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ON A BOUNDARY VALUE PROBLEM FOR A BOUSSINESQ-TYPE
EQUATION IN A TRIANGLE

Earlier, we considered an initial-boundary value problem for a one-dimensional Boussinesqg-type
equation in a domain that is a trapezoid, in which the theorems on its unique weak solvability
in Sobolev classes were established by the methods of the theory of monotone operators. In this
article, we continue research in this direction and study the issues of correct formulation of the
boundary value problem for a one-dimensional Boussinesg-type equation in a degenerate domain,
which is a triangle. A scalar product is proposed with the help of which the monotonicity of the
main operators is shown, and uniform a priori estimates are obtained. Further, using the methods of
the theory of monotone operators and a priori estimates, theorems on its unique weak solvability
in Sobolev classes are established. A theorem on increasing the smoothness of a weak solution
is established. In proving the smoothness enhancement theorem, we use a generalization of the
classical result on compactness in Banach spaces proved by Yu.l. Dubinsky ("Weak convergence
in nonlinear elliptic and parabolic equations Sbornik: Mathematics, 67 (109): 4 (1965)) in the
presence of a bounded set from a semi-normed space instead of a normed one. It is also shown
that the solution may have a singularity at the point of degeneracy of the domain. The order of
this feature is determined, and the corresponding theorem is proved.

Key words: Boussinesq equation, degenerating domain, a priori estimates, Sobolev space.
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Yuioypsiiitarbl ByccuHeck Tumnrec TeHeyiHe KOUBLIFaH ITeKapaJbIK ecer

Ocprran Jeitin 6i3 Tpamenusibl 0bJbICTarsl OipedimenM i ByccuHeck Tumrec TeHjeyi YImiH KOWbI-
JIFaH OaCTalKbI-TIIEKapaJIbIK, €CenTi KapacThIpAbIK. EcenTiH coboseB KeHicTikTepimmeri 6ipMoHIi
9JICI3 MIENTIMIIJIIr TypaJjbl TeopeMaJiap MOHOTOH/IBI OIIEPATOPJIAP TEOPHUSICHI JICIMEH I IEH I].
Ocbr Makasiaga 613 OCbl OAFBITTAFBI 3€PTTEYJIEP/Il KAJFACTHIPBII, A3FbIHIAJIATHIH YINOYPBIIITH 00-
JipicTarbl Oipesiemii Byccunueck Ttunrec TeHeyl YImiH KOMBLIFAH MIEKAPAJIBIK, €CENTIH, KACHIHIbI
KOUBLTYyBIH KapacThipaMb3. Herisri omepaTropapabia MOHOTOHIBIIBIFBIH KOPCETY Ke3iHae KOoJIIa-
HBLJIFaH CKAJISPJIbI KOOEHTIH I YCBIHBLIBII, O1PKAJILIITHI allPpUOPJIbl Oarajaysiap aablHIbl. Opi Kapaii
MOHOTOH/IBI OTIEPATOPJIApP TEOPHUSICHI YKIHE aIIPUOPJIbI Oarasayiap KOMeriMeH ecenTiy coboJIeB Kita-
CTAPBIHIAFbl OIPMOH/II 9JICI3 IIEMIM/ILIIN TypaJjbl TeopeMasiap JoJIeseH 1. OJICi3 meniMHiY, aud-
depeHImaIIbIK KACUETTEPIH KaKCAPTAThIH TeopeMa, goastemeni. [lemivuin auddepeHuaiabik,
KACHETTEPIH KAKCAPTATHIH TEOPEMAaHbI JRJIeAey Ke3diHge 6i3 6aHax KEHICTIKTepiHJeri KOMITak-
TBIIBIK TYPAJIbl KJIACCUKAIBIK, HOTUKEHIH HOPMAJJAHFAH KEHICTIKTTIH OpHBIHA IOJTYHOPMAaJIAHFaH
KEHICTIKTerl ImeHesred xKublH 6ap Gosy karmaiibiabieg, FO.U. My6unckuit ("Weak convergence in
nonlinear elliptic and parabolic equations Sbornik: Mathematics, 67 (109): 4 (1965)) moseseren
JKAJMMBLUIAYBIH TafifalaHIblK. ByFan Koca OOJIBICTBIH, a3FbIHIAMY HYKTECIHE IIeNniMHIH epeKImiri

6ap ekeniri kepceriiren. Ocbl epeKIIeTiKTIH PeTi AHBIKTAJIBII, CONKEC TeOpeMa, TJICIIIEH]I.
Tvyitin ceszep: Byccumeck tenzeyi, a3rblHIAIATHIH OOJIBIC, anpuopbl Oarasaymap, Cobosie
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I'pannunas 3agava aj1s ypaBHeHUs THUNa ByccuHecka B TpPeyroJibHUKeE

Panee mamum OblLia paccMOTpeHa HAYAJIBHO-TPAHWYHAS 3aJ@d9a JJIsi OJHOMEPHOTO ypaBHEHUS
tuna Byccunecka B 00JIaCTH, IIPEJICTABJISIONICH CODOM TpAIEIUIO, B KOTOPOH METOJAaMU TE€OPUHU
MOHOTOHHBIX OIIEPATOPOB yCTAHOBJIEHBI TEOPEMbI 00 €€ OJIHO3HAYHON C€Iaboil pa3penuMocTu B
coDOJIEBCKUX KJlaccaX. B 9Toit cTaTbe MbI IPOIOJIZKAEM HMCCIEIOBAHNS B JAHHOM HAIPABJIEHUN W
U3ydaeM BOIPOCHI KOPPEKTHON MOCTAHOBKY IPAHUIHON 3aJIa9H JIJIsT OMIHOMEPHOIO yPABHEHUST THUIIA,
Byccunecka B BBIpOXKIatoreiics obJsiacTu, TpecTaBsioNieil coboit TpeyroabHuk. [Ipemrmoxkeno
CKAaJISIPHOE IIPOU3BEJICHNE C TOMOIIBIO KOTOPOr'o MOKA3aHa MOHOTOHHOCTH OCHOBHBIX OIIEPATOPOB, U
[TOJIyY€Hbl PABHOMEPHBIE allpHOPHBIE OlleHKHU. /lajiee MeTogaMmu TeOpun MOHOTOHHBIX OIIEPATOPOB
U aIpPUOPHBIX OIEHOK YCTAHOBJIEHBI TeOpeMbl 00 €€ OJHO3HAYHON CJaaboi pa3penmMOCTd B
CcODOJIEBCKUX KJIACCAX. YCTAHOBJIEHA TEOPEMa O IMOBBIIMIEHUN IJIAIKOCTH cyaboro pemrenus. [Ipu
JIOKA3aTeJIbCTBE TEOPEMbl O IMOBBINIEHUH TIJIAJKOCTH MBI HUCIIOJIb3yeM 0O0OIIeHne KIIACCHIECKOro
pe3yibraTta O KOMIIAKTHOCTH B 0OaHAXOBBIX IIPOCTPaHCTBax, mokasanHoro FO.M. Jlybunckum
("Weak convergence in nonlinear elliptic and parabolic equations Sbornik: Mathematics, 67 (109):
4 (1965)) npuM HaJIMYUE OTPAHUYEHHOTO MHOXKECTBA M3 IOJYHOPMHDOBAHHOIO IIPOCTPAHCTBA
BMECTO HOPMHUPOBAHHOTO. TakKe TOKAa3aHO, YTO PEIeHHe MOYXKET MMeTh OCOOEHHOCTh B TOUKE
BBIPOKIeHuNs o0acTu. IopsaoK maHHoit 0COOEHHOCTH OIpeIesieH, U J0KA3aHa COOTBETCTBYIONTAST
TeopeMa.

Kurouesble ciioBa: ypaBHenne byccunecka, BEIDOXKTaIoNascs 06JIacTh, allPUOPHBIE OIEHKU, TTPO-
crpancTBo CoboJieBa.

Introduction

The theory of Boussinesq equations and its modifications always attracts the attention
of both mathematicians and applied scientists. The Boussinesq equation, as well as their
modifications, occupy an important place in describing the motion of liquid and gas, including
in the theory of non-stationary filtration in porous media |1|- [13]. Additionally, here we note
only the works [14]- [19]. In recent years, boundary value problems for these equations have
been actively studied, since they model processes in porous media. These problems acquire
particular importance for deep understanding and comprehension in the tasks of exploration
and effective development of oil and gas fields.

In this paper, we study questions of the correct formulation of boundary value problems
for a one-dimensional Boussinesq-type equation in a degenerating domain. The domain is
represented by a triangle. Using the method of monotone operators, we prove theorems on
the unique weak solvability of the considered boundary value problems, and also establish a
theorem on improving the smoothness of a weak solution.

1 Statement of the boundary value problem and the main result

Let Q; = {0 < & < t} and 02 be the boundary of the €;, 0 <t < T < co. In the domain
Qut = {z,t|x € Q, t € (0,7)}, which is a triangle, we consider the following boundary value
problem for a Boussinesg-type equation

atu - ax (’u‘axu) = f7 {xat} € Q:cta (1)
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with boundary conditions
U = 0, {]J,t} c th = (9Qt X (O7T),

where f(x,t) is a given function.
It can be directly shown that the nonlinear operator Ag(v) =
value problem f has the following properties:

Ao(v) + Lg(§%) — Lg/2(€) is a hemicontinuous operator,
1A0(0)l]25500) < cllvllTyns € >0, Vv € Ly(C),

(Ao(v),v) > a||v||i3(gt), a>0, Vv e L3().
We have established the following theorems.
Theorem 1 (Main result) Let
f € Lypa((0,T); Wy ().
Then boundary value problem f has a unique solution
u € L3((0,T); Ls(Q) N Leo (0, T); H™ (),
moreover, at t — 0+, © —t — 0, t — 0+ we have

u(z,t) = O (z70(t — z)~>For=F)
O<a<si, >0, a+f<3 0<a<a.

Theorem 2 (On smoothness) Let

f € L3ya((0,T); Lzja(S2)).

(2)

—0, (|v|0,v) of boundary

(3)

(9)

Then the solution of boundary value problem f admits additional smoothness, 1i.e.,

u € Loo((0,7); La(€)),

[ul?u € Ly((0,T): H (),

Deu € Lapa((0,T); Wy h(90)).

(10)

(11)

(12)
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2 Auxiliary initial boundary value problems in trapezoids

To prove Theorem (1|, we first consider auxiliary initial boundary value problems. Let €, =
{0 < z < t} and 0 be the domain of the €y, e, <t < T < 00, &1 > &g > ... >
Em > oy, Em — 0 at m — oo. In the domain Q7 = {z,t|x € Q, t € (e, T)}, which is a
trapezoid, we consider the following boundary value problems for a Boussinesq-type equation

Ottt — O ([Um|Ostim) = fm, {1} € Qi (13)
with boundary

Um =0, {x,t} € X =0 X (e, T), (14)
and initial conditions

Um =0, z€ Q. =(0,e,), (15)

where f,,(z,t) are the narrowing of function f(x,t) (6)), which is given in the triangle Q,
into trapezoids Q.
Earlier, in [1]- [2]|, we established the following theorems.

Theorem 3 Let

Fun € Lojal(ems T W h(22). (16)
Then initial boundary value problem f has a unique solution

tm € Ly((m, T); L3(2)) N Lo ((em, T); HH (). (17)
Theorem 4 Let

fm € Laja((€m, T); La/2(S2t)).- (18)

Then the solution of initial boundary value problem — admits additional smoothness,
i.e.,

U € Loo((em, T); L2((2)), (19)
(| Pt € Lo((em, T); Hy (), (20)
Ot € La((em, T); Wg_/;(Qt» (21)

Note that results similar to Theorem [ for cylindrical domains are also available in [21]-
[22].
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3 Proof of Theorem Existence

First of all, for each m and the corresponding given function f,,(z,t), according to the
statement of Theorem [3| we have established the existence of a unique solution w,,(z,t) of
initial boundary value problem .

We continue functions um(x,t) fm(z, t) from the trapezoid QJ; by zero to the entire
triangle @,; and denote them by ,,(x,t), fn.(z,t). These functions w1ll satisfy equations

Oyt — Oz (|tim|Oalm) = frmy {1} € Qus, (22)
with boundary conditions

i =0, {z,t} € Dy (23)
From (22) we obtain

(Detin(t), v) + ao(t, U (t),v) = (fin(t),v), Yo € H (), te(0,7), (24)

where ag(t, U, v) = (Ao(t, Um), v), Ao(t, Um) = =04 (|tUm|02TUm) and (-, -) is the scalar product
defined by formula

o) = [ o[(-a2)7 0] dn, Vo e HO@), te ) (25)

where d2 = £ b = (=d2) 7 ¢ —d2) =, $(0) = P(t) = 0,V € H ().
Note that concepts close to scalar product have already been used in works [21], [22].
The operator Ay(t, @) has the monotonicity property in accordance with scalar product
([25). For solutions {i,,(t)}5_,, we establish a priori estimates that are uniform in the index

m. From f we will have:

1 ~ t ~ t 5 ~
MmOl @ [ 1O sgr < [ (a0 () 1acydr <
0 0

t
3/2 « -
< 3o [ W i + 5 [ Ny <
2 /2 (T 3/2 a ' 3
< 2 [ IO e+ 5 [ )20 (26)

From here we get

t
~ ~ 3/2
Hum(t)Hifl(Qﬁ&/o I\um(f)\!i3<gt)d7< V3. > | £ 2 @y t € (0,T]. (27)

In (26) we used the following relations

1d
S ()1 ) = (0 (2), o (8), since in(t) = 0 on X,
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fm(t)HLs/z(Qt) < Hf<t)HL3/2(Qt)7
as well as Young’s inequality (p~' + ¢t =1):

E d d
DE| = |(d"*D) (d"*= )| < = |DIP + — |E|?
pE|=|(@p) (42 )| < S1pP + BT

where
2
D = [lwm(®)llz, ) E=llwm@llL,q, d=1 3o P 3/2, ¢=3.

Finally, the relations
i, — u * —weak in Lo ((0,T); H'()), (28)

U, — u weak in Ls(Qqt), (29)
i, (T) — n weak in H'(Qr), (30)
(31)

Ao(t, QNLM) — h(t) weak in L3/2<(0, T), L3/2(9t>.
follow from (27) and inequality
A0t @)l a020) < elliiullZ -
Now we continue functions @, (t), Ag(t, @mn(t)), ..., from domain @,; by zero to the infinite

domain @,;, where
z=0, t<0,
Qu=12 z€Q, te(0,T),
x € Qp, t>T,

and denote these continuations by ,,(t), Ao(t, tm(t)), ..., i-e.,
0, t <0, 0, t <0,
Um(t) = Un(t) € H'(Q), te(0,T], o(t)=< v(t)e H*'(Q), te(0,T], (32
t>1T,; 0, t>1T.

0,
As a result, for continuations we will have:

(@ (1), D)) + (Aot (), D)) = (Fn(£), () = (@ (T), B())3(t — T), ¢ € R". (33)
Further, choosing from {a,,(t)}5_, a weakly convergent subsequence {1, (t)}72, and passing

to the limit at y — oo, we obtain

(@ (), 0(t) + (h(1), (1)) = (f(t),0(1)) — (n,0(t))o(t = T), t € R,
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where @(t), h(t) and f(t) are continuations of functions u(t) (28), h(t) and f(t) to R,
that is, from here we get

' (t)+h(t)=ft)—né(t—-T), tc R (34)
Now, narrowing equality to the time interval (0,7"), we obtain

W(8) + h(t) = f(t), te(0,T), (35)

u'(t) € L3a((0,T); La2(S))- (36)

Further, on the one hand, from the monotonicity condition of the operator Ay(t,v) we
will have

T
Y, = / (Ao(t,u,(t)) — Ao(t,v(t)), u,(t) —v(t)) dt > 0 Yo € Ls((0,T); L3(2)), (37)
0
on the other hand, from (24]) we get
T T 1 ,
[ ot a0yt = [ G0), 500 bt = ST 0 (38)
Thus, it follows from relations f that
T 1 T
Y, = / (Ful), 8 (0) dt = 11 (T) 10y — / (Ao(t, T(8)), v(2)) di—
T
= [ ot @) 3,0) o0 de Yo € Lo((0. T Lol ) (39)
0
Now, using the property of weak lower semicontinuity of the norm in a Banach space

lim inf [|%,(T) 310, = 18T 1310y

we have

0 < timsupY, < [ (0, ut) dt = STy = [ (hle)0(0) e

—/0 (Ao(t, v(t)), ult) —v(t)) dt Vv € Ls((0,T); Ls({)). (40)

In turn, from we get

| o= [ pau0) e 5w, (41)
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Substituting the expression for fOT( f(t),u(t)) dt from (A1) into inequality (40]), we establish
the following inequality

/0 (h(t) = Ao(t, v(t), u(t) — v(t)) di = 0 Vu(t) € Ls((0,T); Ls(S%))- (42)

Now, to complete the proof of Theorem [I] i.e. the existence of a solution to boundary
value problem f, our goal is: to show the validity of the following equality

h(t) = Ao(u(t)). (43)

We use the property of hemicontinuity of the operator Ag(t,v) (3]). Replacing v(t) =
u(t) — Aw(t), A >0, we L3(Qu) in ([A2)), we obtain

/0 (h(t) — Ao(t,u(t) — Aw(t)),w(t)) dt >0 Yw(t) € L3(Qu)-

Hence, at A — 04, we obtain the required equality . The existence part of the solution
in Theorem [I] is proved.

4 Proof of the Theorem . Uniqueness

Let us show that the operator Ag(f,u) in problem — will have the property of
monotonicity if the scalar product is introduced in an appropriate way. For this purpose,
we take as the scalar product

o) = [ e[(-d2) o] dy, vowe B, Vie OT) (14)

1

where d2 = L 4 = (=d2) ¢ 1 —d2 = b, ¥(0) = P(t) = 0,V € H (), Vt €
(0,7).
The following lemma is valid.

Lemma 1 Operator Ao(t,u) is monotone in the sense of scalar product m space
H=Y(S), i.e. the following inequality is valid:

<A0(t,u1) — Ao(t,UQ),Ul — U2> 2 0, Vul,ug € D(Qt), Vit e (O,T) (45)

To the proof of Lemma |1 For each t € (0,7, operator Ag(t,u) = —0, (|u|0,u) is
monotonic and condition (45)) is satisfied (according to [20], chap. 2, s. 3.1). Indeed, on the
one hand, we have

(Ao(t, ) — Ao(t, 1), — ) = %/ (—d2) (Iele — [elw) (—d2) " (¢ — ) dx =

Q

1

=5 | lelo ~ [016)(o — ) d, Vo, ¥ € D), Vi € (toT),
Q¢
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On the other hand, from the convexity condition of the functional J(t,¢) =
L Lo (@) P da, o € D(Q), Vi e (0,T), it follows

(J'(t,0) — J(t,2h), 0 — ) >0, Vo, € D), Vte (0,T).
Thus, we get

/(I@Iso—lwltb)(so—@/))daf >0, Vo, v D), Vie(0,T),

Q¢

that is, inequality is established. Lemma [1|is proved.

Now we are ready to show the uniqueness of the solution in problem —. Let wuq(t)
and us(t) be two solutions to problem (I)—(2). Then their difference u(t) = ui(t) — us(?)
satisfies the homogeneous problem:

' (t) + Ao(t,uy (t)) — Ao(t, ua(t)) =0,
(u' (), u(®)) + ((Ao(t, ui(t)) — Ao(t, uz(t)), ur(t) — ua(t)) =0

and, due to the monotonicity property of the operator Ay(t,u), we have:

d .
(W' (t),u(t)) = ﬁ””(t)”?;l—l(ﬂt) <0, ie u(t)=0.
The uniqueness of the solution to problem f is proved.

5 Proof of Theorem (1| Singularity of the solution

We show that the solution u(z,t) of boundary value problem f having a singularity of
the order specified in ([§) will belong to the space L3(Q",), where Q% = {x,t|0 <z < t, 0 <
t <ty < T}. For this purpose, it suffices to show that the following integral is bounded when
to — 0+

/ g300 ( — g)T3oH3e0 =36 gy . (46)
Qs

We have
to ¢ x = tsin?6
/ t_3ﬁ/ g0t — gy Peteodpdt = || 0< 0 < /2 =
0 0 dx = 2sinf cos 6 db

to 7T/2
=2 / l—3a—38 / sin' 7620 g cog! =660 9 g9 qt.
0 0

It is not difficult to verify that under the conditions of Theorem [I|in the last expression, the
inner integral takes a finite value. Calculating the outer integral, we have

to 1
H-3a-38 gy _ t273(a+ﬁ)’
/0 2—3(a+p)"°

which, under the conditions of Theorem [I], is also bounded from above.
Note that if the order of the singularity of solution u(x,t) is higher than in , then this
function is no longer an element of space L3(QL).

This completes the proof of Theorem
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6 Proof of Theorem

It suffice for us to show the existence of a solution, and the uniqueness follows from Theorem

1l

First of all, for each m and the corresponding given function f,,(z,t), according to the
statement of Theorem {4 we have established the existence of a smoother (than in Theorem
unique solution w,,(z, t) of initial boundary value problem f for the corresponding
trapezoid Q)7;.

We continue functions wu,,(z,t), fn(x,t) from the trapezoid QJ; by zero to the entire

triangle Q),; and denote them by ,,(x,t), fn(x,t). These functions will satisfy equations

Oyt — O (|| Ouslin) = fimy {,} € Qu, (47)
with boundary conditions

i =0, {2t} € . (48)
From we obtain

(B4l (1), V) 4 ao(t, Tm(t),v) = (fin(t),v), Yo e H ), te (0,T), (49)

where ag(t, tm, v) = (Ag(t, Um), v), Ao(t, ) = —04 (|Um|0+0m) and (-, -) is a scalar product

o) = | o[(-d2) "] e, Vewe B, te D).

where d2 = £ i = (—d?) " —d%) =, p(0) = (1) = 0,V € H(Qy).
Let us rewrite equation in the form

(Beiin(), (~02) " 0) b5 () n(6), ) = (Ful), (-02) ' 0) . Vo€ HA(Q), 1€ (0.7T),

where Hj A () = {¢l ¢, 02¢ € Hy()}, or

(@it 0),0)+ 5 (i) i(6),0) = (1), 0) , Vi = (~02) v € HY(Q), £ (0.T). (50)

Further, from (50)) we obtain the following equality

(Ot (1), Um (1)) + % (Jam (6)] @ (1), =0%m(8)) = ([ (1), (1)), T € (0,T), (51)

and from , therefore, we will have

1d

§£||ﬂm(t)||%2(9t) +

4

5 [ 02 (028 0)] e = (G0, ), ¢ € 07,

or

im0 [ /Q 0. (o7 0] dedr = [ (Fu(r)san(rdr, € (0.7).
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(52)
Here we use the following equality

1 4

=i | Ty () [T (£) 02 Ty () da::§/9t [81,(|am(t)|1/2ﬂm(t))}2dx, te (0,7). (53)

Let us show its justice. First, we transform the left side of equality . Let us show that
equality

= / i () (£) 02, (£) iz = / i (6)] [0 (0)] da (54)

2 Iy

holds. Indeed, we have:

[Gm)2,  at dy > 0, 2l Olim, b T > 0,
| i | = {0, at fm(t) =0, 0y (|tm|iim) = { 0, at i (t) = 0,
—[=Un]?, at G, <0, 2 [ ipn] O lim, &b T < O.

Thus, from here we obtain: 0, (|tm ()|@n(t)) = 2 |t (t)|048m (1), ie. equality (54)).
The same holds for the right side of equality . We get

[Tim]?/?, at ty, > 0, 3] 20 lt,  at Uy > 0,
|y |20, = {0, at Gy =0, 0y (|tm|"*tn) = 0, at Ty, = 0,
—[=,,)*?, at 1, <0, 3= )20y, at Gy < 0.

Thus, from here we get: 9y (|tm (£)|2n (1)) = 2[am(t)]20stn(t), that is, the following
equality is true:

4
X / 10 (Jim ()P (D)2 d = [ i (0)] (Dt (6) d.

Qt Q
Thus, we have shown the validity of equality .

Since from Theorem we have that the functions @,,(t) are bounded in L3(Q.), therefore
the right part of is bounded when condition (6)) of Theorem [1] is fulfilled. Hence from
(52) we deduce that

U are bounded in Lo ((0,7); La(€2)), (55)

1/2 ~

Oy (|t | ) are bounded in Lo(Qgt), i.e. |t |"? @ € La((0,T); Hy (). (56)

From relations 7, equation and conditions , we establish an estimate for

the time derivative t

O¢liy, are bounded in L3/ ((0,7T); W3_/§(Qt)) (57)
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Hence, we can write

Uy — u weakly in Lo ((0,7); La(€2)), (58)

|| 20, — X weakly in Lo ((0,T); Hy (). (59)
Thus, on the basis of relations — we establish
Um — u strongly in L3((0,7"); L3(€2)) and almost everywhere,

and, further, using and applying Theorem 12.1 and Proposition 12.1 from ( |20], chapter
1, 12.2), as well as Lemma 1.3 from ( [20], chapter 1, 1.4), as a result we have

|ty | 2y — u|Y?u weakly in Lo((0,T); HL(Q)), ie. x = |u|"u. (60)

Lemma 1.3 ( |20], chapter 1, 1.4). Let O is a bounded domain in R? x R}, g, and g are
functions from L,(O), 1 < g < oo, such that

l9ullzy0) £ C, gy — g a.e.in O.
Then g, — g weakly in L,(O).
From , and we obtain the required statement —. Theorem [2 is

completely proved.

Conclusion

In this paper, we study boundary problems for a one-dimensional Boussinesq-type equation
in a domain that is a triangle. Using the methods of the theory of monotone operators and
a priori estimates, we prove theorems on their unique weak solvability in Sobolev classes, as
well as theorems on improving the smoothness of a weak solution.
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