. 331-351.
- [13] D. Edmunds, V.Kokilasvili, A.Meskhi. On the boundedness and compactness of weighted Hardy operators in spaces $L_{p(x)}$ // Georgian.Math.J. 2005. Vol.12, No. 1. Pp. 27-44.