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FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTION OF THE
INITIAL AND BOUNDARY VALUE PROBLEM FOR BOLTZMANN’S
SIXMOMENT SYSTEM OF EQUATIONS

Boltzmann’s one-dimensional non-linear non-stationary moment system of equations in the third
approximation is presented, in which the first, third and fourth equations corresponds to the
laws of conservation of mass, momentum and energy, respectively. This system contains six
equations and represents a nonlinear system of hyperbolic type equations. For the Boltzmann’s six-
moment system of equations an initial and boundary value problem is formulated. The macroscopic
boundary condition contains the moments of the incident particles distribution function on the
boundary and moments of the reflected particles distribution function from the boundary. The
boundary condition depends on the temperature of the wall (boundary).

In this work, using the finite-difference method, an approximate solution of the mixed problem for
the Boltzmann system of moment equations is constructed in the third approximation under the
boundary conditions obtained by approximating the Maxwell boundary condition. For given values
of the coefficients included in the moments of the nonlinear collision integral and the parameter
depending on the wall temperature, as well as for fixed values of the initial conditions, a numerical
experiment was carried out. As a result, the approximate values of the particle distribution function
incident on the boundary and reflected from the boundary, as well as the density, temperature and
average velocity of gas particles, as moments of the particle distribution function, are obtained.
Key words: Boltzmann’s moment system of equations, microscopic Maxwell boundary condition,
macroscopic Maxwell-Auzhan boundary conditions.
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BemmekTepaiH mekapajaH aiina >koHe auddys3us HNIarblIbICY KardaiibIaaa BobiMaHHbIH,
aJIThl MOMEHTTIK TeHJAeyJiep »Kyiieci

BosibrimansbIH Oip ©JImeM Il ChI3bIKCHI3 CTAIMOHAD €éMeC MOMEHTTIK TeHJey ep Kyiecinin yrminmri
JKYBIKTaybl KeJITipiiren, onmga Oipinmii, yuriHmi »KoHe TOPTIHIN TeHIeyaep THICiHITe MacCaHBIH,
UMITYJIBCTIH KOHEe HEPTUsHbIH CAKTAJIy 3aHJapbliHa coiikec Kejei. Bys xkyite aaThl TeHjeyaeH
TYP&JIbI 2K9HE TUNepOOIAIBIK, TUIITI TEHIEYIEP/IiH ChI3BIKCHI3 KYHeciH Kypaipl. BoabIMaHHbIH
aJIThl MOMEHTTIK TEHJIEYJIep Kyiieci YIH aJraliKbI-IIIeKapaJblK, eCell KYpacThIphLIbl. MakpocKo-
MUSJIBIK, [IEKAPAJIBIK, [IIAPT IIeKapara TYCKEH OeJIIeKTepIiH Tapasry (pyHKIUIChIHBIH MOMEHTTEPIH
JKoHe TIeKapaJgaH MArbLIBICKAH OOJIIIIEKTEpIiH Tapaty (QyHKIINSCHIHBIH, MOMEHTTEPIH KAMTHIHI.
[Tekapasbik mapT KabbIpraHblH ([IEKAPAHBIH) TeMIIEPATYPACLIHAH TOYEJII.
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2KymMmbIcTa aKbIPJIB-AfbIpbIM  9iciMen MakCBesIiH IIeKapasblK, MIAPTHIH AMMTPOKCHMAIISIAY
aPKBLIBL AJIBIHFAH [MIEKAPAJIBIK, [IIAPTTHI KAHATATTAHIBIPATHIH BOJIbIIMAHHBIH, TEHIEYJIeD KYyHecinin
VIIHI XKYBIKTaYbI VIIIH KOHBLIFAH apaJjiac eCeITiH XKYbIK caH Ienyi ajabiaFal. ChI3bIKChI3 COKTHI-
FBICY WHTEIrPAJIbIHBIH, MOMEHTTepPiHJeri Ko3dduIueHTTeEp MEH IIeKapaHbIH, TeMIEepaTypachblHAH
ToyeJJIi mapaMmerp/iiH Gepiiren MoHJepiHe cail yKoHe aJIFalllKbl MAPTTBIH HAKTBI MOHJIEP] YIIiH
can sKcrepuMenT Kypriziaai. Horukecinge, mekapara Tycken (KyJiaraH) XKoHe IeKapaJIaH Iarbl-
JIBICKQH MOJIEKYJIAJIAPIbIH YIeCTipy (DYyHKINACHIHBIH,COHBIMEH Oipre, ra3 MOJIEKYJIAJIAD THIFbI3/IbI-
FBIHBIH, TEMIIEPATYPACHIHDBIH 2KOHE OPTa 2KbLIIAM/IBIFBIHBIH, YKYbIK MOH/IEP] AHBIKTAJIIBI.

Tvyitin ce3nep: DonbManHbIH MOMEHTTIK TeHJeyIep xKyiteci, MakcBesiH MUKPOCKOIIHMSJIBIK IIIe-
KapaJiblK, ImapThl, MakcBes- Ay KaHHbIH MaKPOCKOIUSJIBIK, ITEKaAPAJIbIK [IIaPTHI.
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!Satbayev University, . Amvarsr, Kazaxcran
2 AnvaTuHCKHI yHUBEPCATET SHEPTeTHKN U cBaAsm, . Anmarer, Kazaxcran
*e-mail: shinar a@mail.ru
MeTon, KOHEYHBIX PA3HOCTEMH JJIsi YUCJIEHHOTO PelIeHusl Ha4aJbHO-KPAaeBoil 3aJa4u NJIs
IIIECTUMOMEHTHOM CHUCTeMbl ypaBHeHHNII Boabrnmana

[IpuBenena omHoOMepHast HeJIMHENHAST HECTAIIMOHAPHAS CHCTEMa MOMEHTHBIX ypaBHeHnit Bosbiima-
Ha B TPETHbEM NPUOIMKEHNH, B KOTOPOil IIepBO€, TPEThE U YE€TBEPTOE YPABHEHUS COOTBETCTBYIOT
3aKOHAM COXPDAHEHHUSI MACChl, MMILYJIbCa U JHEPIMH COOTBETCTBEHHO. DTa CHUCTEMa COJIEDPIKHUT
MeCTh YPaBHEHUN U TPEJICTAB/ISET HEJIUHEHHYIO CUCTEMY YPaBHEHUN TUIEPOOJIMIECKOTO THIIA.
it 11ecTUMOMEHTHOI cucTeMbl ypaBHeHuit BosbiMana chopMmyampoBaHa HadabHO-KpaeBast
3aga4a. MakKpOCKOIMIeCKOe I'PAHUYHOE YCJIOBHE COJEPYKUT MOMEHTHI (DYHKIIUU PACIIPEIETCHUS
[MAJA0NNX HA TPAHUIYY YACTHUI] U (DYHKIIUU PACIPEIEIEHUsS OTPAKEHHBIX OT I'DAHUIIBI JACTHII.
I'parnvHOE yCI0BHE 3aBUCAT OT TEMIIEPATYPHI CTEHKH (TPAHUIIBI).

B pabore ¢ moMoOIbI0 KOHEYHO-PA3HOCTHOTO METOJA ITOCTPOEHO MPUOIMKEHHOE PEIeHnue CMe-
IAHHOIN 3aJa4m Jjisi CUCTEMbl MOMEHTHBIX ypaBHeHUil BoJibIMaHa B TpeTheM NpUOJINKEHUN
IIpU TPAHUYHBIX YCJIOBUSAX, MOJYUYEHHBIX AIlIPOKCUMAIlAell TpaHumdHoro ycjaosus Makcsemsa.
IIpu 3amanubIX 3HAYEHUSX KOIDDUIMEHTOB, BXOAAINX B MOMEHTHI HEJIMHEHHOTO WHTErPAJIA
CTOJIKHOBEHMIT U [TapaMeTpa, 3aBUCHIIET0 OT TEMIIEPATYPhI CTEHKHU, a TaK2Ke P (PUKCHPOBAHHBIX
3HAYEHUSX HAYAJIBLHBIX YCJIOBHUI MPOBEIEH UMUC/IEHHBIN KCIEPUMEHT. B pesyabrare, TpuOINKeH-
Hble 3HAYEHUs] NAIAIOIINX HA IPAHUIY M OTPaXKEHHBIX OT I'PAHUIBI (PYHKIUU PaCIpeIeseHus
HaCTUll, & TakKXKe IJIOTHOCTb, TeMIepaTypa M CpeJHdAsd CKOPOCTb YacTHUll ra3a, KaK MOMEHTHI
byHKIMA pACIIpEIeSICHUS JaCTHUIl, IOy YeHBI.

Kirouesbie cioBa: CucreMa MOMEHTHBIX ypaBHeHI/IfI BOJIbLU\fIaHa, MHUKPOCKOIIMYECKHNEe I'PaHUY-
HbI€ YCJIOBUA 1V[aKCBeJ'IJ'Ia7 MaKpPOCKOIINYEeCKNe IrpaHnIHbIe YCJIOBUA MaKCBeJIJIa—Ay}KaHa.

1 Introduction

The physical state of a system consisting of monatomic molecules can be described with
varying degrees of accuracy. The state of the system has a variable meaning depending on
what information about the system is useful for the purposes in question. The state of the
system is usually determined by the values of some variables — state parameters. Depending
on how these options are chosen, information about the system can be quite detailed. In other
words, the description of a physical system is possible with varying degrees of accuracy. In
order for the description of a non-equilibrium state to be satisfactory with a sufficient level
of precision, equations must be known that allow one to determine their changes in time
from the given initial the state parameters’ values. The particle distribution function can be
used to describe the state of the system, which satisfies the nonlinear Boltzmann equation.
Boltzmann equation satisfies the rules of mass, momentum, and energy conservation. These
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conservation laws correspond to five partial differential equations, which contain thirteen
unknowns. This system of equations is not closed, since the conservation equations include
additional variables — stresses and heat flux. Assuming that the particle distribution function
has a special form depending only on thermodynamic variables and their derivatives, one
can express stresses and heat flux in terms of these thermodynamic variables. Thus, the
system of conservation equations is brought to a closed form. Within the framework of such a
scheme, various approximations are possible, leading, respectively, to the equations of Euler,
Navier-Stokes, Barnett, etc. Moment equations, which are a series of nonlinear equations
represented in partial derivatives, can be used to characterize the state of the system in
the transition phase. Between the kinetic (Boltzmann equation) and hydrodynamic (Euler
and Navier-Stokes equations, etc.) levels of characterizing the state of a gas lies the system of
moment equations. Different basis function systems, the degree of arbitrariness of the particle
distribution function, and the procedures for calculating the coefficients of the expansion of
the particle distribution function in a Fourier series set apart the various moment approaches.
Expanding the particle distribution function in terms of Hermite polynomials around a local
Maxwellian distribution produced the Grad system of moment equations in [1] and [2]. By
expanding the particle distribution function in terms of the eigenfunctions of the linearized
collision operator [5],[6], the moment system of equations, which is distinct from the Grad
system, was constructed in [3,[4]. The Boltzmann system of moment equations was the
name given to this set of equations. The moment system’s and the Boltzmann equation’s
structures are comparable. Calculating the collision integral’s moments is the source of
the entire challenge [7]. Solution The mixed value problem for the nonlinear nonstationary
moment system of equations of Boltzmann’s existence and uniqueness in three dimensions
were established [3],[4].

The design and operation of aircraft at high altitudes requires the calculation of
aerodynamic characteristics in a wide range of determining parameters (flight altitude,
atmospheric parameters, flight speed, spacecraft orientation, aircraft configuration, etc.).

The aerodynamic characteristics of the flow around bodies in the upper layer of the
atmosphere in the transition mode are obtained by calculation. On the basis of the kinetic
theory of gases, computational investigations of the flow around bodies in the transitional
regime are conducted. The condition at the moving boundary, more specifically the interaction
of a gas with a moving solid surface, is important in aerospace engineering [8]. If the gas’s
initial state is known and the condition on the moving boundary is defined, the integra-
differential Boltzmann equation can characterize the gas’ evolution. The moment method
stands out among the approximate methods for resolving the Boltzmann equation.

The system of moment equations contains all the macroscopic quantities that are
of primary interest when it comes to rarefied gas theory. Therefore, moment equations
are sufficient to determine the macroscopic quantities characterizing the state of gas
molecules. However, boundary conditions must be formulated for a set of partial differential
equations. As a result, the issue of estimating the Boltzmann equation’s boundary condition
approximation emerges. Additionally, the moment equations’ ensuing problem needs to be
properly phrased.

In [9], the macroscopic boundary conditions for the Boltzmann’s nonstationary one-
dimensional moment system of equations were used to approximate the Maxwell’s microscopic
boundary conditions for the Boltzmann’s nonlinear equation. Maxwell-Auzhan conditions
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were given to new macroscopic boundary conditions.

In problems of atmospheric optics, the theory of radiative transfer, and the rarefied gas
dynamics moment equations are often used. As a result, it is a crucial and pressing issue to
design approximate solutions to the mixed problem for the system of moment equations.

2 Materials and methods

2.1 Numerical experiment for Boltzmann’s six-moment one- dimensional system of
equations with macroscopic boundary conditions

We investigate the mixed problem for the third approximation of the Boltzmann system
of moment equations under the approximate Maxwell boundary condition. The third
approximation of the mixed problem for the Boltzmann system of moment equations is
created through the finite-difference method.

We take into account the third approximation of the Boltzmann’s moment system
equations [4]

oo L 1 0¢n

ot o 0r 0, \/_
0 10 2 3 2
% + P \/39001 + 8003 9011 = Joo,
84,010 10 \/7 + \/7 _
ot a@x ®o1 en | =0,
) 10 (1)
g;l + 2z <9000 + \/—9002 39010> =0,
69003 10 3
J037

0t ade 5T

Oopnn 10 2v/2 5
Ve 2 J
ot + - o Or \/1—59002 + 3 ¥10 11
x € (—a,a), t>0,
where oo = @oo(t, ), Yo1 = @oi(t,x), ..., 011 = ¢11(t,x) are the coefficients of particle

distribution function’s expansion to Fourier series;

Ios = (02 — 00) (o002 — ¢35,/ V/3) /2,

1 1
lys = — (03 + 301 — 4o + ——=(201 + 09 — 30 ,
03 4( 3 1 0)80009003 4\/5( 1 0 3)80019002

1 /5 V2 _ L :
L1 = (01— 00) (o011 + 5\/;%0@01 - \/—1_5<,001 ©02) — are the nonlinear collision integral’s

moments, where oy, 01, 09, 03 are constants, a = O is the reflective wall temperature

RO’
and © is the constant. Three homogeneous equations that represent the laws of conservation
of mass, momentum, and energy can be found in the system of equations .
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The system of equations under the boundary conditions obtained by approximating
the Maxwell boundary condition write in vector-matrix form

au 1 _ow Ly (u, w)
— v — 11 )
a L (2)
5 aC e = Iy(u, w), t € (0,7], =€ (—a,a),
o =) w| =w). sel-adl 3)
1 1 1-—
E(C’w_ + Du™) = @_g(cw+ — Du™) o (aﬁ\/ﬁ_)F t € 10,17, (4)
(Cw™ —Du™)| = O%(C’ufr + Du™) - +(061»3\/B_)F te€[0,7], (5)
where
2 1
10 0 N AN
2 3 22 . . 3 V3
C=| 2 5 5|, D=— z _
VT 3 v 3v/2

Il(u’7 'LU) = (07 [027 O>/7 IQ(uJ 'll)) = (07 1037 Ill>/7

. ) o1 1y
u = (00; Po2: 10)'s W = (o1, Poz p11)’s I (4\/5’8\/6’8\/5) ;
(" is the transpose matrix, while D is the positive definition matrix;
uo(7) = (0o(2), ¢oa(x), Pho(x))'; wo(x) = (¢Gy(x), @os(x), ¢1i(x))" are the moments of
initial function provided; w*, u™ are the falling vectors to the moments of the boundary
distribution function; w™, u~ — are the reflection vector from the moments of the boundary
distribution function. Pure mirror reflection is represented by the value of § € [0,1] and

parameter value of § = 1.
Through straightforward calculations, it is feasible to verify

0 C
detC’l—det(C, O)%O,

hence the matrix ('} has eigenvalues are real, with an equal number of positive and negative
eigenvalues. Macroscopic boundary conditions correspond to the number of positive and
negative eigenvalues of matrix Cy. Correctness of the problem () — () in C([0, T]; L*[—a, a]) R
was proved in [10-11].
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As a result, system is a hyperbolic type system of nonlinear partial differential
equations. To define approximate solution of the problem - we use finite-difference
method.

Divide the segment [0, T| into N; equal parts, and divide the segment [—a, a] into Ny equal
parts. Let us consider the grid functions w;; = u(t;, z;) and w;; = w(t;, x;). We approximate
the differential problem - by the following finite-difference scheme [12, 13]
ij w?ﬂ_w?{r—ﬂ noon
- 4 EC ! s = [1(uij7 wij)? (6)
1=0,1,...,Ny—1; g =1,..., No;

n+1 n+1 1

Uip15 — U

n+l _  n+l n+l _  n+l
i1, — Wij N lclui,j—i—l Yig g (ul, wl)
h — L2\, %5 ) (7)

T «
izO,l,...,Nl—l; j:Ng—l,,O,

w

u&*l :u?, wg;“l :w?, j=0,1,..., Ny; (8)
Lcw — byt = Lo+ pury - 20 p o, N ()
a 2,0 Oéﬁ 1,0 Oéﬁﬁ ) LI B

1 _ _\n+1 1 n 1 - B .

S(Cw™ + Dum)y, = a—B(Cuﬁ —Du");y, + WF’ i=0,1,..., Ny, (10)

T is time step, h is spatial variable step.

From the difference equations @ - it follows that the derivatives on t and z are
approximated by the first order.

In order to find a numerical solution of the problem @ - , we use the iterative method.
We start the iterative process by n and continue calculations until we achieve the following
conditions

n+1 n n+1 n - 9 =
luii™ — | <e, |wiT —wii| <e, i=0,1,...,Ni—1; j=1,..., Ny,

ij ij
where ¢ is a given sufficiently small number.
Numerical experiment.

With the following data, a numerical experiment was performed: [—a, a] = [0, 1],

T 1+$a
ulx)=| 1—z |, wo(x)=| (1—2)/2 |, z€]|0,1],
z(1—x) z(1—1x)/2)
a = 38681, opg = 1333, 01 =03 = 0, 09 = —0266,
L2
10 100

Interval [0, 1] is divided into 10 equal parts, h is the step in the spatial variable z, 7 is
the time step. The relation T satisfied the stability condition. Let us present the graphs of

the vectors v and w for value of g = 1.
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3 Conclusion

The moments oo, ©o1, P10 expressed by the macroscopic characteristics of the gas such that
density, average speed and temperature. More exactly, we have following equalities w9 = p,

3 2 3 1
wo1 = apV, p19 = \/;p— \/;azp(§k9—|—§l/2), where p is the gas density, V' is the gas average
speed, 0 is the gas temperature and o = 38.681 is the constant. On the plot unfirstl = g,
unfirst3 = 9, wnfirstl = @g;. 8 = 1 corresponds to pure specular reflection. The value of
the parameter 8 appreciable affected to the values of moments g9, o1, @10. Moreover we
define approximate values of

3

¢3(taxvv):f0(a|v|) Z @nl(tax)gnl(av)v

2n+1=0
fo(alv|) — is global Maxwell distribution, more exactly we define following functions
P (t, Fa, v) = @0 (t, Fa)goo(av) + 95, (¢, Fa)gor (av) + @i (t, Fa) goo (o) +

+pi0(t, Fa)gio(av) + ¢o3(t, Fa)gos(av) + o1 (¢, Fa)gu (av),

where o3 (t, Fa,v) is the distribution function of falling to the boundary particles, o3 (t, Fa,v)
is the distribution function of reflecting from boundary particles,

1 2
goo(av) = 1, gor(aw) = afo| cos, 902(av)=ﬁ(%) (3cos?0— 1),

2 (3 oa*? 2 [alv]\®
gio(av) = 3 (5 - ) , goa(aw) = B (lTQI) (5cos®§ — 3cos ),
4 av|

(av) = 2 ) cos
g1nlav) = 5\/5 5 5 cosf.
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