
ISSN 1563–0277, eISSN 2617-4871 JMMCS. №3(115) 2022 https://bm.kaznu.kz

IRSTI 28.23.27 DOI: https://doi.org/10.26577/JMMCS.2022.v115.i3.011

E.B. Zhantileuov1∗ , A. Aibatbek1 , A.M. Smaiyl1 , A. Albore2 ,

E.A. Aitmukhanbetova1 , Sh.M. Saimassayeva1

1Astana IT University, Kazakhstan, Astana
2IRT Saint Exupery, France, Toulouse

∗e-mail: zhantileuov.eldiyar@Astanait.edu.kz

Multi-Agent Learning for the Inverse Kinematics of a Robotic Arm

This paper presents a solution to the inverse kinematics problem for robotic manipulator based
on the Adaptive Multi-Agent System (AMAS) approach. In this research, multi-agent system
is in charge of controlling a robot arm with four degrees of freedom (DOF) and two motorized
wheels, giving appropriate commands, such as rotation angles and velocities, to reach the desired
position and orientation of the end effector. The calculation of commands is directly related
to the solving of forward and inverse kinematics. Before the learning process of AMOEBA, the
rotational angles, θ values, are encoded into a single number N , this parameter is the desired
value that we are going to predict in the predicting stage. During the learning phase, the Agnostic
MOdEl Builder by self-Adaptation (AMOEBA) builds context agents, which has local models and
is able to self-adapt. After the getting the predicted value, Npred, it will be decoded back to get
the set of rotational angles that is given to robot end effector. In addition, the robot with all its
physical parameters is modeled and simulated in the Robot Operating System (ROS) environment

Key words: Forward kinematics, inverse kinematics, adaptive multi-agent system, agnostic model
builder by self-adaptation.

Е.Б. Жантилеуов1∗, А. Айбатбек1, А.М. Смайыл1, А. Альборе2, Э.A. Айтмұханбетова1,
Ш.М. Саймасаева1

1 Astana IT University, Қазақстан, Астана қ.
2IRT Saint Exupery, Франция, Тулуза қ.

∗e-mail: zhantileuov.eldiyar@Astanait.edu.kz
Робот қолының керi кинематикасы үшiн мультиагенттiк оқыту

Бұл жұмыста бейiмделетiн көп агенттiк жүйе (Adaptive Multi-Agent System) тәсiлiне негiз-
делген роботтық манипуляторға арналған керi кинематика мәселесiнiң шешiмi ұсынылады.
Бұл зерттеуде мульти-агенттiк жүйе төрт еркiндiк дәрежесi (DOF) бар робот қолы мен екi
дөңгелегiн басқаруға жауапты. Роботтық қажеттi позиция және бағдарына жетуi үшiн, оның
қолы мен дөңгелектерiне айналу бұрышы мен жылдамдық тәрiздi тиiстi командалар берiледi.
Командаларды есептеу тура және керi кинематика есебiн шешумен тiкелей байланысты.
AMOEBA-ның үйрену кезеңiне дейiн θ айналу бұрыштары бiр N санына шифрланады. Бұл
параметр болжау кезеңiндегi бiздiң болжам жасайтын негiзгi мән болып табылады. Үйрену
кезеңiнде Agnostic MODEl Builder by self-adaptation (AMOEBA) жергiлiктi үлгiлерi бар және
өзiн-өзi бейiмдей алатын контекстiк агенттердi құрады. Болжамды мән, Npred, есептелiнiп
алынғаннан кейiн, айналу бұрыштарының жиынтығын алу үшiн керi бағытта шифр ашыла-
ды. Бұл жиынтық роботтық атқарушы механизмi, яғни робот қолының саусақ ұшы, қажеттi
позиция және бағдарға жетуi үшiн төрт еркiндiк дәрежелi қолы мен екi дөңгелегiне команда
ретiнде берiледi. Сонымен қатар, робот өзiнiң барлық физикалық параметрлерiмен Robot
Operating System (ROS) ортасында модельденедi және имитацияланады.
Түйiн сөздер: Кинематика, керi кинематика, адаптивтi көп агенттiк жүйе, өзiн-өзi бейiмдеу,
агностикалық модель.

c© 2022 Al-Farabi Kazakh National University

https://orcid.org/0000-0003-2131-540X
https://orcid.org/0000-0001-6517-1175
https://orcid.org/0000-0002-6215-932X
https://orcid.org/0000-0003-4386-4434
https://orcid.org/0000-0001-7835-873X
https://orcid.org/0000-0003-4482-8320

E.B. Zhantileuov et al. 113

Е.Б. Жантилеуов1∗, А. Айбатбек1, А.М. Смайыл1, А. Альборе2, Э.A. Айтмуханбетова1,
Ш.М. Саймасаева1

1 Astana IT University, Казахстан, г. Астана
2IRT Saint Exupery, Франция, г. Тулуза

∗e-mail: zhantileuov.eldiyar@Astanait.edu.kz
Мультиагентное обучение для обратной кинематики роботизированной руки

В данной статье представлено решение обратной задачи кинематики для робота-
манипулятора на основе подхода Adaptive Multi-Agent System (AMAS). В этом исследовании
мультиагентная система отвечает за управление манипулятором робота с четырьмя степеня-
ми свободы (DOF) и двумя моторизованными колесами, давая соответствующие команды,
такие как углы поворота и скорости, для достижения желаемого положения и ориентации
исполнительного механизма, то есть концевого эффектора. Расчет команд напрямую связан с
решением прямой и обратной кинематики. На этапе обучения Agnostic MOdEL Builder путем
самостоятельной адаптации (AMOEBA) создает агенты контекста, которые имеют локаль-
ные модели и способны к самостоятельной адаптации. Перед процессом обучения AMОEBA,
углы поворота, θ значения, кодируются в одно число N , этот параметр является желаемым
значением, которое мы собираемся предсказать на этапе прогнозирования. После получения
предсказанного значения Npred, оно будет декодировано обратно, чтобы получить набор уг-
лов поворота, заданный концевому исполнительному механизму робота. Кроме того, робот со
всеми его физическими параметрами моделируется и симулируется в среде Robot Operating
System (ROS).
Ключевые слова: Прямая кинематика, обратная кинематика, адаптивная мультиагентная
система, независимый построитель моделей путем самостоятельной адаптации.

1 Introduction

Nowadays the study and development of intelligent robots are becoming an essential part of
robotics. Many methods and approaches are aimed at making the robots fully automated and
independent of external impacts, such as neural networks and multi agent systems. Major
attention is paid to the motion of the robot, which, in turn, involves the study of kinematics.
The general objective of this research is to reach the desired point or target with end-effector
of robot with precise accuracy. In order to reach the goal, both forward and inverse kinematic
problems must be solved. The forward kinematics (FK) involves determining the position and
orientation of the robotic end-effector by giving values for each individual joint of robotic
manipulator. Vice versa, by knowing the position and orientation of the end effector, the
inverse kinematics (IK) is in charge with determination of values that must be set to the
joints, in other words, inverse kinematics is the inverse problem of forward kinematics. In
comparison with forward and the inverse kinematics, the solution of inverse kinematics
is much more complicated. The FK can be easily solved by performing linear algebraic
operations on homogeneous transformation matrices and has a unique solution. However,
due to the complex IK equations, which is strongly nonlinear, there is no single solution for
IK. As we mentioned, the IK is the main issue of robotics, and several methods are proposed
for its solution [1]. Many approaches to this problem lie on the analytical, algebraic, or
iterative methods, which give approximate results. Recently, much attention has been paid
to artificial networks and self-adaptive multi-agent systems. The controlling of the robotic arm
is considered as real-world complex problem and it cannot be solved by predefined model and
needs learning and self-adaptation. ’Multi-agent systems are particularly suitable to design
and implement self-organizing systems’ [2]. In this paper, Self-Adaptive Context Learning

114 Multi-Agent Learning for the Inverse . . .

(SACL) recurrent pattern is applied to our problem. It consists of two mechanisms: Adaptive
mechanism, which perceives information from the environment and dynamically builds a
model describing the current context and its transformation Exploitation mechanism, which
decides what actions to perform over the environment [2].

For building a dynamic model in adaptive mechanism, Agnostic MOdEl Builder by self-
Adaptation (AMOEBA) is used. AMOEBA is based on AMAS approach. In order to be able
to build a model, AMOEBA must learn on data provided by simulation or FK problem,
which makes it supervised learning. In the final application, the multi-agent system will be
integrated with machine learning, the function of which is to process an image, taken from
the robot’s camera, identify the target point and compute its distance and position relative
to the camera. The integration of a machine-learning application with multi-agent system
is another key feature of the project. The position of the button and the robot with all its
physical parameters are simulated in ROS environment. Motivating Example. Figure 1 shows
the real problem of the work. Consider a robot inside an elevator, the starting position and
orientation of which are known. The robot’s camera, which is attached on the end-effector,
takes a picture of buttons in the elevator and the robot needs to press the desired button. Once
the picture of elevator buttons is taken, the machine learning software identifies the desired
button and calculates its position (x, y, z) with respect to the camera. The coordinates
of the button are then sent to the multi-agent system. Multi-agent system is responsible to
control the 6 servo motors: 4 for robot arm and 2 for wheels. Taking the positions received
from ML as input data, the multi-agent system solves IK problem to get rotation angles for
each joint, θ0, θ1, θ2, θ3. The servo motors are given an angle setpoints and they rotate and
maintain to reach this setpoint:

CAMERA image
−−−−→ coord x,y,z

−−−→ AMAS θ0,θ1,θ2,θ3−−−−−−−→ Robot Arm.

Figure 1: The robot in an elevator, identifying the desired target and tries to reach it

Figure 2 contains a snapshot of the real robot with four degrees of freedom (DOF) arm
which is placed on the platform. The platform has two motorized wheels and one castor
wheel.

E.B. Zhantileuov et al. 115

Figure 2: The picture of the real robot with 4 DOF named TwIRTee

2 Simulating Physical Model of Robot under Robot Operating System (ROS)

This section describes the simulation model of the TwIRTee robot under ROS/Gazebo. This
model includes the robot chassis with its two motorized wheels, the robot arm, and the
Light Identification Detection and Ranging (LIDAR). It gives the procedure to setup the
environment and to interact with the simulation via the com-mand line and programmatically.
The two wheels are identical, so they are modeled using a macro with a parameter, "tY "that

Figure 3: The local frame for the chassis definition

gives the translation of the wheel with respect to the Y axis. Each wheel is drawn in a local
frame that is obtained by a rotation of π

2
radians along the Y and Z axis with respect to the

joint reference frame (see Figure 3). The robot is a set of links (such as the chassis described
previously) and joints. Let’s take the example of the robot arm that is fitted on top of the
robot, as show on Figure 3, with a close-up view on Figure 4.

The arm is composed of: 4 servo motors (the green boxes): link0, link1, link3 and link5;
two sets of "bars"(brown colored): link2 and link4; camera (in blue); "finger"(in red, at the
tip of the arm):
"link1−joint"joints "link1"and "link2"with a "revolute"joint;
"link3−joint"joints "link2"and "link3"with a "revolute"joint;
"link4−joint"joints "link3"and "link4"with a "fixed"joint.
In the model, the camera is represented by a simple blue box (see Figure 5).

116 Multi-Agent Learning for the Inverse . . .

Figure 4: The robotic arm closed view

Figure 5: The illustration of the camera attached to the end-effector (blue box)

This environment allows the complete dynamics of the system to be simulated, in-cluding
the effect of inertia: the simulator receives the angles for each joint and com-putes the position
of the arm and camera. Figure 6 shows the general idea of integrating the machine learning
part with the multi-agent system in ROS environment. There are many related works with
image processing and object detection and ML for image processing is quit out of this paper.
The main task is to tackle with multi-agent system, to make the multi-agent system learn
and self-adapt with precise accuracy.

3 Forward Kinematics

In robotics, forward kinematics is responsible for determining the final coordinates and the
direction of the end-effector relative to the global coordinate space. Let’s consider that the
initial position and orientation of each servo motor is known. Ho-mogeneous transformation
matrices with a dimension of 4x4 will be constructed from the base frame to the end effector
frame [3]. These matrices consist of a 3x3 rotation matrix, that describes the orientation of

E.B. Zhantileuov et al. 117

Figure 6: The illustration of integration of ML and AMAS in ROS environment

joints and their behaviors, and trans-lation vector. Further, linear algebra operations will
be performed on matrices to ob-tain FK results. In this section, more detailed solutions are
provided for the robot arm.

3.1 Kinematics for 4 DOF Robotic Arm

In our case, the robotic arm has 4 degrees of freedom (DOF). The robot is articulated
vertically with 4 joints. It has a stationary base, shoulder, elbow and wrist, where the base
joint rotates around the z-axis and the other three rotate around the y-axis. The position
of joints is represented in the three-dimensional Cartesian coordinate system and a local
reference frame is assigned to each joint. The coordinate frame assign-ment is shown in
Figure 7. In addition, it is necessary to assign a global coordinate frame to the base of the
robot [4] (see Figure 8). The servo motors in three-dimensional space can have movements of

Figure 7: The coordinate frame assignment of robotic arm

118 Multi-Agent Learning for the Inverse . . .

rotation and translation. The homogeneous transformation matrix (H.T.M) with dimension
of 4x4 is constructed separately for each joint to describe its position and orientation relative
to the world coordinate system. The H.T.M is composed of 3x3 rotation matrix and 3x1
translation vector:∣∣∣∣∣∣∣∣

. . . .

. R3×3 . t3×1

. . . .
0 0 0 1

∣∣∣∣∣∣∣∣ (1)

− Rotational matrix describes the rotation of joints in Euclidean space. The rotation is
done about z, y and x axes through a counterclockwise angle θ. The axis rotation
matrices for a rotation about z, y and x axes given, respectively [5]:

Rz (θ) =

∣∣∣∣∣∣
1 0 0
0 cos (θ) sin (θ)
0 −sin (θ) cos(θ)

∣∣∣∣∣∣ (2)

Ry (θ) =

∣∣∣∣∣∣
cos (θ) 0 sin (θ)

0 1 0
−sin (θ) 0 cos(θ)

∣∣∣∣∣∣ (3)

Rx (θ) =

∣∣∣∣∣∣
cos (θ) −sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

∣∣∣∣∣∣ (4)

− Translation or displacement vector shows the location of each joint in the base frame.
The final translation vector is the answer of the FK problem. In order to obtain the
final translational vector, the transformation matrices of each joint are multiplied. The
sequence of multiplication is important, as it results in a trajectory generation step [5].

The transformation matrices of each joint are represented as i
jT (see Fig.8.):

1. Transformation matrix of base joint, rotates about z-axis:

0
1T=

∣∣∣∣∣∣∣∣
1 0 0 x0
0 cos (θ0) sin (θ0) y0
0 −sin (θ0) cos (θ0) z0
0 0 0 1

∣∣∣∣∣∣∣∣ (5)

2. Transformation matrix of shoulder joint, rotates about y-axis:

1
2T=

∣∣∣∣∣∣∣∣
cos (θ1) 0 sin (θ1) x1

0 1 0 y1
−sin (θ1) 0 cos (θ1) z1

0 0 0 1

∣∣∣∣∣∣∣∣ (6)

E.B. Zhantileuov et al. 119

Figure 8: The coordinate frame assignment of robotic arm in world space

3. Transformation matrix of elbow joint, rotates about y-axis:

2
3T=

∣∣∣∣∣∣∣∣
cos (θ2) 0 sin (θ2) x2

0 1 0 y2
−sin (θ2) 0 cos (θ2) z2

0 0 0 1

∣∣∣∣∣∣∣∣ (7)

4. Transformation matrix of wrist joint, rotates about y-axis:

3
4T=

∣∣∣∣∣∣∣∣
cos (θ3) 0 sin (θ3) x3

0 1 0 y3
−sin (θ3) 0 cos (θ3) z3

0 0 0 1

∣∣∣∣∣∣∣∣ (8)

5. Transformation matrix of end joint:

4
5T=

∣∣∣∣∣∣∣∣
1 0 0 x4
0 1 0 y4
0 0 1 z4
0 0 0 1

∣∣∣∣∣∣∣∣ (9)

Finally, the desired transformation matrix is obtained by multiplying all ijT matrices:

0
5T =

0

1T ·
1
2T · 2

3T · 3
4T · 4

5T (10)

120 Multi-Agent Learning for the Inverse . . .

where 0
5T has the form of:∣∣∣∣∣∣∣∣

. . . x

. R3×3 . y

. . . z
0 0 0 1

∣∣∣∣∣∣∣∣ . (11)

The (x, y, z) is the answer to the FK problem. The (x4, y4, z4) is the position of the
end-effector in the local coordinate space (see Figure 7) and (x, y, z) is the position of the
end-effector on the world system, in another words, the coordinates of the end-effector are
translated to the global coordinate system.
The Implementation of FK on 4 DOF Robotic Arm Implementing the FK to determine
the final position and orientation of the end-effector is done in Python.

Suppose the arm of the robot is raised up initially. The rotation angles are given to
each servo motor, i.e. the rotation angle setpoints, (θ0, θ1, θ2, θ3), are sent to the base,
shoulder, elbow and wrist. Depending on the given angles, the motors begin to rotate. The
final location of the end-effector is determined by the translation of the coordinate from the
local coordinate system to the global one. Input data is angular setpoint, the output is the
coordinates of the end-effector on the global system:

θ0, θ1, θ2, θ3
FK−4Dof
−−−−−−−→ x, y, z.

The result of the problem is illustrated in Python on Figure 9. Initially, the robot arm is

Figure 9: The result of the example to check the correctness of implementation FK.

raised up and θ0 = 45, θ1 = 50, θ2 = 34, θ3 = 23 is given to the motors. The dark blue
curve is the final position and orientation of the arm manipulators. The final position of the
end-effector computed by FK is (0.19346298, 0.19346298, 0.11533945).

E.B. Zhantileuov et al. 121

4 Inverse Kinematics

Summing up the previous section, we can say that solving forward kinematics for robotic
manipulators is a fairly simple task, only linear algebra operations are performed on matrices
to determine the final position and orientation of the end-effector. The problem has one and
only one solution. However, when the final position and orientation of the manipulators is
initially given, and the task is to find the rotation angles for each joint, (θ0, θ1, θ2, θ3),
the problem becomes non-linear and complex. This kind of task in robotics is called Inverse
Kinematics Problem. There are many approaches to solving inverse kinematics problem, e.g.
analytical solution, numerical methods, artificial neural networks and self-adaptive multi-
agent systems. In this paper, we propose Adaptive Multi-Agent System based solution for
solving IK problem.

5 Adaptive Multi-Agent System

To solve IK problem, we need to prepare a model which is responsible to predict the revise the
degrees of liberty and “rotation time”. However, due to the complexity of the problem, it is
difficult and expensive to solve using a predefined model; instead, we will use several agents,
an autonomous entities, responsible for predicting the result. A system where the agents are
plugged-in should be able to adapt to the environment and learn independently. The Adaptive
Multi-Agent Systems (AMAS) approach has been applied to designed and developed self-
adaptive multi-agent system. This approach aims at solving problems in dynamic non-linear
environments by a bottom-up design of cooperative agents, where cooperation is the engine
of the self-organization process [7].

6 The Self-Adaptive Context Learning Pattern

Our self-adaptive system is connected with a dynamic environment by a cycle of observations.
The main task of system is to receive the observations coming from the environment and find a
proper actions for the current state of inputs, which, in turn, is called the context [8]. This is a
context mapping problem. The Self-Adaptive Context Learning (SACL) is recurrent pattern,
based on the AMAS approach, the key feature of which is to solve the context-mapping
sub-problem. It is composed of two mechanisms, that interacts with the environment:

• Adaptation mechanism, is dynamically building a model, that describes the current
context and possible actions in it. [2, 8] It is related to the learning phase of the system
and its changes.

• Exploitation mechanism, is in charge with the selecting the most appropriate action in
the current context.

7 AMOEBA: Agnostic MOdEl Builder by Self-Adaptation

The building of the model in adaptation mechanism is performed by using Agnostic MOdEl
Builder by Self-Adaptation (AMOEBA), based on the AMAS approach. The model explains

122 Multi-Agent Learning for the Inverse . . .

the interaction that occurs between the mechanism of exploitation and the environment [2].
The model receives a set of input data, we call it percepts, and produces one output. We call
the obtained result as prediction and the actual, correct result is called oracle.

There are two types of agents in AMOEBA [9]:

− Percept agents are responsible for the perceiving information from the environment.

− Context agents are in charge of determination the context, where a specific output
would be a good one.

AMOEBA learning phase is done by building the context agents. Each context agent
has its own validity range and local model. The validity range of the context agent is the
interval, where a specific output will be relevant [9]. If the received value of the percept
agent is included in the validity range interval, we say the validity range is valid for this
percept. The context agents have rectangular shape in two-dimension space (see Figure 10).
The local model is built separately for each context agent. When the validity range of the

Figure 10: The context agents in AMOEBA

context agent is valid for the current perceived value, the output is calculated by using the
local model of that context agent. In this paper, the linear regression is used as a model. The
linear regression function computed using a set of points [9]:

p∑
n=1

xnvn + a (12)

where p is the number of percepts, xn and vn are the coefficients, a is the real number.
The creation of the context agent, the self-organization, the changing of the validity ranges,
the changing local model and the destroying itself is deeply described in reference [9].
Working Principle of AMEOBA. At first, AMOEBA must learn from examples with the
correct outputs. This approach of learning is called supervised learning. Once, the AMOEBA
is learned, it starts to predict the result for a new inputs.

Let’s look at the illustration taken from reference [9]:

1. During the learning phase, AMOEBA uses incoming data to adapt and improve itself.
The specific data set with the correct result is given to AMOEBA. However, at the

E.B. Zhantileuov et al. 123

Figure 11: Learning phase of AMOEBA, with
the given oracle (red arrow)

Figure 12: The exploitation step of
AMOEBA, without labeled data

beginning, the oracle, actual result, is “hidden” from AMOEBA. The valid context
agent tries to predict the output, and checks the predicted value with the oracle. If it
was wrong, it adapts and improves itself by reducing its validity range or changing the
local model (see Figure 11).

2. During the exploitation step, AMOEBA receives a set of data without an oracle. Based
on the previous knowledge it provides an output (see Figure 12).

AMOEBA for the Inverse Kinematics Problem. In IK problem for the robot arm,
the input data are the final coordinates of the end-effector, (x, y, z), remember that in
practice these coordinates are taken from machine learning software. The output is a set
of rotation angles for each servo motor, (θ0, θ1, θ2, θ3). Then the servo motors execute the
given commands to achieve the (x, y, z) target position. This means that we must predict 4
parameters for the robot arm. However, AMOEBA learns to predict only one parameter at the
time. So, using four independent AMOEBAs to perform the learning of each parameter can
give physically unreachable commands to the robot arm because the correlation between each
parameter would be lost; e.g. to reach point (x, y, z) the arm has many ways to reach desired
point by varying its angles, a single solution is given by an arm configuration expressing
four angles which depend from each other in each configuration. If the learning process for
each angle is independent, the prediction for the angle will be non-correlated to the one
of the other angles, resulting in an “impossible” arm configuration. Therefore, in order to
preserve the correlation between the joint’s positions of the robotic manipulators, we decided
to encode the four angles (θ0, θ1, θ2, θ3) to one single number N . This number N is used as an
oracle in the learning process. Then, when the (x, y, z) coordinate is provided to the trained
system, the number encoding the joints angles is given as output, and decoded for the final
application.

In order to AMOEBA to predict values, the system need to be trained. Therefore, a
training data set should be provided.

Training Data for AMOEBA. The learning data for AMOEBA is built in Python
programming language. Several training sets of 100, 1000 and 5000 examples respectively,
are randomly generated in different files. The angle values uniformly cover the fallowing
ranges:

θ0 ∈ (0; π) , θ1 ∈
(
0;
π

2

)
, θ2 ∈

(
0;
π

2

)
, θ3 ∈

(
0;
π

2

)
.

124 Multi-Agent Learning for the Inverse . . .

For each example, the final position and orientation of the end-effector is calculated by
solving FK problem (see Figure 13). The result of FK problem is exact and stored in vector
(x, y, z)T form.

Figure 13: The resulting positions of the end-effector for 5000 randomly generated set of joint
angle values

Finally, each example used in the training file is a row in a table consisting in
θ0, θ1, θ2, θ3, x, y, z parameters, and the respective encoding of the joint positions, given
that the learning ability of AMOEBA is limited by only one parameter. This means that, we
feed AMOEBA with data, that has the correct answers or oracles.
Encoding and Decoding of θ Values. The process of encoding θ values into a single number,
N , occurs before the learning process of AMOEBA. The number N is used as an oracle at
the learning stage (red colored) and at the predicting stage, this is the value that we aim to
predict. The value of Npredict is then decoded to retrieve θ0pred, θ1pred, θ2pred and θ3pred
(see Figure14).

Figure 14: The role of encoding/decoding in the learning and predicting stages of AMOEBA.

Let’s see how θ values are encoded. The movement of joints are limited within the following

E.B. Zhantileuov et al. 125

ranges:

θ0 ∈ (0; π) , θ1 ∈
(
0;
π

2

)
, θ2 ∈

(
0;
π

2

)
, θ3 ∈

(
0;
π

2

)
,

and the maximum value that angle can assume is 1800. This value, incremented by 1, is called
the base (B = 181). Finally, the value N is calculated:

N = θ0 ×B3) + (θ1 ×B2) + (θ2 ×B1) + (θ3 ×B0) (13)

To decodeN , we divide it by base B. The value in remainder is θ3. In order to get θ2, θ1 and θ0,
the division process is repeated, but instead of N , quotient of previous division is used.
Example 1. Let’s encode and decode the set of angles:

θ0=450;θ1=230; θ2= 540;θ3=890

N=
(
45×1813

)
+
(
23×1812

)
+
(
54×1811

)
+
(
89×1810

)
= 267601711

The four values of θ are encoded in one N .
The decoding of N :

267601711÷181 = 1478462 (remainder 89)

1478462÷181 = 8168 (remainder 54)

8168÷181 = 45 (remainder23)

45÷181= 0 (remainder45)

The values in remainders are our angles, which we encode earlier.
Returning to our training data, let’s encode all the joint angles. Table 1 represents several

lines from the real dataset.

Table 1. A training data for AMOEBA

θ0 θ1 θ2 θ3 x y z N
7 12 78 19 0.216441 0.026575 0.13153 5207239
72 18 36 74 0.059224 0.182274 0.20249 52637114
62 27 11 60 0.087914 0.165342 0.25034 45417750
53 48 83 72 0.101095 0.134158 -0.027521 39033342
. .
19 83 53 48 0.189071 0.065102 -0.095592 14528118

Now instead of fourfold training for each θ, AMOEBA will be trained once on the values of
N .
Learning Phase of AMOEBA. In the problem of inverse kinematics for the robot arm,
AMOEBA starts learning by mapping (x, y, z) into cartesian plane. Note that: the oracle is
N . For each point, AMOEBA randomly produces a value Npred. If this value is closer to the
oracle, the validity range of context agent expands, and vice versa, if the difference between
the exact value of N and the predicted value of N is large, the range becomes smaller. If

126 Multi-Agent Learning for the Inverse . . .

Figure 15: The illustration of context agents (red crosses are percept agents; the rectangles
are context agents). Each.

Figure 16: 2D visualization of learning AMOEBA in JAVA.

the validity range of context agent is too small, AMOEBA decides that it is useless and the
context agent will be self-destroyed. Context agents with their local regression models are
illustrated on Figure 15.

Validation Phase. To estimate how well AMOEBA was trained, we need to provide
a testing dataset. Just like in training dataset, this file consists of 100 lines of
θ0, θ1, θ2, θ3, x, y, z, N values. However, at this stage we will use the oracle only to
calculate model error. This means that the input for AMOEBA is only x, y, z, remember
that at the learning stage, the input was x, y, z and oracle N . Based on previous knowledge,
AMOEBA predicts the value of N, the output is Npred. This output is then decoded to get
θ0pred, θ1pred, θ2pred and θ3pred. Next, we simply solve FK problem for predicted joint
angles and obtain the predicted coordinates of the end-effector, (xpred, ypred, zpred). These
steps are described in the following scheme:

x, y, z
input−→ AMOEBA

predic−→ Npred
decode−→ θ0pred, θ1pred, θ2pred, θ3pred

solve FK−→ xpred, ypred, zpred.

The performance of AMOEBA was determined based on the Euclidean distance of two
points and the mean squared error (MSE) between the predicted output and the expected

E.B. Zhantileuov et al. 127

output.

8 Experimental results

First of all, I generated 3 training datasets for AMOEBA with 100, 1000 and 5000 rows of θ
values. To find the corresponding localizations, the problem of forward kinematics has been
solved and for each row, the values of θ were encoded into a single N (see Tab.2). These data
were then transmitted to AMOEBA, so that it could learn. After each training with the data
of different sizes, another testing dataset is given, to check the correctness the model.

Table 2. An example of learning data for AMOEBA

θ0 θ1 θ2 θ3 x y z N
7 16 19 19 0.15 0.02 0.3 5234329
81 65 63 54 0.03 0.2 -0.05 59581224
78 9 68 17 0.04 0.21 0.18 56941037
30 21 13 12 0.13 0.08 0.3 22041282
. .
55 2 82 87 0.09 0.13 0.116 40118667

Once AMOEBA is trained, the validation phase is conducted. Tables 3, 4 and 5 show the
results of validation stage after training with 100, 1000 and 5000 data rows, respectively.

Table 3. After training AMOEBA with 100 rows of data, the mean Euclidean distance is
0.33 and the

∑
MSE = 0.03.

x y z Npred θ0p θ1p θ2p θ3p xp yp zp ED MSE
0.15 0.02 0.3 9720459 13 30 5 9 0.17 0.04 0.3 0.02 0.001
0.03 0.2 -0.05 55375708 75 86 45 58 0.05 0.2 -0.1 0.05 0.002
0.04 0.21 0.18 59999713 82 27 33 43 0.03 0.22 0.2 0.03 0.001
0.13 0.08 0.3 27920717 38 27 0 17 0.12 0.09 0.31 0.02 0.00
. .
0.09 0.13 0.116 37979806 52 8 77 76 0.11 0.14 0.11 0.02 0.01

Table 4. After training AMOEBA with 1000 rows of data, the mean Euclidean distance is
0.12 and the

∑
MSE = 2.66.

x y z Npred θ0p θ1p θ2p θ3p xp yp zp ED MSE
0.15 0.02 0.3 5250410 7 18 17 80 0.16 0.02 0.25 0.05 0.003
0.03 0.2 -0.05 59594295 81 67 28 75 0.04 0.25 0.03 0.09 0.009
0.04 0.21 0.18 57170504 78 38 7 74 0.04 0.21 0.21 0.03 0.001
0.13 0.08 0.3 21849462 29 87 41 72 0.18 0.10 -0.1 0.39 0.147
. .
0.09 0.13 0.116 40903374 56 9 71 84 0.10 0.15 0.13 0.02 0.001

128 Multi-Agent Learning for the Inverse . . .

Table 5. After training AMOEBA with 5000 rows of data, the mean Euclidean distance is
0.1 and the

∑
MSE = 3.12.

x y z Npred θ0p θ1p θ2p θ3p xp yp zp ED MSE
0.15 0.02 0.3 5229175 7 15 51 85 0.19 0.02 0.16 0.14 0.021
0.03 0.2 -0.05 59609975 81 69 23 5 0.05 0.29 0.07 0.15 0.023
0.04 0.21 0.18 56898316 78 4 43 46 0.03 0.16 0.25 0.08 0.008
0.13 0.08 0.3 22157307 30 35 42 27 0.22 0.13 0.15 0.18 0.033
. .
0.09 0.13 0.116 40903374 56 9 71 84 0.10 0.15 0.13 0.02 0.001

With the help of testing data, we can compute the Euclidean distance between two points,
(x, y, z) and (xpred, ypred, zpred). With an increase in the training data, the mean Euclidean
distance decreased, and the sum of the mean squared error increased (see Figure 17). The
explanation for this is closely related to the number of context agents. When we try to
train AMOEBA with more data, it also tries to build a perfect model. Thus, it breaks down
the initial context agents into several small ones. When we have more context agents than
necessary, our model becomes overfitted. On the other hand, we can notice that the values of

Figure 17: The graph of mean squared error of different data size.

Npred are approximated to the real values of N and that AMOEBA always perfectly coincides
with the first angle. So, I found that the order of θ values at the encoding stage is highly
important, since when encoding, the first value is multiplied by the highest base accordance
with equation (12).

Returning to the problem, at the encoding stage, we need to encode so that each θ is
occurred first in order (see Figure 28).

E.B. Zhantileuov et al. 129

Figure 18: At the encoding step, we encode so that each θ will be first in order.

For each N, we create 4 independent AMOEBAs. Note that in this case all links and
relations will be preserved between θ parameters. Further, all other steps will be the same for
this learning. Only, at predicting stage, we select the better values of θ from each independent
learning. Table 6 shows the testing phase results after training AMOEBA with 5000 data
rows.

Table 6. The result of validation phase, after training AMOEBA with 5000 lines of data.
To obtain this results, learning is done independently of each other with the oracle N .

x y z θ0p θ1p θ2p θ3p xp yp zp ED MSE
0.08 0.18 -0.05 67 50 69 31 0.09 0.21 0.00 0.06 0.004
0.04 0.17 -0.11 78 85 56 65 0.04 0.17 -0.1 0.01 0.000
0.20 0.16 -0.04 39 69 26 37 0.22 0.18 0.04 0.09 0.007
0.18 0.11 0.19 31 34 18 56 0.19 0.11 0.21 0.03 0.000
. .
0.27 0.10 0.10 56 9 71 84 0.15 0.06 0.29 0.23 0.052

The result of latter method is pretty impressive: after 5000 learning,
∑
MSE = 0.008

and average Euclidean distance is 0.06.
Conclusion This study presented a detailed solution for inverse kinematics problem using

an Adaptive Multi-Agent System approach.

130 Multi-Agent Learning for the Inverse . . .

To avoid parameter non-correlation, we encoded the output / input of the IK problem as
one base-dependent number. Using this approach, we were able to predict the position and
orientation of the robot arm joints, given a final position.

The results show that the size of the training set is relevant to the performances, as the
bigger it is, the model becomes more complex and the MSE increases. To make the error less,
four AMOEBAs were trained with the differently encoded labels.

This applications were aimed as a part of a more complex system, involving machine
learning techniques to identified a goal for a robot, and multi-agent system to elaborate the
robotic arm position to reach this goal.

References

[1] Samuel R. Buss "Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least Squares
methods"IEEE Journal of Robotics and Automation, 16(2004): 1-19.

[2] N. Verstaevel, J. Boes, J. Nigon, D. d’Amico, M. Gleizes "Lifelong Machine Learning with Adaptive Multi-Agent Systems In
Proceedings of the 9th International Conference on Agents and Artificial Intelligence, 1(2017): 275-286.

[3] R.R. Serrezuela, A.F.C. Chavarro, M.A.T. Cardozo, A.L. Toquica, L.F.O. Martinez, "Kinematic modelling of a robotic
arm manipulator using Matlab ARPN Journal of Engineering and Applied Sciences, 12:7(2017): 2037-2045.

[4] A. Mohammed "Forward and Inverse Kinematic Analysis and Validation of the ABB IRB 140 Industrial
Robot"International journal of electronics, mechanical and mechatronics engineering, 7:2(2017): 1383-1401.

[5] Kwon3d.com. (1998). Rotation Matrix. [online] Available at: http://www.kwon3d.com/theory/transform/rot.html
[Accessed 28 Aug. 2019].

[6] G. Dudek and M. Jenkin, "Computational Principles of Mobile Robotics"Cambridge University Press, USA, 2nd edition,
2010.

[7] J.-P. Georgé, M.-P. Gleizes, and V. Camps, "Cooperation In Di Marzo G. Serugendo, M.-P. Gleizes, and A. Karageogos,
editors, Self-organising Software, Natural Computing Series, pages 7-32. Springer Berlin Heidelberg, 2011.

[8] J. Boes, J. Nigon, N. Verstaevel, M.-P. Gleizes, F. Migeon, "The Self-Adaptive Context Learning Pattern: Overview and
Proposal International and Interdisciplinary Conference on Modeling and Using Context (CONTEXT), 9405(2015) in
LNAI, Springer, Larnaca, Cyprus, 91-104. .

[9] J. Nigon, E. Glize, D. Dupas, F. Crasnier, J. Boes, "Use Cases of Pervasive Artificial Intelligence for Smart Cities

Challenges IEEE Workshop on Smart and Sustainable City (WSSC 2016) associated to the International Conference

IEEE UIC (2016): 1021-1027.

Список литературы

[1] Samuel R. Buss "Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least Squares
methods"IEEE Journal of Robotics and Automation, 16(2004): 1-19.

[2] N. Verstaevel, J. Boes, J. Nigon, D. d’Amico, M. Gleizes "Lifelong Machine Learning with Adaptive Multi-Agent Systems In
Proceedings of the 9th International Conference on Agents and Artificial Intelligence, 1(2017): 275-286.

[3] R.R. Serrezuela, A.F.C. Chavarro, M.A.T. Cardozo, A.L. Toquica, L.F.O. Martinez, "Kinematic modelling of a robotic
arm manipulator using Matlab ARPN Journal of Engineering and Applied Sciences, 12:7(2017): 2037-2045.

[4] A. Mohammed "Forward and Inverse Kinematic Analysis and Validation of the ABB IRB 140 Industrial
Robot"International journal of electronics, mechanical and mechatronics engineering, 7:2(2017): 1383-1401.

[5] Kwon3d.com. (1998). Rotation Matrix. [online] Available at: http://www.kwon3d.com/theory/transform/rot.html
[Accessed 28 Aug. 2019].

E.B. Zhantileuov et al. 131

[6] G. Dudek and M. Jenkin, "Computational Principles of Mobile Robotics"Cambridge University Press, USA, 2nd edition,
2010.

[7] J.-P. Georgé, M.-P. Gleizes, and V. Camps, "Cooperation In Di Marzo G. Serugendo, M.-P. Gleizes, and A. Karageogos,
editors, Self-organising Software, Natural Computing Series, pages 7-32. Springer Berlin Heidelberg, 2011.

[8] J. Boes, J. Nigon, N. Verstaevel, M.-P. Gleizes, F. Migeon, "The Self-Adaptive Context Learning Pattern: Overview and
Proposal International and Interdisciplinary Conference on Modeling and Using Context (CONTEXT), 9405(2015) in
LNAI, Springer, Larnaca, Cyprus, 91-104. .

[9] J. Nigon, E. Glize, D. Dupas, F. Crasnier, J. Boes, "Use Cases of Pervasive Artificial Intelligence for Smart Cities

Challenges IEEE Workshop on Smart and Sustainable City (WSSC 2016) associated to the International Conference

IEEE UIC (2016): 1021-1027.

	Introduction
	Simulating Physical Model of Robot under Robot Operating System (ROS)
	Forward Kinematics
	 Kinematics for 4 DOF Robotic Arm

	Inverse Kinematics
	Adaptive Multi-Agent System
	The Self-Adaptive Context Learning Pattern
	AMOEBA: Agnostic MOdEl Builder by Self-Adaptation
	Experimental results
	Conclusion

