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NONLINEAR VIBRATIONS OF THE "ROTOR – JOURNAL BEARINGS"
SYSTEM

The equations of motion of a rotor system mounted on journal bearings with a non-linear
characteristic are solved by high-precision analytical methods. A new technique has been developed
for solving nonlinear differential equations of motion of rotor systems mounted on journal bearings,
taking into account nonlinearity of reaction forces of the lubricating layer.Algebraic systems of
equations were obtained that allow us to determine amplitudes of nonlinear oscillations of the
rotor and supports, and construct the amplitude-frequency characteristics of the system for varying
parameters of the rotor, supports and fluid depending on the angular velocity of the rotor. The
conditions and frequency intervals for the presence of self-oscillations of the rotor and supports
were determined. The amplitude-frequency characteristics of the nonlinear oscillations of the rotor
system are obtained, taking into account nonlinearity of characteristics of journal bearings.The
optimal parameters depending on the size of the gap and the oil film, the mass of the supports,
the fluids used as a lubricating layer in the journal bearing, with rigidity and damping coefficients,
at which the magnitudes of the amplitudes of self-excited oscillations have optimal values, are
obtained.
Key words: Nonlinear Vibrations, Harmonic Balance Method, Journal Bearing, Sommerfeld’s
Hypothesis, Rotor System, Self-Excited Vibrations.
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"Ротор – сырғу мойынтiректерi" жүйесiнiң бейсызық тербелiстерi

Жоғары дәлдiктi аналитикалық әдiстермен сипаттамасы бейсызық болып табылатын сырғу
мойынтiректерiнде орнатылған роторлық жүйенiң қозғалыс теңдеулерi шешiлдi.Майлау қа-
баты реакция күштерiнiң бейсызықтығын ескере отырып, сырғу мойынтiректерiнде орнаты-
лған роторлық жүйелер қозғалысының бейсызық дифференциалдық теңдеулерiн шешудiң
жаңа әдiстемесi жасалды. Ротор мен тiректердiң бейсызық тербелiстерiнiң амплитудасын
анықтауға және ротордың бұрыштық жылдамдығына қатысты кезiндегi ротордың, тiректер-
дiң және сұйықтықтың параметрлерiн варияциялау кезiнде жүйенiң амплитудалық-жиiлiк
сипаттамаларын құруға мүмкiндiк беретiн алгебралық теңдеулер жүйесi алынды. Сырғу мой-
ынтiректерiнiң сызықты емес сипаттамаларын ескере отырып роторлық жүйенiң бейсызықты
тербелiстерiнiң амплитудалық-жиiлiктiк сипаттамалары тұрғызылды. Жүйенiң өздiгiнен қо-
затын тербелiстер амплитудасының мәнi оптимальдi мәнге ие болатындай саңылаудың қалы-
ңдығы мен майлауқабаты, тiректердiң массасы, сырғумойынтiрегiнде майлау қабаты ретiнде
қолданылатын сұйықтықпен, қатаңдықжәне демпферлiк коэффициенттермен байланысты
оптимальдi параметрлер анықталды.
Түйiн сөздер: Бейсызық тербелiстер, гармоникалық баланс әдiсi, сырғу мойынтiрегi, Зо-
ммерфельд гипотезасы, роторлық жүйе, өздiгiнен қозатын тербелiстер.
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Нелинейные колебания системы "Ротор - подшипники скольжения"

Решены уравнения движения роторной системы, установленных на подшипниках скольже-
ния с нелинейной характеристикой высокоточными аналитическими методами. Разработана
новая методика решений нелинейных дифференциальных уравнений движения роторных
систем, установленных на подшипниках скольжения, с учетом нелинейности сил реак-
ций смазочного слоя. Были получены алгебраические системы уравнений, позволяющие
определить амплитуды нелинейных колебаний ротора и опор, и построить амплитудно-
частотные характеристики системы при варьировании параметров ротора, опор и жидкости
в зависимости от угловой скорости ротора. Были определены условия и интервалы частот
наличия автоколебаний ротора и опор. Построены амплитудно-частотные характери-
стики нелинейных колебаний роторной системы, с учетом нелинейности характеристик
подшипников скольжения. Определены оптимальные параметры связанные с толщиной
зазора и масленой пленки, массой опор, жидкости использующиеся в качестве смазочно-
го слоя в подшипнике скольжения, с коэффициентами жесткости и демпфирования, при
которых величины амплитуд самовозбуждающихся колебаний имеют оптимальные значения.

Ключевые слова: Нелинейные колебания, метод гармонического баланса, подшипник
скольжения, гипотеза Зоммерфельда, роторная система, самовозбуждающиеся колебания.

1 Introduction

Journal bearings have a number of significant advantages over rolling bearings. They are
resistant to a wide range of loads and dynamic disturbances, capable of operating at higher
rotational speeds, have a long service life and low cost, and are easy to operate.

Due to specific properties of hydrodynamic forces caused by the presence of a lubricating
layer during rotation of the rotor in journal bearings, self-excited oscillations (self-oscillations)
with large amplitudes can arise in a wide range of rotation speeds. Therefore, it is often
necessary to develop suppression measures in industry and production and study the behavior
of this type of oscillation depending on various physical and geometric parameters of the
system.

2 Literature review

At present, journal bearings, used in many rotary machines as key elements and serving to
transfer rotational energy, are complex elements for dynamic analysis since under certain
geometric and operating parameters they can cause, as mentioned above, self-excited [1-3],
parametric [3, 4] and chaotic oscillations [4, 5]. As at operating frequencies of the system
similar to the model considered in this paper, self-excited oscillations often occur, the paper
studies the conditions for occurrence and further behavior of these oscillations.

One of the first researchers who studied the phenomenon of self-excitation and the
reasons for its occurrence was Newkirk in 1924 [6]. Together with Taylor, he conducted
the first experimental study of this phenomenon and explained the causes of self-excited
oscillations [7]. When studying self-oscillations, in many cases the problem is reduced to
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studying precessional motion of the system. Approximate solutions, assuming that the load
on the stud is sufficiently small, were first obtained by Hagg [8] and Yukio Hori [9]. Works
on the analysis of the precessional movement of the stud in the oil-filled bearing were also
carried out by Kesten [10].

Conditions for stability of the equilibrium position of the rotor system mounted on journal
bearings, as well as the nature of unsteady motion in an unstable position, were studied
by Someya [11]. Experimental studies of these phenomena were also carried out by such
authors as Hagg, Boecker, Schnittger and Hori [8, 9, 12, 13]. Different results were obtained
concerning the influence of oil viscosity and the size of backlash in the bearing. Some authors
such as Schnittger have noted the benefits of low viscosity as it contributes to stud stability.
Other authors such as Boecker, Schnittger and Pinkus [14] noted that high viscosity is more
conducive to stability. According to the third group of authors, such as Hummel [15] and
Hagg, both of the above cases are equivalent. Different points of view are also observed
when studying the effect of bearing width on system dynamics. However, researchers agree
that the unbalance of the rotor has no effect on the occurrence and intensity of self-excited
oscillations. Some authors obtained different frequency of self-excited oscillations [16-19]. For
most authors, the frequency of self-excited oscillations coincided with the natural frequency
of the rotor, in some cases, for example, Pinkus, it increased with increasing speed, while
Schnittger experimentally obtained results in which the frequency curve first decreased and
then began to increase [13, 14].

Experimental studies of self-excited oscillations as a whole showed not only the complexity
of this problem, but also revealed a number of specific features of this phenomenon. The most
important of the identified effects is "inertia" (dragging), i.e. self-excited oscillations, after
arising at a certain frequency, continue to exist even when the rotor speed decreases below
the frequencies of occurrence of self-excited oscillations [20, 21-23]. Another feature is the
possibility of occurrence of self-excited oscillations under the action of a short-term pulse,
for example, a blow to the rotor, at speeds that are lower than the characteristic speeds at
which self-excited oscillations arise [24, 25].

3 Statement of the problem and equations of motion

Consider a vertical solid rotor of mass m symmetrically mounted on a flexible shaft with
respect to supports. The shaft is mounted on elastic supports. The rotor system rotates on
journal bearings of mass m0 with an angular velocity ω (Figure 1). Equivalent rigidity of
the elastic field of supports is c; δ is the size of the clearance in the bearing; t is the oil
temperature in the bearing; µ is the oil viscosity in the bearing; d is the diameter of the
bearing spike; L is the length of the bearing; D is the bearing diameter; l is the length of the
shaft; k1, k2 are damping coefficients; e is the rotor unbalance.

To derive the equations of motion, we introduce the fixed coordinate system Oxy. Let
in this system x1, y1 be coordinates of O1 (the center of the elastic support), x2, y2 be
coordinates of O2 (the center of the bearing spike), x3, y3 be coordinates of O3 (the center of
gravity of the rotor), ϕ be the polar angle of the line of centers.

Taking into account that

x3 = x2 + e cosωt, y3 = y2 + e sinωt, (1)
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Figure 1: Rotor system rotating on journal bearings

we obtain the differential equations of motion of the system

m0ẍ1 + k1ẋ1 + cx1 − 2 (Pe cosϕ+ Pϕ sinϕ) = 0,
m0ÿ1 + k1ẏ1 + cy1 − 2 (Pe sinϕ− Pϕ cosϕ) = 0,

mẍ2 + k2ẋ2 + 2 (Pe cosϕ+ Pϕ sinϕ) = meω2 cosωt,
mÿ2 + k2ẏ2 + 2 (Pe sinϕ− Pϕ cosϕ) = meω2 sinωt.

(2)

where Pe and Pϕ are determined from the Sommerfeld hypothesis, according to which no
restrictions are imposed on the length of the lubricating layer between the bearing and the
stud and are determined as [26]

Pe =
12πµLR3χ̇

δ2 (1− χ2)3/2
, Pϕ =

12πµLR3χ (ω − 2ϕ̇)

δ2 (2 + χ2)
√

1− χ2
.

The first two equations of system (2) are equations of motion of the support under
the action of elastic forces cx1, cy1, damping forces k1ẋ1, k1ẏ1, and reaction forces of the
lubricating layer Pe and Pϕ, directed in the opposite direction to the forces of the same name
shown in Figure 2.

The second two equations of system (2) determine the equations of motion of the rotor
under the action of the reaction forces of the lubricating layer Pe and Pϕ, and the external
damping forces k2ẋ2, k2ẏ2. In order for the equations of system (2) in combination with the
equations of hydrodynamic forces to form a closed system, it is necessary to express the
eccentricity of the stud center e and the polar angle ϕ through the coordinates of the center
of the elastic support x1, y1 and the coordinates of the center of the stud x2, y2. Figure 2
shows that

x2 − x1 = e cosϕ, y2 − y1 = e sinϕ. (3)

Then

e =

√
(x2 − x1)2 + (y2 − y1)2, (4)
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Figure 2: Reaction forces of journal bearings

ė =
(x2 − x1) (ẋ2 − ẋ1) + (y2 − y1) (ẏ2 − ẏ1)

e
, (5)

sinϕ =
(y2 − y1)

e
, cosϕ =

(x2 − x1)

e
, (6)

ϕ̇ =
(x2 − x1) (ẏ2 − ẏ1)− (y2 − y1) (ẋ2 − ẋ1)

e2
. (7)

The system of equations (2) and equations (4)-(7) together with expressions for the
reaction forces of the lubricating layer, the form of which depends on the accepted hypothesis,
forms a closed system of nonlinear equations, the integration of which in general is not
possible. To obtain an approximate solution of the equations of motion (2), we introduce
complex variables of the form

z1 = x1 + iy1, z2 = x2 + iy2, z3 = e(cosϕ+ i sinϕ). (8)

Then equations (2) and reaction forces can be rewritten as

mz̈2 + c (z2 − z3) + k1 (ż2 − ż3) = 0,
c (z2 − z3) + k1 (ż2 − ż3) = 2 (Pe − iPϕ) eiϕ,

Pe =
6µLR3

δ2

2χ2 (ω − 2Ω)

(2 + χ2) (1− χ2)
, Pϕ =

6µLR3

δ2

πχ (ω − 2Ω)

(2 + χ2)
√

(1− χ2)
.

(9)

Let the system be "weakly" nonlinear, then its solution can be sought as

z2 = δaei(Ωt−γ), z3 = δχeiΩt. (10)

Thus, substituting solutions in the form (10) into the equations of motion of system (9)
and equating the terms in front of the same harmonics, we obtain a system of algebraic
equations for the rotor amplitudes in the form

−aα2 cos γ + a cos γ − χ+Daα sin γ = 0,
aα2 sin γ − a sin γ −Dαχ+Daα cos γ = 0,

(11)
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where
ϕ = Ωt, A = aδ, D = k1/mΩ, α = 1/

√
1−D2.

From system (11) we find that

a =
χ2 (1 +D2α2)

(1− α2)2 +D2α2
, γ =

a

χ

Dα3

1 +D2α2
. (12)

Thus, by varying parameters of the dimensionless damping D, dimensionless frequency
of self-excited oscillations α, etc., we obtain amplitude-frequency characteristic for a rotor
system mounted on journal bearings, taking into account nonlinearity of the reaction forces
of the lubricating layer of journal bearings (Figures 3-13).

4 Results and discussion

The calculations were carried out for a rotor system rotating at a speed of 0 to 20000 rpm. It
should be noted that five main parameters vary during the calculation, namely, the viscosity
of the fluid in the lubricating layer, the mass of the supports, the damping coefficient, the
rigidity coefficient of the equivalent field of elasticity and the size of the gap in the bearing,
since these parameters are fundamental in the study of the behavior of self-excited vibrations.
The analysis of vibrations was carried out on the basis of the analytical solution of the
system of equations (11), with the following initial data: rotor mass m = 5 kg, support mass
m0 = 0.15 kg, clearance in the bearing δ = 0.06 mm, oil temperature in the bearing t = 50◦ C,
bearing oil viscosity µ = 22.39 mPa.s (turbine oil), bearing stud diameter d = 20 mm, bearing
length L = 20 mm, bearing diameterD = 20+2δ mm, shaft length l = 650 mm; the equivalent
rigidity of the elastic field of the support c = 29 kg/s2, damping coefficients k1 = 42 kg/s,
k2 = 6.59 kg/s.

Figure 3 shows the amplitude-frequency characteristics of the system with a gap of δ =
0.06 mm. It can be seen from the figure that with a rigid fastening (red curve), the system
performance is limited by the rotation speed, which is approximately equal to twice the critical
speed of the rotor. Starting from 6000 rpm, intense self-oscillations arise in the system in a
wide frequency range. With the elastic mounting (blue curve), the vibration level is many
times lower. The rotor, mounted on elastic supports, does not have a self-oscillation zone,
and the system acquires the ability for stable operation at speeds of 20,000 rpm and higher,
i.e. at speeds twenty times the first critical speed. When the rotor starts up after an easy and
calm transition through two critical rotation speeds, the first self-centering zone is detected,
in which operation with small vibration amplitudes is possible.

The second, even wider self-centering zone is located in the range from 6,000 to 20,000
rpm. Finally, it can be seen from the figure that the range of possible speeds of stable rotation
of the rotor due to rotor mounting on elastic supports has increased three times compared to
the rigid mounting of bearings, and this is especially important, the upper limit of the speed
of rotation of the rotor has no fundamental boundaries. At the same time, it is observed that
rotor mounting on elastic supports leads to a decrease in the level of vibrations not only in
the areas of self-centering, but also during transition through resonant modes. In this case,
the lower the rigidity of the supports, the less the vibration overloads.
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Figure 3: Rotor amplitudes with elastic and rigid mounting in the case when d = 20 mm,
l = 650 mm, c = 29 kg/s2, δ = 0.06 mm, t = 50◦ C, k1 = 42 kg/s, k2 = 6.59 kg/s,
µ = 22.39 mPa.s (turbine oil)

Figures 4 and 5 show the amplitude-frequency characteristics of the rotor and support,
depending on the type of oil in the sleeve bearing, when t = 50◦ C, δ = 0.06 mm, pressure 1
atm. In the first case (red curve), when µ = 14.99 mPa.s (anhydrous glycerol), the amplitudes
of both the rotor and the support are maximum. Further, as the viscosity of the liquid
increases, the amplitudes decrease and have minimum values at maximum values of viscosity
(black curve), i.e. µ = 40 mPa.s (fuel oil). In this case, the optimal values correspond to the
case when turbine oil is used, i.e. when µ = 22.39 mPa.s, as further increase in viscosity may
lead to violation of the thermal regime in the journal bearing.

Figure 4: Rotor amplitudes at different values of fluid viscosity in the bearing whenm = 5 kg,
m0 = 0.15 kg, d = 20 mm, l = 650 mm, c = 29 kg/s2, δ = 0.06 mm, t = 50◦ C, k1 = 42 kg/s,
k2 = 6.59 kg/s, µ = 22.39 mPa.s (turbine oil)



A.B. Kydyrbekuly et al. 85

Figure 5: Support amplitudes at different values of fluid viscosity in the bearing when m =
5 kg, m0 = 0.15 kg, d = 20 mm, l = 650 mm, c = 29 kg/s2, δ = 0.06 mm, t = 50◦ C,
k1 = 42 kg/s, k2 = 6.59 kg/s, µ = 22.39 mPa.s (turbine oil)

Figures 6 and 7 show the amplitude-frequency characteristics of the rotor and support
depending on the weight of the support. In both cases, the amplitudes of the rotor and
support are damped with an increase in the mass of the support, since the support, with a
sufficiently large mass, serves as an anti-weight and acts as a vibration damper, i.e. there
is an anti-resonance phenomenon, for example, when m0 = 1 kg (black curve). It should
be noted that with an increase in the mass of the support, critical frequencies are shifted
towards smaller angular velocities, whereas strong displacements of self-centering areas are
not observed. With a decrease in the mass of the support, resonance frequencies are shifted
towards large angular velocities, and amplitudes also increase, the first section of self-centering
is also narrowed, for example, the case when m0 = 0.15 kg (red curve).

Figure 6: Rotor amplitudes at different values of the support mass in the case whenm = 5 kg,
d = 20 mm, l = 650 mm, c = 29 kg/s2, δ = 0.06 mm, t = 50◦ C, k1 = 42 kg/s, k2 = 6.59 kg/s,
µ = 22.39 mPa.s (turbine oil)

Figures 8 and 9 show the amplitude-frequency characteristics of the rotor and support
depending on the damping coefficient, for gaps δ = 0.06 mm. Here, the amplitudes sharply
decrease when passing through resonances. Moreover, the damping effect of the elastic
supports is most effective when passing through the first and second critical speeds of the
rotor. The influence of damping of supports on the third critical speed is less significant.
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Figure 7: Support amplitudes for different values of the support mass in the case when
m = 5 kg, d = 20 mm, l = 650 mm, c = 29 kg/s2, δ = 0.06 mm, t = 50◦ C, k1 = 42 kg/s,
k2 = 6.59 kg/s, µ = 22.39 mPa.s (turbine oil)

An increase in the vibration amplitudes in the self-centering zones is not observed. Smooth
operation of the system with low vibration amplitudes is observed in these zones.

Figure 8: Rotor amplitudes at different values of the damping coefficient k1 in the case when
m = 5 kg, m0 = 0.15 kg, d = 20 mm, l = 650 mm, c = 29 kg/s2, δ = 0.06 mm, t = 50◦ C,
k1 = 42 kg/s, k2 = 6.59 kg/s, µ = 22.39 mPa.s (turbine oil)

At different values of rigidity of the equivalent field of the supports, there is also a shift in
the vibration amplitudes along the frequency axis and change in their magnitudes (Figures
10 and 11). For example, with an increase in rigidity, the amplitudes of both the rotor and
the supports increase. Also, with an increase in the coefficient, the peaks of the amplitudes
are shifted towards higher angular velocities. In general, an increase in rigidity, as was shown
initially (Figure 3), does not have a positive effect on the behavior of the system, while with
an increase in compliance, the opposite picture is observed.

Figures 12 and 13 show the amplitude-frequency characteristics of the rotor and support,
depending on the width of the gap in the journal bearing. As can be seen from the figures,
an increase in the width of the gap adversely affects the operation of the system. An increase
in the gap width leads to an increase in the amplitude of both the rotor and the support.
With a decrease in the gap width, the opposite effect is observed, i.e. the minimum values of
δ correspond to the minimum values of the amplitudes. But since, in practice, a small gap



A.B. Kydyrbekuly et al. 87

Figure 9: Support amplitudes at different values of the damping coefficient k1 in the case
when m = 5 kg, m0 = 0.15 kg, d = 20 mm, l = 650 mm, c = 29 kg/s2, δ = 0.06 mm,
t = 50◦ C, k1 = 42 kg/s, k2 = 6.59 kg/s, µ = 22.39 mPa.s (turbine oil)

Figure 10: Rotor amplitudes at different values of the rigidity coefficient c in the case when
m = 5 kg, m0 = 0.15 kg, d = 20 mm, l = 650 mm, c = 29 kg/s2, δ = 0.06 mm, t = 50◦ C,
k1 = 42 kg/s, k2 = 6.59 kg/s, µ = 22.39 mPa.s (turbine oil)

Figure 11: Support amplitudes at different values of the rigidity coefficient c in the case when
m = 5 kg, m0 = 0.15 kg, d = 20 mm, l = 650 mm, c = 29 kg/s2, δ = 0.06 mm, t = 50◦ C,
k1 = 42 kg/s, k2 = 6.59 kg/s, µ = 22.39 mPa.s (turbine oil)

width entails violation of the thermal regime due to heating [27], the best option in this case
is the gap value δ = 0.06 mm.
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Figure 12: Rotor amplitudes for different values of the gap thickness δ in the case when
m = 5 kg, m0 = 0.15 kg, d = 20 mm, l = 650 mm, c = 29 kg/s2, δ = 0.06 mm, t = 50◦ C,
k1 = 42 kg/s, k2 = 6.59 kg/s, µ = 22.39 mPa.s (turbine oil)

Figure 13: Rotor amplitudes for different values of the gap thickness δ in the case when
m = 5 kg, m0 = 0.15 kg, d = 20 mm, l = 650 mm, c = 29 kg/s2, δ = 0.06 mm, t = 50◦ C,
k1 = 42 kg/s, k2 = 6.59 kg/s, µ = 22.39 mPa.s (turbine oil)

In the first resonant zone, the vibrations of the disk and supports occur in phase, i.e.
the type of the waveform is cylindrical precession. In the second zone, vibrations of the
supports occur in antiphase with respect to each other; in this case, in the region of the disk,
vibrations have a node. Thus, in the second zone, the mode of vibrations is a skew-symmetric
precession. In the third resonant zone, the vibrations of the supports with respect to each
other occur in phase, and near the disk – in antiphase. Thus, the third form of vibrations
is a two-node symmetrical form, the type of which resembles the first form of vibrations of
an unsupported shaft. It should be noted that the location and types of the first and second
modes of vibrations are determined mainly by the compliance of the supports,whereas the
third form is caused by bending vibrations of the rotor shaft. Thus, these studies show that the
zones of increased vibrations are narrow resonant zones due to dynamic and static imbalances
of the rotor.
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5 Conclusion

Installation of rotors in elastic supports leads to complete suppression of self-oscillations
that occurred during rigid mounting of journal bearings, and oscillations of the system over
the entire speed range become purely forced. The damping efficiency of elastic supports is
very high and increases with decreasing rigidity. Self-centering of the system in non-resonant
zones leads to significant reduction in the magnitude of vibrations and vibration overloads
of the system. Installation of the rotor in elastic supports "linearizes"the dynamic system
"rotor – supports" . It should also be noted that the main parameter that determines the
type of oscillations is the size of the gap of the journal bearing, since with its increase the
amplitudes will increase, and at its limiting values, self-excited oscillations will turn into a
chaotic type of oscillations, which will negatively affect the stability of the system even at
high speeds. According to the theory of self-centering [28], where it is shown that overloads in
self-centering areas are determined only by the magnitude of the unbalance and the rigidity
of the supports, it can be concluded that vibration overloads of the system will practically
not increase even with a significant value of the rotor unbalance. Therefore, with sufficient
compliance of the supports, even with large imbalances, one can expect stable operation of
the machine with a moderate level of vibration overloads in a wide range of speeds.
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