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Cdepasiblk KabaTTarbl »K9He TOpAbIH imiki 6ediringeri Moucui—Teomopecko »kyiiteci yuria

IIBaprii ecebi Typasbl

AHauTuKaJIbIK (YHKINAAIAD TEOPUICHI KA3BIKTBIKTAFbI JIINITUKAJIBIK, TEHIeYyIep MeH
apaJjiac TUIITEC TEeHJIEYIepIi 3epTTeyiae KIaCCUKAIBIK, OAFbIT OOJIBIT TAOBLIAIbI. Y IIOJIIIIEMIi
menesren ) C R? oObUIBICEIHIA Kesleci S/UIIIITHKAIIBIK, JKYieciH KapacThIpaMbl3

0 6/8x1 8/8@ 8/8x3

. 8/81‘1 0 —8/81‘3 8/8@ .
M@[0r)u@) = | 5190, 0/oms 0 —djom | =0
8/6I3 —8/8x2 8/8;1:1 0
myagarsl u(z) = (uo,ur, Uz, uz) BekTop- dyuknusacel C1(Q) kmaceiman. Mynpait Kyiie

Moucui-Teomopecko xkyiieci jen arajajibl. By Ky#ieHin mentiMaepl yimH Ka3bIKThIKTarbl
AHAJIUTUKAJIBIK (DYHKIMAIAD TEOPUSICHIHBIH, Herisri dakrijepi, conbrd iminme Kommmin,
MHTEerpaJiJIblK, TeopeMachbl MeH dopmysackl, Mopep Teopemachl KoHe Oackasap. Exi Oaii-
JIAHBICTBI OOJIBICTAD CYWBIKTBIKTAD MEXaHUKACBIHIA MaHbI3JIbl POJI aTKapaJibl. Mblcabl,
©3 OCiMEeH HOpMaJib OarbITTa KO3FAJIATBHIH Y3bIH TYTAC IUJIWHJPJACH KacaJfaH arblH JIOJI
eki OGailylaHBICTBI O0JIBICTA 2Ky3ere acajbl. by xywmbicra M (0/0x) nuddepeHnuaiibik,
onepaTopsl yimin R? kenicTirine ipresi mernimi »Ka3plrad skoHe cepasiblK KabaTTarbl JKoHe
Top/bIH immKi OeJtiringeri Moucuia—Teomopecko )yiteci yIin THAHAKTBI €CenTep KeJITipiareH.
Moucun—Teomopecko kyiieci symmnTukaablk Komm—Puman »KyiteciHiH »KaJlIblIaHFaH Mbl-
caJIbl OOJIBIIT TAOBLIAbI. BYJT »KYMBICTBIH HOTHKeJIepiHeH cdepasiblK KabaTTarbl THIHAKTHI
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O zapgaue IIIBapua ajis cucrembl Moucuna—Teomopecky B IHIApOBOM CJIOE M BO BHYTPEHHOCTH
TOpa

Teopust anaguTUIecKUX QYHKIUA ABJIACTCI KIACCHISCKUM HAIIPABICHUEM B M3YYE€HUU SJJIUAITHU-
YECKUX YPABHEHUI M ypaBHEHUI CMEIIaHHOIO THIA Ha IJIOCKOCTU. B TpeXMepHON OrpaHuYeHHOM
obaactu ) C R? paccMarpuBaeTcst S/UIMIITHYECKAS CHCTEMA

0 8/31'1 8/8:@ 8/8x3

0/ 0 —0/ows 0/0
M(9/9z)u(z) = a?aﬁi 8/0xs . —éé/gail u@) =0,
8/8.133 —8/81‘2 8/81‘1 0

rie u(x) = (ug, u, Uz, u3) — uckomast BekTop- bynkmusa v € C(). Takas cucTeMa Ha3bIBACTCH
cucremoit Moucusna — Teomopecky. st perenuit 3Toii cucTeMbl ClIpaBeJJINBBI OCHOBHBIE (DAKThI
TEOPUU AHAJIUTUIECKUX (DYHKIMIT HA IJIOCKOCTHU, BKJIOUasl WHTEIPAJbHYIO TeopeMy U (hopMysry
Kormu, reopemy Mopepa u apyrue. /IBycBsi3HbIE 00IACTH UTPAIOT 3HAYUTEIBHYIO POJIb B MEXAHUKE
kugkocTd. K mpuMepy TedeHme, CO3/aBA€MOE JJIMHHBIM TBEPLIM IIHJIXHIPOM, JIBUXKYIIErOCsT B
HAIPABJIEHUN HOPMAJIN K CBOEHl OCH, TPOUCXOUT UMEHHO B JIBYCBsI3HOM obsactu. B mannoit pabore
BoICaH (pyHIaMeHTaIbHOe permenne quddepernunansHoro oneparopa M (0/0x) B npocTpaHcTBe
R? u npuBe/eHB KOPPEKTHEIE 337a4m JIst cucrembl Moucuaa—Teomopecky B ciiydae IMIapOBOro
cj0si U BHYTpeHHOCTH Topa. V3 pesynbTaroB JaHHON pabOThl BUIHO CYIIECTBEHHOE OTJIMYUHE
KOPPEKTHON 3a/1a91 B MAPOBOM CJIOE€ OT AHAJJOTUIHON 3a/1a91 B TOPE.

Kuarouesbie cioBa: cucrema Komu—Pumana, cucrema Moucuia—Teomopecky, 3amada [IIBapia,
MAPOBOii CJI0#, BHYTPEHHOCTHh TOPA, PA3PENIUMOCTD 33 1a49M.

1 Introduction

Complex analysis methods constitute a classical direction in the study of elliptic equations
and equations of mixed type on the plane. At present, active research is being carried out in
this direction in many mathematical centers of the world.

Multiply connected (in particular, doubly-connected) domains play an important role in
fluid mechanics. For example [1]| the flow created by a long solid cylinder moving in the
direction of the normal to its axis, occurs precisely in a two-connected domain. From the fact
that certain closed curves in such a domain are non-contractible to a point, it follows that the
presence of lifting power. Another example [1] is the motion of a smoke ring in the outside
of the torus. Thus, it makes sense to study the well-posed formulation of the problems for
elliptic systems in multiply connected domains. Plane multiply connected domains are usually
described by the number of connected components of the boundary of the domain. Spatially
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multiply connected domains already require a large number of topological characteristics. For
spatial multiply connected domains along with the number of connected components of the
boundary of the domain, it is convenient to consider also so-called the order of connectedness
of the domain [2, 3.

In this paper, we denote the number of connected components of the boundary of the
domain by n, and the order of connectedness of the domain is denoted by m. For example,
for a spherical layer in a three-dimensional space n = 2, m = 1, and for the interior of a torus
in the same space n = 1,m = 2.

It is noted that the formulation of well-posed problems for first order elliptic systems
depend on the numbers n, m in [4-6].

This paper presents the well-posed problems for the Moisil-Theodorescu system in the
case of the spherical layer and the interior of the torus. The results of this work show
a significant difference between well-posed problem in the spherical layer and the similar
problem in the torus. A more general investigation of the Fredholm property of boundary
value problems of first order elliptic systems in multiply connected domains can be found in
the papers of A.P. Soldatov [7-9]. Moreover the index of the studied problems is calculated
in [7].

Materials and methods

2 Cauchy—Riemann and Moisil-Teodorescu systems

In a flat bounded domain Q C R?, we consider the elliptic system

where u(x) = (u1,uy) is the desired vector function u € C'(Q). Such a system is called a
Cauchy-Riemann system.
In a three-dimensional bounded domain € C R3, we consider the elliptic system

0 6/8x1 8/8@ a/ﬁxg
8/8901 0 —8/0173 6/81‘2 -
/0, 0)0xs 0 —0/om, | M) =0 (1)
3/8x3 —8/81’2 8/8.1'1 0

M(0/0x)u(z) =

where u(x) = (ug, uy, U, u3) is the desired vector function u € C'(Q). Such a system is called
the Moisil-Teodorescu system.

For the solutions of this system, the basic facts of the theory of analytic functions on
the plane are valid, including the integral theorem and the Cauchy formula, the Morera
theorem, etc. The foundations of this theory were laid in the works of G.K. Moisil and N.
Teodorescu [10]. It is easy to show that all components u; of the solution u = (ug, u1, u2, u3)
of system (1) are harmonic functions. In this sense, it is an example of a multidimensional
generalized Cauchy-Riemann system [11].

This theory was further developed in the works of A.V. Bitsadze [12,13]. In particular, he
introduced the concept of a Cauchy-type integral for system (1) and pointed out its various
applications.
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The fundamental solution of the differential operator M (9/dz) in the space R? is the
matrix function M (x)/|x|3, where T — matrix transposition symbol. In these notations, the

integral
1 [ MT(y—a)

(Tp)(z) = o A WM[”(?J)]%O(?J)dzy, z ¢, (2)

where dyy is the area element on the surface I' = 0D and n(y) is the unit normal, determines
the solution of system (1). The choice of density in the form M[n(y)]e(y) is dictated by the
fact that it ensures the validity of the analogue of the Sokhotsky-Plemelja formulas.

Namely, if the function ¢ satisfies the Holder condition and the surface I' is a Lyapunov
surface, then there exist limit values

u*(yo) = 3:—>yloi,xrn€Di u(z), yo el

for which the analogue of the Sokhotsky-Plemelya formulas is valid
ut =4+ ut. (3)

Here D* = D, D~ = R3\ D, the normal n is assumed to be external to D and the function
u* = I*p is defined by the singular integral

o = 5 [ U M)l (@)

which is understood as the limit at ¢ — 0 of integrals over I' N {|y — yo| > ¢}. These
formulas were first obtained by A.V. Bitsadze [12]. From the point of view of the minimum
requirements for surface smoothness, this result was refined in [14]: if I belongs to the class
C', 0 < v < 1, then the operator I is bounded C*(I') — C#(D), 0 < u < v. Here and
below, by C*(G) we mean the Banach Holder space defined by the usual norm

x)— @y
hoc = oloc + [P (o= sup 1P ZPWI
z#£y,z,yeCG |x - y|“

where |p|o¢ means sup —norm. Similar meaning has the space CY*(D) continuously -
differentiable functions and the class of C'** surfaces.

In terms of the integral (2), the Cauchy integral formula for solutions u € C*(D) of
system (1) in a finite domain D can be written as

u(xr) = (Iu")(z) z € D. (5)
In this case, the Cauchy theorem gives the equality
(Iut)(x) =0, xze€ D . (6)
If the domain D is infinite, then under the additional assumption
u(x) = of|z| ™) (7)

for |z| — oo these formulas remain valid.
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Let the function w(z) be given and be a solution to (1) in each component of the
complement to I', satisfies the Holder condition in their closure and condition (7) at infinity.
Then from the formulas (5) and (6) applied in these components are completely similarly to
the case of analytic functions, we derive the representation

u=1I(ut—u") (8)

general solution in the form of a Cauchy-type integral. Taking into account the Sokhotsky-
Plemelya formulas (3), this representation allows the problem of linear conjugation

ut—Gu = f

with a given invertible (4 x 4)— matrix G € C*(I') reduce to an equivalent two-dimensional
singular integral equation

(p+TI"p) +G(p—I"p) = f.

Results and discussion

3 The Schwartz problem for the Moisil-Theodorescu system in the spherical
layer

Let Q = {z € R®: 0 < r; <|z| < ro}, where ry, ry are some positive numbers. We denote
by T' the boundary of the domain 2, ie. T ={z € R¥: |z| =r}U{x € R?: |z| = ry}. Tt
is required to find the vector-function u = (ug, u1, us, u3) = (ug, u) that satisfies the Moisil—
Theodorescu system
{ divii =0, x€Q, ()
gradug +rotu =0, x €,

and Schwartz conditions

ut(y)n(y) = f2(y), yeT,

where 7i(y) is the outer normal to the boundary I' at the point y.

Here, in what follows, we will use the operations of a vector field, which for the vector
function v = (uy,ug,u3) € C'() and the scalar function w € C'(Q) are defined by the
equalities

{ ug (y) = fily), vy €T, (10)

. . Ouy Oug Ous
d = dw =
i 81'1 + a.TQ + a.Tg’gra v (

Qw Ow Ow
Oxy Oxs Ox3 )’

and

81’2 81’37 8x3 (99[;1’ 81’1 81’2
It is directly verified that the system (9) is an elliptic system. The boundary conditions
(10) satisfy the complementarity condition [5-7,11|. Therefore the problem (9),(10) has a
Fredholm property. Necessary and sufficient conditions for the solvability of problem (9),(10)
are noted in [7]. To describe the condition of solvability of (9),(10), we need the following
constructions.

- <8u3 8uQ 8u1 8u3 8u2 81/4)
rotu = .
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We choose an open covering Sy, k = 1,2, 3,4 of the surface I' and the unit tangent vectors
Pk (v), @k(y) to T from the class C*(Sk) so that at each point y € Sy the vectors pr(y), k()
and 7i(y) were pairwise orthogonal.

Since I is the union of two spheres, it follows that such a choice is possible. By the results
of [7], we introduce the conjugate problem to (9),(10)

divo =0, x €,
gradvg +rotv =0, x €€,

(11)

oM (y)arly) =0, yeS,, k=1,234.

Proposition 1 [7] The nonhomogeneous problem (9),(10) is solvable in the class C*(Q) if
and only if the orthogonality condition

Stz 21 @) 5 (y) + 11 fo(y) v (9))day = 0,
(13)
Sy 0F1(0) 55 () + 72fo(y) v (9)]day = 0,

holds for all (v, ©) representing the solutions of the homogeneous problem (11),(12).

Further we assume that the orthogonality requirements (13) for the data fi, fo are satisfied.
So, problem (9),(10) is solvable (can be ambiguously solvable). One of the possible solutions
of the problem (9),(10) is denoted by (wy, @), x € €.

We formulate the following statement that is useful for further investigation.

Lemma 1 The first component ug(z) of the vector-function u = (ug, u1, us, us) represents
the solution of the Dirichlet problem for the Laplace equation

{AUOZO, ZL‘EQ,
ug (y) = fily), yer.

Since the Dirichlet problem for the Laplace equation (14) has a unique solution, then
previously introduced wg(z) = ug(x) for all z € €.
The second equation of system (9) implies that

(14)

gradug+rotu =0, x €,
gradwy +rotw =0, x €.
Subtracting one equality from the other, we obtain the following equation
rot(u—w) =0, z&f.
By the same way we can write down the boundary condition
(at —w")-f(y) =0, yerl.

The difference @(z) — w(z) we denote by 8(z). Hence, it follows that A(z) is the solution of
the homogeneous problem
divd =0, ze,
rotd =0, xeQ, (15)
0tn=0, yel.
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Lemma 2 7o solve the inhomogeneous problem

divu=0, x€f,
rota =—60(x), x€, (16)
utn=0, yel

the relation

| wwewdy- [ @edy = - [ 6

lyoyy lyosy S

for any y € Q2 and for any L, .

Proof 1 Let’s fix a point yo € D and choose an arbitrary y € Q. Let ly,,, 1, C D be
arbitrary paths that connecting the point yo,y and lying entirely in this region. These paths
lyo.y ~ l;w are homotopic in €1,, since the domain ) is a spherical layer. Let L = 1, , U l;(),y
and denote by S the surface that formed by the closed contour L.

Therefore, the closed-loop integral L by the Stokes formula is equal to

[ ey = [ (o) (@n(e)dar

S

where e(y) is a unit tangent vector to the contour Oy, oriented positively with respect to
n (i.e. the traversal of this contour, as viewed from the end of the vector n, is carried out
counterclockwise). According to the second equation of system (16), we have relation

[ @ wetmay = - [ s

. 7 -1 . . .
Since L=1, Ul ", then we rewrite the last relation in the form

/l a* (y)e(y)dry — /zyoay it (y)e(y)diy = _/Sg(x)n@)dﬂ'

This is true for any y € D and for any ly, .

The following statement is proved in |7].

Theorem 1 [7] The homogeneous problem (15) defined in the spherical layer has a unique

solution belonging to the class C*(S2).

Proposition 1 implies that the nonhomogeneous problem (9),(10) has a solution if the
requirements (13) hold. Thus, the results of [7] imply the existence of a single well-posed
problem for system (9) in the spherical layer.
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4 The Schwartz problems for the Moisil-Theodorescu system in the interior of
a torus in three-dimensional space

Let Q = {(x1,x9,23) : 1 = rcosp, w3 =rcosd(3 + sing), w3 =rsind(3+ siny), <1,
0 < ¢ <2m,0<6 < 2r} presents the interior of the torus in three-dimensional space.

By I" we denote the boundary of the domain 2, namely T" = {(y1, y2, y3) : y1 = cosp, ys =
cost(3+ sing), ys = sinf(3+ sinp),0 < ¢ < 27,0 < § < 27}, It is required to find the scalar
function ug(z) and the vector-function @ = (uy, ug, u3) that satisfy the Moisil-Theodorescu
system with Schwartz conditions

divi=0, z€Q,
{ gradug +rotu =0, x €€, (17)
Wt (y)nly) = f2(y), yel,
ST [—u2(0, 3cost, 3sind)sind + us(0, 3cosh, 3sind)cosb]dd = a(ug, ' n), (19)

where the quantity « represents an arbitrary linear continuous functional in the space C*(T") x
CH(T).

The Fredholm index of the problem (17),(18) (without condition (19)) is calculated in [7].
By the results of the work [7] the nonhomogeneous problem (17),(18) (without condition

(19)) is solvable in C*(£2) if and only if the orthogonality condition

/F Jaly)dsy = 0. (20)

holds.
Further we assume that the orthogonality condition (20) holds.

Proposition 2 If the condition (19) holds, then the problem (17),(18) is uniquely solvable.

Proof 2 We will prove this proposition by contradiction. Suppose that there exist two
solutions of the problem (17),(18). We denote them by ug(z), u(x) and wo(x), w(x).

It is clear that ug(x) = wo(z), © € Q. The similar statement is proved in section 3. The
difference i(x) — w(x) we denote by O(z). Thus, O(z) is a solution of the problem

divv(z) =0, z €,
rotv(x) =0, x €,

v(y)Tn(y) =0, yeT,
f:r [—v2(0, 3cosh, 3sinb)sind + v3(0, 3cosh, 3sind)cosd]dl = 0, (21)

By the results of the work [7] there exists a harmonic function ¢(z) such that 6(x) =
gradp(x). On the boundary I the harmonic function ¢(x) satisfies the following condition

dp
- = r.
o 0, ye
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The third condition in (21) means that

lim (0, 3cosf, 3sinf) = 911m ©(0, 3cosb, 3sind). (22)
——T

60—

It was proved in [7] that the difference of the limits

lim  p(zy, 20, 23) — lim (1,29, 23)
r3—01,22<0 z3—0",22<0

does not depend on the points (1, xa,x3) € Q, xo < 0,23 =0 for (x1, 9, 23) € Q.
Then (22) implies that

lim  @(zy, 29, 73) — lim (1, 29,23) =0
r3—01,22<0 r3—0",22<0

for (z1,m2,23) € Q, 29 < 0. In this case we conclude that ¢(x) = const for all z € Q.
Consequently, 0(x) =0 for all x € Q.

We now state the main result of this section.

Theorem 2 Let fi and f, be arbitrary functions in CY(T'), and (20) holds for fo. Then the
problem (17),(18) has a unique solution for arbitrary linear continuous functional o(fi, fa)
in C1(T') x CY(T).

Remark 1 The functional a(f1, f2) can be defined by the formula

a(fi, f2) =/Ffl(y)m(y)dzy—/Ffz(y)m(y)dzy,

where py(+), u2(+) are continuous functions on the surface T

In this case, in the problem (17),(18) condition (19) is a nonlocal boundary condition.
Nonlocal boundary value problems for differential equations have been studied by many
authors. In particular, in the work [16] systematically studied solutions of nonlocal problems
for pseudo-hyperbolic equations.

In [17-19] works questions of the Fredholm solvability of the Neumann problem for a
higher order elliptic equation on the plane were studied, and the equivalence of the solvability
condition for the generalized Neumann problem with the complementary condition (the
Shapiro-Lopatinsky condition) was proved.

Conclusion. Thus, in this paper, we considered the Moisil — Teodorescu elliptic system
M(9/0z)u(x) = 0 in a three-dimensional bounded domain  C R3. For solutions of this
system, the basic facts of the theory of analytic functions on the plane are valid, including
the integral theorem and Cauchy’s formula, Morera’s theorem, and others. In this paper, we
write out the fundamental solution of the differential operator M (9/dz) in the space R? and
present well-posed problems for the Moisil-Teodorescu system in the case of a spherical layer
and the interior of a torus. The results of this work show a significant difference between the
well-posed problem in a spherical layer and a similar problem in a torus.
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