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DEVELOPMENT OF METHODS AND ALGORITHMS FOR ESTIMATING
THE TEMPERATURE DISTRIBUTION IN THE BODY OF A
RECTANGULAR PARALLELEPIPED SHAPE UNDER THE INFLUENCE
OF HEAT FLOW AND THE PRESENCE OF HEAT EXCHANGE

The article describes methods and computational algorithms for estimating the temperature
distribution law in the body of a rectangular parallelepiped shape under the influence of heat flow
and the presence of heat exchange. It is believed that one of the faces is amenable to heat flow, and
the other faces are insulated or are under the influence of the environment. To use the variational
approach, the total energy functional is calculated, taking into account the boundary conditions.
Minimizing the functional and equating it to zero, we obtain a system of linear equations, the
solution of which gives the temperature of a rectangular parallelepiped at the nodal points. Further,
substituting these nodal temperature values into the approximating function, we obtain the law of
temperature distribution in the body in the form of a rectangular parallelepiped. The temperature
distribution law is obtained by dividing a rectangular parallelepiped into one, two and three
elements. To speed up the process of calculating the temperature distribution law, an algorithm has
been developed that allows you to create a program code that increases the calculation efficiency by
an order of magnitude. This is achieved by the fact that the created code contains only a system
of linear equations, unlike the main program, which forms a general functional of full energies,
calculates derivatives of this functional and obtains a system of equations.

Key words: variational approach, thermal conductivity, heat flow, rectangular parallelepiped,
heat exchange, temperature.
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2KbuTy arbIHBIHBIH 9cepi >K9He Kby aJIMacyZbIH 00JIybI Ke3iH/ie TiKOypBIITHI
napaJuiesienune/] minrHiHgeri JeHeae TeMIlepaTypaHblH TapajlyblH 6arajiay YIIiH 9/licTep MeH
aJropuTMaepai a3ipiey

MakaJiaia XKbITy arbIHBIHBIH 9CeP €Tyl 2KoHe Kby aJIMacy/IblH 00Jybl Ke3iHje TIKOYPBIITH! Ha-
pastenenuies; OPMACHIHIAFBI JICHEI€ TEMIIEPATyPAHBIH Tapasly 3aHbIH Oarajay VIIiH 9icTep
MEH eCenTey aJropuTMaepi cunarraaran. 2KbLmy arsiabl Oip 6eTKe Tycemi, aa 6acka 6eTTep KBLIy
OKIITayJIaHFaH HeEMece KOPIIAFaH OPTAHBIH dcepiHeH O0JIa/Ibl el CaHaIa bl BapuausiblK ToCli i
KOJIJTaHY VIIH ITeKapaJIbIK Kargaijiap/ibl eCKepe OTHIPBIN, TOJIBIK, SHEPTUAHBIH (PYHKIINOHAIIBIFBI
ecernrresiesi. OyHKITMOHAIIBLIBIKTEI a3aliTHII, OHBI HOJI'€ TEHECTIPe OTBIPHIIN, 0i3 CBHI3BIKTHIK TEH-
JieyJiep XKy#eciH ajlaMbl3, OHBIH IIEIiMi TYHIHIIK HyKTeJIepaeri TiIKOYphINThl Tapasiie/elnuIe/Tiy,
TeMIepaTypachlH Oepeii. Opi Kapail, TeMueparypaHblH, TYHHIIK MOHIEPIH XKYbIKTay (QyHKIHs-
ChIHA AJIMACTBIPA OTBIPHII, 0i3 TIKOYPBIIITHI apaJsiIesIeliie] TYPiH/Ie JIeHe/le TEMIEPATYPAHBIH,
TapaJjy 3aHbIH ajaMbl3. TeMIeparypaHblH, Tapajy 3aHbl TIKOYPBIIITHI apaJjuresenune/ari 6ip, exi
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JKOHE VIII 3JIEMEHTKE 0eJIy apKbLIbl aJIblHa bl TeMIepaTypaHblH, Tapaly 3aHbIH ecellTey IIPOIECiH
Te3/eTy YIIiH aJIrOPUTM 931pJIEH/Ii, OJI eCernTey TUIMILINH PeTTi apTTHIPATHIH OaFmapiaMa KOIbIH
Kacayra MYMKIHIIK 6epesii. Byran KypbLiraH Kora Herisri OargapiiaMaial aiftbIpMAIIbLIBIFBL TEK
CBI3BIKTHIK, TEHEYJIEep Kylieci 6ap, 0JI TOJIBIK, SHEPIUSHBIH, KAl (DYHKIIMOHAJIBIFBIH KYPaiiIbl,
oCbl (PYHKIIUSIHBIH TYBIH/IbLIADBIH €CENTENIi 2KOHe TeHIeyJIeD KYHeCiH amaibl.

Tvyitin ce3mep: BapuarusiblK TOCLI, KBTIy OTKI3TIMITIK, Kby aFbIHBI, TIKOYPBIIITHI I1apaJiie-
JIETIUTIE], YKBITY aJIMaCy, TEMIIEPaTypa.
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Paspaborka MeTOZI0B U aJIrOPUTMOB [JI OIEHKHU pacHpe/iejieHns TeMIIEPATYPbI B Tejie (POPMBI
IPsIMOYTOJIBHOTO MapaJuieJIenunesa IIpu BO3AENCTBUU TEMJIOBOTO IIOTOKA U HAJIMYUUS
TEeNnJIo00MeHa

B craTtpe onmcaHbl METOIBI U BBIYUC/IUTEIbHBIE AJITOPUTMbI JJIsI OIEHKN 3aKOHA PaCIpeesIeHns
TeMIIepaTypbl B Tese (HPOPMBI MPSIMOYTOJIBHOTO TApaJLIe/euIe/ia MPU BO3IEHCTBUN TEIJIOBOTO
[IOTOKA ¥ Haju4ust TerjioooMeHa. CuuraeTcs, YTO Ha OJHO U3 I'DAHU IOJJIAETCsl TEILJIOBOI ITOTOK,
a Jpyrue rpaHul TeNJIOU30JIMPOBAHHbIE UJIM HAXOJATCS 110/, BO3JEMCTBUEM OKPYZKAaIOIIel CPeJIbl.
st MCIOJIb30BAHUS BAPUAIMOHHOTO IIOAXO0JA BBIYUC/IAETCS (DYHKIIMOHAJ IIOJHOW 3SHEPIuw,
YUIUTBIBAIONINN rpaHudHble ycaoBus. MunnMusupys QyHKIMOHAT W IPUPABHUBAS €r0 K HYJIO
IoJjiy4aeM CUCTeMy JIMHEHHbIX ypaBHEHUM, pellleHre KOTOPOi JlaeT TeMIlepaTypy HIPSAMOYIroJIbHOTO
rapaJiiesieliuIe/ia B y3J0BbIX TouKax. /laJiee, mMojicTaB/IsAs 3TU Y3JIOBble 3HAYEHUS TEMIIEPATYP
B AIIPOKCUMUPYIOILY (DYHKITUIO, [TOJIYyYNM 3aKOH PacCIpeie/ieHns TEMIEPATYPhl B Teje (opme
MIPSIMOYTOJIFHOTO  ITapaJlIeJieuie a. J3aKOHA PACIPEIeeHUs TeMIepaTypbl IOJydYeHa IIPU
pa30ueHus IPAMOYTOJIBHOTO MapaJslIesieluileia Ha OJWH, JIBA W TPHU 3djaemeHTa. s ycKopeHus
IIPOIeCCa BBIYMCJIEHNs 3aKOHA PAaCIPeJIesIeHNs] TeEMIIEPATYPhI pa3paboTaH aJrOPUTM, HO3BOJISIO-
Ui CO3/IaTh KOJI TPOIPAMMBbI, KOTOPBIN yBEeJIUIUBAIOT 3(D(MEKTUBHOCTD BHIYUCICHUS Ha, MIOPSJIOK.
DTO JOCTUTAETCSI TEM, YTO CO3/ABAEMbIi KOJI COJAEPXKUT TOJILKO CHCTEMY JIMHEHHBIX YpaBHEHUI B
OTJINYUU OT OCHOBHOI IpOrpaMMbl KOTOpas (opMupyer OOy (DYHKIIMOHAJ MTOJTHONW SHEPTHiA,
BBIYHCJ/IAET TPOM3BOIHBIE OT 3TOr0 (DYHKIIMOHAJIA U MOJYIAET CUCTEMY YPaBHEHUIA.

KuaroueBble cjioBa: BapUAIMOHHBIN MTOIXO0J, TEIJIONPOBOIHOCTD, TEIJIOBOM MOTOK, MPIMOYTOJIb-
HBII TIapaJIJIe/IeINIIe]T, TeIJIOOOMEH, TEMIIEPATYPA.

1 Introduction

In [1], general problems on the use of the finite element method for determining the thermo-
mechanical characteristics of various solids are considered. In [2], the temperature distribution
law is compared for a rectangular parallelepiped and a rod with a similar size, other things
being equal. In [3], a computational algorithm and a method for determining the temperature
field along the length of a rod with a limited length and variable cross-section are proposed. In
[4], an energy method is considered for determining the law of temperature distribution, three
components of deformation and stress, provided that both ends of a rod of variable cross-
section are rigidly fixed. In [5], the stationary solution of thermal conductivity problems with
low convergence is shown for a rectangle with specified zero temperatures, with the exception
of one surface with an abrupt temperature change. In [6], exact nonstationary solutions of
thermal conductivity in two-dimensional rectangles heated at the boundary are considered.
In [7], the stationary problem of thermal conductivity through a local fractional derivative
is investigated. Thermal conductivity, convective heat exchange, radiation heat exchange,
thermal and hydromechanical calculations of heat exchange devices, as well as heat and
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mass transfer during phase and chemical transformations are systematically considered [8].
In [9], the basics of calculating heat transfer through a layer of matter are described. In [10],
a local fractional Euler method is proposed to consider the stationary problem of thermal
conductivity. In [12], the equation of thermal conductivity of an eccentric spherical ring
with an inner surface maintained at a constant temperature and an outer surface subject
to convection is analytically solved. In [13]|, a simple and accurate model is proposed for
predicting the dimensionless parameter of the shape factor. In [14], a three-dimensional
equation of unsteady thermal conductivity was investigated by approximating the spatial
derivatives of the second order by a five-point central difference in cylindrical coordinates. In
[15], a three-dimensional unsteady thermal conductivity equation is considered, taking into
account the presence of convective terms and phase transitions. In [16], one computational
approach to the calculation of the heat equation is presented, which differs in the case of
three-dimensional oblique unstructured grids by the compactness of the grid pattern and the
unconditional stability of the numerical algorithm. The work [17] is part of a broader study
on the assessment of heat transfer through the elements of building enclosing structures by
the most accurate assessment of the effect of thermal bridges of the most common building
structures. Currently, the discontinuous Galerkin method with discontinuous basis functions
is widely used in [18|, which is characterized by a high order of accuracy of the resulting
solution. In [19], the transition region between two solids whose state differs from the state
of the contacting media is investigated. In [20], a technique for optimizing the control of the
thermal conductivity process in a solid is considered. [21]| describes an approximate method for
calculating the temperature field in solids heated by convection and radiation simultaneously,
when the thermophysical properties of a substance depend on temperature. In [23], the
main problems of the modern theory of heat transfer are outlined, including many that go
beyond the standard courses. In [24], solutions to problems of unsteady thermal conductivity
are considered by several methods. Mathematical steps leading to the calculation of the
temperature field in multidimensional multilayer bodies are described in [25] and numerical
results for two-layer bodies are presented. In [26], the temperature distribution under the
influence of a heat flow from one side of a parallelepiped and during heat exchange with the
opposite side is considered using an approach where the solution of the problem is expressed
as a solution of one-dimensional problems and multiple Fourier series or their generalization
are used. In 27|, a representative stationary problem of thermal conductivity in rectangular
bodies with uniformly distributed heat generation is analytically investigated.

2 Problem statement

Consider a solid body in the form of a rectangular parallelepiped (Figure 1). The origin of
the coordinates is located in the lower left corner of a rectangular parallelepiped, as shown
in the figure. The nodal points are numbered starting from the lower-left near corner (node
0). The dimensions of a rectangular parallelepiped along the x, y and z axes are denoted by
a, b and ¢, respectively. Convective heat exchange occurs on the face (0, 1, 2, 3), and a heat
flow is applied to the face (4, 5, 6, 7).

The task is to find the law of temperature distribution at any point of a solid body in the
form of a rectangular parallelepiped.
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Figure 1: Diagram of the solid under study in the form of a rectangular parallelepiped

Mathematically, the stationary problem is reduced to solving the heat equation:

0T 0T 0T
o (G ) + 1 (G ) 10 (5) =0 W

under restrictions:
— of the second kind

drT dT dT
Kypy—+Kyy— +K,,— =0 at S 2
( al:lc+ yydy+ dz) Sl+q a1 @)
— the third kind
dr dT dT
Kyy— +Kyy—+ K,,— h(T —Toc) =0 at S 3
( d:z:+ yydyjL dz) 52+ ( oc) a2 )
where
T — is the temperature, °C'
kBT
q — heat flow, —;
m
B
K.z, Kyy and K, — thermal conductivity coefficients in the directions z, y and z, %;
M
kBT
h — heat t f fficient, ——;
eat transfer coefficient, NTal

Si — the surface on which the heat flow enters, m?;

Sy — the surface where heat exchange occurs, m?;

Toc — ambient temperature, °C'.

Equation is the boundary condition for heat flow, and equation is for convective
heat transfer.

The task is to find a solution to equation under constraints and using a
variational approach.

3 Material and methods

3.1 Research methodology

A variational approach is used to solve the problem [1]. According to this approach, the
solution of the problem under consideration is equivalent to minimizing the temperature



A A. Tashev et al. 83

functional at the nodal points:

1 oT\ 2 oT\ 2 oT\*
1= [t () + Ko (55 + 5 (2 ) oo
Vv

h
+/qu+/§(T—Toc)2dS:J1+J2+J3+J4+J5,
St Sa

where V' is the volume of the body under consideration.
For a rectangular parallelepiped (Fig. 1), formula has the form:

a b c
1 oT\ > T\ > oT\”>
s=g [ ] Jue (52) +m (5) 5 (32) 1
0 0 0
a b h a b
+//quxdy - +§//(T—TOC)2d:17dy
0 0 - 0 0

When the side faces of a rectangular parallelepiped are not thermally insulated, the
following terms are added to the functional J, taking into account heat transfer:

h a (&
%:—//@—EMMMZ :
2 y=0
0 0

L a ¢
J6 = = / /(T — Toc)2d$d2 s
2 y=b
0 0
L a c )
J7 = 5 (T — TOC) Clde y
0 O

b a c
Jg = 5 / /(T — Toc)Qdde 70,
0 0

where J5, Jg, J7, Jg — characterize the heat exchange on the faces (0, 1, 4, 5), (2, 3, 6, 7), (0,
2,4,6), (1, 3, 5, 7) a rectangular parallelepiped, respectively.
8

2=0

In this case, the total functional is J = ) J;.
i=1
To minimize the functional J, the temperature T'(x,y, z) is approximated by a third-order
polynomial:

T(x,y,z) = Ao+ M + Ao+ A3z + Mzy + Asxz + Agyz + Arxyz. (6)

Suppose that the temperature values are set at the nodal points of a rectangular
parallelepiped [4]:

T(zo,Y0,20) = To; T(x1,y1,21) = T1; T(22,y2, 22) = To; T(xs,ys,23) = T5;
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T(w4,Ya, 21) = Tu; T(5,Ys5, 25) = Ts; T(x6,Ys, 26) = T6; T'(w7,y7,27) = T
After substituting These values into formula and bringing similar terms, we get [4]:

T(a?J,Z) - (,Do(ZE,y,Z) * TO + (,Dl(ZL‘,y,Z) * Tl + 902(1‘7:% Z) * T2+
(7)

+S03(x7ya Z) * T3 + @4(1’,@/, Z) * T4 + 905(x>ya Z) * T5 + @6(1‘7?/7 Z) * T6 + g07(x,y, Z) * T77

—a<zr<a; —b<z<b —c<x<c where

ol 1, 2) Z Yy yz T xZz TY TYZ
0 » I = - 7 P - — T T
bx bfz axy a:yzab abc
901(5177.%2)_—————4’—,
9. 2) 4 g¢ gh  ghe
2\ Yy =7 37— 7 B
z 7fzb abe Tyz (8)
(104('Iayaz):__b___+7a
€ %y Yy, 00
905('1'7:’-/7 >____a
@y = s
Y6\, Y, b . ZbCQa
Yy
907($7y7 ) ?7

Differentiating by the variables x, y and z we get:

7
or _ < 9 O¢ip.
ox &B

1= 1
el i
0z p 0z Y

or or oT
dx’ Oy’ 0z

the Python sympy module, the expression of which is not given here because of the bulkiness.

Expression J (5] after substitution of 7" and ( ) from @ is calculated using

After differentiating the functional J by variables Ty, T, and we equate it to zero. As
a result, we obtain a system of linear equations with respect to variables Ty, 7%, which, for
example, for the thermally insulated case, when we consider a cube with the length of the
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sides a, has the form ([10)):

(d 00 f 0 f f f) /[T
0d fofoff T,
0 fdof foO°Ff T,
FO00df ffoO |,
O f f fdo0ooO07f T}
S0 f 5 0dfo0 Ts
f 5050 fd0 Ts
lFrrofo00d)\m
(¢ 292000 0) (10)
g %7 4 T\ (1)
79 ¢ 20900 0 T, l
74 g ° Ty l
+4 229 50000 7 | =
12 2 y p
000 0000°O T p
000 0000O T p
000 0000O T L p
L0000 0000O0]

where d = 0.3Kzz xa; f = —0.083 x Kxx xa; g = axx2x h/9; | = Toc * a *x x2 x h/4;
p=—ax*%*2%q/4

Here, it should be noted that the developed Python program allows you to obtain a system
of linear equations for any number of partitions of the sides of a rectangular parallelepiped.

The solution of the resulting system of equations makes it possible to determine the
temperatures at the nodal points of a rectangular parallelepiped. Substituting these values in
@, we obtain the law of temperature distribution at any point of a rectangular parallelepiped.

All calculations were obtained using a program developed in the Python programming
language.

4 Results and discussions

For the practical implementation of the proposed approach, a Python program was developed.

As an example, a cube was selected (Figure 2) with the following initial data:

B B
a = 0.04m, b = 0.04m, ¢ = 0.04m, Kpp = 75000, Toec = 40°C, ¢ = —150°—r
MC M2

Br
h = 100000 20

If we derl\fote the number of partitions of a rectangular parallelepiped into elements along
the z, y and z axes as mx, my and mz, respectively, then for a cube we have max = my =
mz =m.

Let’s introduce arrays of temperatures 710, 8], 72[0, 27], T3]0, 63] corresponding to the
nodal points of the cube for the number of partitions m = 1, 2, 3 respectively. The temperature
values at the nodal points of the cube for the thermally insulated case turned out to be equal
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Figure 2: A solid body in the shape of a cube, consisting of one element

for m =1 (fig. 2):

T1[0;3] = 54.99, T'1[4; 7] = 62.99;

for m = 2 (fig. 3):

T2[0,8] = 55, 729, 17] = 59, T2[18,27] = 63;

¥
24 5 16
15 16 17
& B 21 22 23
! .--""""Ffr
12 13 13 —
3 A T | 18 19 20
|_—19 10 11
__ﬂ___,..--""’l
1 2 %

Figure 3: A solid body in the form of a cube when divided into 8 elements

for m = 3 (fig. 4):

T3[0,15] = 55, T3[16,31] = 57.66, T'3[32,47] = 60.33, T4[48,63] = 63;

YA

6] & @3]
ad A% A4 -1]'...“.. 57 T wa)|
B X lg—a @ B J
LY L
2 1B W BmoE 3 9 : il
| 36 37 B 39—
i L—HE 50 51
g ) T | .
b L ] & L=
' ~T32 A VIS
1 5 3 Il——T
_p-—"T6 17 5 1
0 1 2 3

Figure 4: A solid body in the form of a cube when divided into 27 elements
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The laws of temperature distribution for the thermally insulated case, when m = 1, m = 2
u m = 3 they turned out to be the same, corresponding to a straight line (Figure 6).

— — s - — -
b Lok aad [-Loi } Coa a3 O

Figure 5: The law of temperature distribution in a cube for the thermally insulated case at
m=1,m=2and m = 3.

On (Fig. 5) through T'r, Tg, Tec, temperatures are indicated along the segments (0,4),
(C,D), (A, B), respectively.

The law of temperature distribution on the face (1, 3, 5, 7) of the cube for the thermally
insulated case is shown in (Fig. 6).

Figure 6: The law of temperature distribution in a cube in the thermally insulated case of
temperature on the plane (y,z) at a fixed value x = a for the thermally insulated case at
m=1m=2 m=3

From the data 773[0,63] it can be seen that in the thermally insulated case, the
temperature in the sections of the cube perpendicular to the z axis is the same.

Consider the temperatures for the edge of the cube passing through the nodes:

— (0; 4) at m = 1. Here the temperature in the nodes is T'1 = (41.50, 45.24);

—(0; 9; 18) at m = 2. Here the temperature in the nodes is 72 = (41.71, 43.04, 45.19);
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— (0; 16; 32; 48) at m = 3. Here the temperature in the nodes is T3 =
(41.75,43.69, 44.14, 46.32).

The temperature distribution laws for the non-insulated case for segments (0,4), (A, B)
and (C, D) (Fig. 7) at m=3 are shown in (Fig. 12)

46
a5

¥ ]

e’

43

42

0.00 0.01 0.02 0,03 0.04 0.05 0.06

Figure 7: The law of temperature distribution in a cube for the non-insulated case at m =1,
m=2andm=23

From (Fig. 7) it can be seen that the temperature at the middle of the cube (Tc¢) is
greater than the temperature of the middle of the face (T'g) and its turn (Tg) is greater than
(T'r). This means that the temperature values along the line AB (Fig. 7) passing through
the center of the cube are greater than the temperature on the edge (0 —4) (Fig. 7) and the
temperature on the line passing through the middle of the cube face (line C'D of Figure 2). In
turn, the temperature on the C'D line (Fig. 7) is greater than the temperature on the AB line
(Fig. 7). This means that the farther the line is from the center, the lower its temperature.

The law of temperature distribution in the cube for the edge (0, 4) (Fig. 7) when
partitioning m = 1, m = 2 and m = 3 in the non-insulated case is shown in (Fig. 13).

It can be seen from (Fig. 13) that the temperature distribution law for the non-insulated
case has a nonlinear character. Let’s determine the maximum relative error between the
partition 1 and 2. Along the z axis at m =1 (T' = 267.5) and with m = 2 (T? = 248.3).

1 2

5 100% = 6.5%
Determine the maximum temperature deviation between partitions 2 and 3.
Determine the maximum relative error between partitions 2 and 3. Along the z axis at

m =2 (T? = 265) and with m = 3 (T° = 260).

2 3

100% = 1.7%

3

The law of temperature distribution on the face (1, 3, 5, 7) of the cube for the non-
insulated case at m = 1 is shown in (Fig. 14).
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Figure 8: Temperature distribution laws for the edge (0, 4) of the cube (Fig. 7) for the
non-insulated case at m =1, m = 2, m = 3.

Figure 9: The law of distribution of non-temperature on the face (1, 3, 5, 7) of the cube at
m = 1 for the non-insulated case.

Figure 10: The law of distribution of non-temperature on the face (1, 3, 5, 7) of the cube at
m = 2 for the non-insulated case.
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The law of temperature distribution on the face (1, 3, 5, 7) of the cube for the non-
insulated case at m = 2 is shown in (Fig. 15).

The law of temperature distribution on the edge (1, 7, 19, 25) (Fig. 8) the cube for the
non-insulated case at m = 2 is shown in (Fig. 16).

Figure 11: The law of distribution of non-temperature on the edge (1, 7, 19, 25) (Fig. 8) a
cube at m = 2 for the non-insulated case.

5 Conclusion

In this paper, a general variational functional is obtained for determining the law of
temperature distribution in the body of a rectangular parallelepiped shape, when a heat
flow enters one of the faces of a rectangular parallelepiped, and heat exchange with the
environment occurs on the opposite side. Nonlinear temperature approximation is used
to minimize the obtained functional at discrete points. The minimization of the general
functional by the temperatures set at the nodal points is carried out. At the same time, the
minimization problem is reduced to solving systems of linear equations. The temperature
values at the nodal points are used to estimate the temperature distribution law at any point
of the body in the form of a rectangular parallelepiped.

To test the proposed approach, a comparative analysis of the laws of temperature
distribution in the body of a rectangular parallelepiped shape, whose length in z is much
greater than the length of the other sides, with a rod with similar geometric characteristics,
is carried out. It turned out that the relative error in determining temperatures does not
exceed 1.7%. This error is due to the difference in the shape and cross-sectional area of the
rod and the rectangular parallelepiped perpendicular to the z axis.
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