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ON THE BOUNDEDNESS OF THE RIESZ POTENTIAL AND ITS
COMMUTATOR’S IN THE GLOBAL MORREY TYPE SPACES WITH
VARIABLE EXPONENTS

The paper considers the global Morrey-type spaces GM () 9(.),w(.)(£2) with variable exponents
p(.), 6(.), where Q C R™ is an unbounded domain. The questions of boundedness of the Riesz
potential and its commutator in these spaces are investigated. We give the conditions for variable
exponents (p1(.),p2(.)), (61(.),02(.)) and on the functions (wi(.),w2(.)) under which the Riesz
potential /¢ , will be bounded from GMy, (y,0,()w,()(2) 10 GMy,().65()ws()(§2). The same
conditions are obtained for the boundedness of the commutator of the Riesz potential in these
spaces. In the case when the exponents p,# constant numbers, the questions of boundedness of
the Riesz potential and its commutator in global Morrey spaces were previously studied by other
authors. There are also well-known results on the boundedness of the Riesz potential in global
Morrey-type spaces with variable exponents, when the domain Q C R™ is bounded.

2K .M.Onepbek
JILH.I'ymunes areinparsr Eypasust yonrreik yauBepcuteti, Kazakcran, Hyp-Cynran x.
e-mail: onerbek.93@mail.ru
Kepcerkimrepi aitHbIMaJbI 171060271611 Moppu Tunrec keHictikreperi Pucc moTeHnuas bl »KoHe
OHBIH, KOMMYTATOPBIHBIH, III€HEJT€HIIr TypaJIbl

Byn xywmbicra p(.), 0(.) kepcerkimrepi ajinbiMaibl riobasubiai Moppu Tunrec KeHicrikrep
GM p(y,60.),w(.) () KapacTeIpbLIa bl MyHars! 2 C R"-menemveren obibic. Kepcerinren kenicTik-
Tepzeri Puce moreHnualibl JKoHe OHBbIH KOMMYTATOPBIHBIH, [IEHETeH I Typajbl CypakTap 3epT-
reseni. (p1(.),p2(.)), (61(.),02(.)) xepcerkimrepi koHe (wi(.),ws(.)) dysxmsamapsma I* Pucc
norentmaitbl GM,, () 0, ().wi () () Kenicririnen GM o, () 0,(.),ws(.) () KenicTirine menesren 6ourybr-
HBIH [APTTAPhl AJBIHIBI. PUCC MOTEHIMAIBIHBIH KOMMYTATOPBIHA a8 KOPCETLINeH KEHICTIKTEp/Ie
JI9JT OCBI CUSIKTHI TIIEHEJITeH/TK MapTTapbl aJblHJbL. P, § KepceTKimTepi TypakThl OOJIATBIH YKar-
naiia Moppu Tunec KeHicrikrepaeri Puce moreHuaibl JKoHe OHBIH, KOMMYTATOPBIHBIH, MEHEJINeH-
JIiri TypaJbl cypakTapbliH 6acKa aBTopsap OypbiH 3eprrered. ) C R™ meHesres 00JIbIC KaF alibH-
JTarbl KOPCETKIMTepi affHbIMaJTbl Tit00atbai Moppu tunrec Kenicrikrepaeri Pucc moTeHIma bIHbIH,

MIEeHETEH/IIK MapTTapbl TyPasIbl Ja Oesrii.
Tyitin ce3mep: riobanbai Moppu TunTec KeHiCTIKTEp, alftHBIMAJIBI KOPCETKII, Prcc moTeHInass,

Pucc nmoreHma bIHbIH, KOMMY TATOPBI, ONIEPATOP/IBIH, MTEHEITeHTiT].
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Epaswuiickuit nanmonaspabiii yausepcurer umenu JI.H.I'ymunesa, Kazaxcran, r. Hyp-Cynran
e-mail: onerbek.93@mail.ru
O6 orpaHmyeHnHoCTH moTeHIasia Pucca u ero KoMmmyTaropa B IJI00ajIbHBIX HPOCTPAHCTBAX
Tuna Moppu Cc IepeMeHHBIM MOKa3aTeJIeM

B pabote paccmarpubaiorcst Tiobasbible poctpancTsa THa Moppu GM )y o(.),w(.)(2) ¢ mepe-
MeHHBbIME noKazaressiMu p(.), 0(.), tne @ C R™ - HeorpannveHHast 061acTh. VccsenyoTes BOIpock
OTPaHMYEHHOCTH IOTeHIMa a Prucca n ero KoMMyTaropa B yKa3aHHBIX [IpocTpaHcTBax. [loydenst
ycJIoBus Ha 1iepeMeHHble nokazarenn (p1(.), p2(.)) u (01(.),02(.)) u na dyuxmuu (wq(.), wa(.)) npn
KOTOpBIX moTentuan Pucca 1%, Gyner orpanmmaen 3 GMyp,, (1).0,(),u: () (2) B GM py(y,0,(.),ws() (2)-
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Takue ke yCJIOBHS MOJyYIEHBI JIJIsl OMPAHUIEHHOCTH KOMMYTaTOpa MmoTeHnua a Pucca B paccmar-
pUBaeMbIX POCTpPAHCTBaX. B ciydae, Korjga mokasaresn p, ) MOCTOSHHBIE YUCIIA, BOIPOCHI OTPa-
HUYEHHOCTH MOTeHnua a Pucca n ero kKoMMyTaropa B T10baiabHBIX TpocTpancTBax Moppu panee
OBLIM MCCJIEOBAHBI IPYTUME aBTOPAMU. TaK »Ke U3BECTHBI PE3YJILTATHI 00 OIPAaHUYEHHOCTH [TOTEH-
nuaja Pucca B 1y1obasibHBIX mpocTpaHcTBaxX Tuiia Moppu ¢ mepeMeHHBIMU [MOKA3aTeJsIMHA, KOTJIa
obstacts 2 C R™ orpanndentasi.

Kutouessbie cioBa: [obanbubie nmpocrpancrsa Tuma Moppu, mepeMeHHbIil T0Ka3aTelb, TOTeH-
nuas Pucca, komMyTarop norennuaia Pucca, OorpaHngeHHOCTb OIepaTopOB.

1 Introduction

1.1 Review of studies by other authors

The Morrey space M, was introduced in [1] in connection with the study solutions of
differential equations with partial derivatives. The boundedness of integral classical operators
of harmonic analysis in global Morrey-type spaces GM g ,, with constant exponents p, 6 was
well studied ([2]-[5]). The boundedness of classical integral operators in the Lebesgue spaces
wih variable exponent was studied in [6]-[7]).

The Morrey-type space My ) ) with variable exponents is also well studied in [8]. The
generalized Morrey-type space My .(.)(2) with variable exponent in the case of a bounded
domain @ C R"™ were introduced and studied in [9] and [10], in the case of an unbounded
domain © C R" were studied in [11].

The Riesz potential I* with exponent « is defined by :

[O‘f(:n):/n&dy,0<a<n.

n—«
z—yl

The boundedness of the Riesz potential in generalized Morrey-type spaces with variable
exponent was studied in [9] and [10] in the case of a bounded domain 2 C R™ and in [11] in
the case of an unbounded domain 2 C R™.

Here and below, we denote by B(z,r) the ball with center x € R" and radius r > 0,
B(x,r) = B(z,r)NQ, Q C R™.

The space BMO(£2) is defined as the space of all integrable functions f with finite norm

o = 171 = s (Bl [ 150) = ol
LITGQ,T>0 B(x,r)
- -1
Where fB(m,’r) = |B(I7 T)| fB(:E,T’) f(y)dy
Let b € BMO(S2). The commutator of the Riesz potential is defined by

(b(y) — b(x))

—=f(y)dy,0 < o < m.
o=yl

b.1°)f = 1%(e) - bi1°7) = [

The boundedness of the commutator of the Riesz potential in weighted Lebesgue spaces with
variable exponent was studied in [12].
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1.2 Basic definitions. Preliminary results.

Let p(z) be a measurable function on @ C R™ with values on (1, 00). Assume that

1 <p-<plx) <ps <o (1)
where
p- =p-(Q) = esinf p(z),
e
Pt = p+(Q) = essupp (x).
el

We denote by L,)(£2) the space of all functions f(x) measurable on €2 such that

- / F@)" dz < oo,
Q

where the norm is defined as follows
: /
[1f1],) = inf {n >0, Jy <5 <1}.

For details on the Lebesgue space with variable exponent, see [6]. P(€2) is the set of measurable
functions p(x) for which p: Q@ — [1,00), P°%(Q) is the set of all measurable functions p(x)
satisfying the local logarithmic condition:

A, 1
TV E - < 50,y € Q7

< o=l < g

where the constant number A, does not depend on x and y. P°¢((2) is the set of all measurable

functions p(x) satisfying (1) and local logarithmic condition. In the case where 2 is an

unbounded set, we denote by PI%(2) a subset of the set P°8(Q) satisfying the logarithmic

conditions at infinity:
Ip(z) — p(oo)| < Asln(2 + |2]),2 € R™.

Let Q be a bounded open set, p € P°¢(Q), and \(z) a function measurable on  with
values on [0, n]. Morrey spaces L) x)(£2) with variable exponents p(.), A(.) were introduced
[8] with the norm

_ M=)
el F P

Let w(z,r) be a positive measurable function on Q x (0,1), where  C R" is a bounded
domain, | = diam$.The generalized Morrey space M) ,(.)(§2) with variable exponents on a
bounded domain 2 C R™ were defined in |9] with norm

n

11, = sup IIfIIL

w0 @ T oS0 w(x 7")

Let w(z, ) be a measurable function : 2x(0,1) — [0, 00) , where Q C R™ bounded domain,
| = diamf), measurable function (r) : (0,1) — [1,00]. Morrey type spaces M) g(.)w()(£2)
with variable exponent on a bounded domain € C R™ were defined in [10] with the norm

= (w)
||f||M()9< )(Q) igg”w(x 7’)’/“ i ||f||Lp(> B(z 7“))”[,0(‘)(0,5)'
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Let w(z,r) be a positive measurable function on an unbounded domain 2 C R".The
generalized Morrey space M,().,()(§2) with variable exponent was defined in [11] with the

o 11
Ly (B(
||f||M ()w()(Q :DESQ'L,(/?>0 w(x,r)

We introduce global Morrey-type spaces with variable exponents on unbounded domains.

Let’s put
o if r <1:
z,7) = p(z)’ -
(1) {L if - > 1.
p(c0)’

Let p € P9(Q), w(z,r) be a positive measurable function on Q x [0, 00], where Q € R",
the measurable function 6(r):(0, c0) — [1, 00). Global Morrey space with variable exponents
GMyy.00),w()(€2), where Q C R™ unbounded domain, defined as the set of functions f €
L;(E?)(Q) with finite norm

HfHGMp(A),e(A),w(A)(Q) - igg ||w<$’T)T_np(x’r)Hf“Lp(A)(B(z,r))H

Lo((0,00)”
for 1 < 6(r) < oo, with finite norm
_ —np(,7) _
/e 2() 00wy () HfHM yoy () x:ﬂl’bgow(m,?")r g HfHLp(‘)(B(x,r))v
for (r) = oc.
Note that the space GM () o.w()(£2) coincides with the generalized Morrey-type space

M), (€2) with variable exponent where wy(z,r) = ’;ZZZ;ITT))

() “‘7710(m T

In the case of w(x,r) =7 G we denote the indicated space by via GM 0()

AQ) 3
GM (5 50y (€2) = GMp() ()0

_ A=) o)
w(z,r)=r P& +p(@.m)

kg = 5w e N, ael,,

If p(.) = p = const, O(x) = 6 = const, then the space GM p()g().w()(§2) coincides with
the well-known global Morrey space GM 9.,(€2) (see, for example [4]). The following lemma
gives a sufficient condition under which the space GM () g(.)w(.)(§2) is not trivial.

Lemma 2.1. Let

(1(0,00)”

Then the space GMp()0()w(.)(§2) is not empty.
Proof. It sufﬁces to show that the space contains bounded functions. Let |f(z)| < C,
using the well-known inequality ||1]| Lo, (Bar) < (@7 (see, for example, [11]), we obtain

—1p(z,r) .
< igg |Jw(z,r)r ||O||Lp<'>(B(x,r))||L0(A)(O7OO) < CiggHw(ZE’T)HLm.)(Om) < 00,
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this means that f € GMp()00),w()(£2).

Lemma 2.1 is proved.

The following theorem was proved in [11].

Theorem 1.1 Let p € P%9(Q), 0 < a < n, ﬁ = zﬁ — 2 and positive measurable functions
wy and w, satisfy the condition

/oo esSINf 1< coo W1(T, 5) 5t < ng(x, r)

t1+77p(m’t) - Tﬁq(xfr) ’

where C' does not depend on x and 7. Then the operator /* is bounded from M), ()(£2) to
My() () (2)-

Let & C R"™ be a bounded domain, [ = diam). Denote by W(J,1) the set
of pairs of measurable functions (6,w) for which there exists 6 € (0,{) such that
infea llw(@ )z, @y >0

The following theorem gives a sufficient condition for the boundedness of the Riesz
Potential in Morrey-type spaces with variable exponents p(.), 8(.), w(.) over bounded domains
[10].

Theorem 1.2. Assume that p,o € P6(Q) and a > 0, (ap(.)), = sup,cqap(z) < n,
%:ﬁ—%,1<9;gel(t)§91+<oo,1<9;geg(t)§92+<ooforany0<t<l.
Suppose there exists § > 0 such that 6,(t) < 602(t), t € (0,9), (61,w1) € W(d,l). Denote

01(¢) = infse(enon(s)- 1

02(8)

‘ o el BO 0
sup [ ale, 2O (S a4 <
t

z€Q,0<t<8 J 0 w1 ($a 7")

then the operator I* is bounded from My, (y.9,()1()(€2) 10 My, (),02()a() (€2).

We will need the following theorems on estimating the norm of the Riesz potential and
its commutator over the ball, which were proved in [11], [12] respectively.

Theorem 1.3. Let p € P%99(Q) and « satisfy the condition 0 < a < n, ﬁ = zﬁ -
Then the following estimate holds

HIafHLq(_)(B(x,t)) < Ct%(x’t)/ rMaon) IHfHLp“ Ao drs (2)
t

where C' does not depend on x € {2 and ¢t > 0.
Theorem 1.4. Let  C R™ be an unbounded domain, 0 < a < n, p € P9(Q) , p, < .
L= Lo abha 'y e BATO(). Then

q(z) — px)

o
(6% X r — xX,r)—
1057y < ORI [ (Lt D A 3)
t

where C' does not depend on xz € 2 and ¢ > 0.
Let v and v be positive measurable functions on R,. The conjugate Hardy operator is

defined by
vuf / f dt T e R_;,_,
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where R, = (0, +00). Suppose a is a fixed positive number. Let 0, ,(r) = essinf ¢, . 01(y),

51(7’) _ {6’1@(7") if r € [0, al;

0, = const ifr € [a,00);’

01 = essinf,cp, 01(r), O = essup,cp, O2(r).

The following theorem was proved in [13].

Theorem 1.5. Let 6,(r) and 62(r) be positive measurable functions on R, and there exists
a positive number a such that that 6,(r) = 0, = const, 0y(r) = 0, = const for all r > a ,
inequalities 1 < 6; < 6, (r) < 6(r) < O3 < 0o hold almost everywhere on R, . If

0o(r)

t oo, T
G = sup/ [v(r)]%m(/ u O () dr) Y dr < 0, (4)
0 ¢

t>0

hen the operator H,, is bounded from Lo, (y(R™) to Lo, (R").

2 The main results

Theorem 2.1. Let p(.) € Pl%(Q) and a constant number « satisfy the conditions o > 0,
(ap(.)), = sup,cqap(z) < n, 0:1(r) and O(r) are positive measurable functions on R, and
there exists a positive number a such that 6,(r) = 6, = const, 0y(r) = 0 = const for all
r > a, inequality 1 < 6; < 0,(r) < 05(r) < Oy < 0o are executed almost everywhere. Suppose
that the functions p;(z) and po(z) satisfy the equality % = ﬁ — 2, positive measurable
functions w; and wy satisfy the condition

[61.()]

t o ga—1 [1(")]
T = sup /O(wg(x,r))%(r)(/t ( ) ds) dr < oo. (5)

z€Q,t>0 wq (95, 3)

/

Then the operator I* is bounded from GM . ().0,(),w,()(2) 0 GM py().0,() () (€2)-
Proof of Theorem 2.1. Using Theorem 1.3, we have

@ . mn, CCT
H[ HGMpz(»ﬁz(J,wzb)(Q) - igg HwQ(ZL’,T)T " ”I fHLP (B ))”L02(4>(0700) =

ngggsz(%T)/ ¢ () 1HfHL (B@b) dt]|

Lo, (.y(0,00)

Denote -
o f(r) = o(r) / g(t)u(t)dt,

where
v(r) = wo(z, 1),

w1 (x t)
g(t) tnp HfHLm( 1))
( t'n (z,t)—1pgy (z,8)—1 toz—l
u(t) =

wy(z,t) T w(z,t)
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for every fixed x € €. Then condition (4) has the form (5), which, according to Theorem 1.5,
implies that the operator H,, f(r) is bounded from Lg,((0,00) to Lg,)(0,00). Finally, we
have

11 fllgar < T - sup fun (@, )t (e

P2(,02()w () () p () (B ))HLM)(O,OO)

=CT - |[fllanm

this means that the operator I* is bounded from GMp, () 6,(),wi()(©@) 10 GM py().05()wa()()-
Theorem 2.1 is proved.

Theorem 2.2. Let p(.) € PY%9(Q) and a constant number « satisfy the conditions o > 0,
(ap(.)); = sup,eqap(xz) < n, 61(r) and Oy(r) are positive measurable functions on R, and
there exists a positive number a such that 6,(r) = 6, = const, Oy(r) = 0 = const for all
r > a, inequality 1 < #; < 0, (r) < 6(r) < O3 < oo are executed almost everywhere. Suppose
that the functions p;(z) and po(z) satisfy the equality % = —— — 2 positive measurable

p1(x)
functions w; and wy satisfy the condition

p1(),01(),w1 () ()

09 (r)

¢ 03(r) oo o« i) o
ws(x,7) / s
B = su ds dr < oo. 6

xeﬁ,go/o ( r ) ¢ (wl(m,S)) ) ©)

Then the commutator [b, ] is bounded from GMy, ()0,(),w,()(82) t0 GMp,().05()ws() (£2).
Proof of Theorem 2.2. According to Theorem 1.4, we have

18 11031, e = S8 02 )00 L, e, o)

),02(.) zeQ (O oo)

e, 7) .
< Coupl 2B [T imme g, gl

z€Q Lg,()(0,00)

here we use the inequality 1 + ln% < f for t > r > 0. Denote

o f(r) = o(r) / " gltyutt)t,

where

wi(z,t) t)

tOé
)= ——
U( ) wl(Iat)’

for every fixed # € €. Then condition (4) takes the form (6), from which, according to
Theorem 1.5, it follows that the operator H, , f(r) is bounded from Ly, (0, 00) to Lg, (0, 00).
Finally, we have

a < Tp
109 T 31,y ) S OB - sup 1)t ool o
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=CB- Hf||GMP1<,),91(,),w1(.)(Q)’

which means that the commutator [b, /%] is bounded from GMp, ()0,()uw()(€2) to
G M py ()62 02 () ()

Theorem 2.2 is proved.

3 Conclusion

We have obtained the sufficient conditions for the boundedness Riesz potential and its
commutator the global Morrey-type spaces with variable exponents.

We gave the conditions for variable exponents (pi(.),pa(.)), (01(.),62(.)) and on the

functions (wi(.),ws(.)) under which the Riesz potential I* , would be bounded from
G My (9010001 () (2) 80 GMpa(),0),a() (S2)-
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