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SMOOTHNESS OF SOLUTIONS (SEPARABILITY) OF THE NONLINEAR
STATIONARY SCHRODINGER EQUATION

The equation of motion of a microparticle in various force fields is the Schrédinger wave equation.
Many questions of quantum mechanics, in particular the thermal radiation of electromagnetic
waves, lead to the problem of separability of singular differential operators. One such operator is
the above Schrodinger operator. In this paper, the named operator is studied by the methods of
functional analysis. Found sufficient conditions for the existence of a solution and the separability
of an operator in a Hilbert space. All theorems were originally proved for the model Sturm-Liouville
equation and extended to a more general case.

In §1-2, for the nonlinear Sturm-Liouville equation, sufficient conditions are found that ensure
the existence of an estimate for coercivity, and estimates of weight norms are obtained for the
first derivative of the solution. In Sections 3-4 the results of Sections 1-2 are generalized for the
Schréodinger equation in the case m = 3.
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MuxkpobeekTepIain opTypJai KyIn epicrepimmeri xKosrambic Teraeyi IIpeanArep TOMKBIHBIHBIH,
TeHeyi 60bin TabbLIa bl KBAHTTHIK MEeXaHUKAHDBIH KOITEreH CYPaKTaphl, aTal alTKAHIA JJIEK-
TPOMATrHUTTIK TOJIKBIHIAPIbIH, JKBIIYJIBIK, COYJIEJIEHY]1 CUHTYIISIPJIbl JudDepeHIraIIbIK, OlepaTop-
JlapabiH, OeJiiny Mocesecine okeseni. OcbiHgai omeparopsapisis, 6ipi korapbriiarbl [penunarep
oTepaTopPhI OOJIBIN TAOBLIABI. Byl 2KyMBICTa aTaIFaH orepaTop (hyHKITHOHAIBIK, TAJIIAY dIicTepi-
men 3eprresei. [lemimain 60syst xome ['miibbepTt Kenicririageri omepaTop/ by OeJTiHyl YIITiH XKeT-
KiJTiKTi mmaprrap Tadbuiael. Bapiasik Teopemanap bacrankbina [Iltypm-JInysumn Tenaeyinin yarici
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26 Smoothness of solutions (separability) of the nonlinear ...

VpaBHEHUEM JIBUKEHUsI MUKDPOYACTUIIBI B PA3JIUYHBIX CUJIOBBIX IIOJISIX SIBJISIETCS BOJIHOBOE YPaB-
wenne Illpeaunrepa. MHOrme BOIpPOCHI KBAHTOBON MEXaHUKHU B YACTHOCTU TEILIOBOE W3JIyJIEHUE
3JIEKTPOMATHATHBIX BOJIH MPHUBOJSAT K 33J[a9€ PA3MEJUMOCTH CHHTYJISIPHBIX duddepeHnnaabHbIX
oneparopoB. OJHUM M3 TAKUX ONEPATOPOB SBJISETCS BBINEyKasaHHbI onepatop Illpemunrepa.
Hammoit pabore mccaeayeTcss HA3BAHHBIN OMepaTop MeToJaMu (PyHKIIMOHAILHOrO aHamn3a. Haii-
JIEHHBI{ JOCTATOYHbBIE YCJIOBUS CYIIECTBOBAHUY PEIIEHNN U Pa3/IeIMMOCTH ortepaTopa B ['uibbepbo-
BOM IIPOCTPAHCTBE. Bce TeopeMbl MepBOHAYAIBHO JOKA3AHbI JIjIs MOJEeILHOTO ypaHernue [IITypma
-JImyBunist u pacupocrpaHeHo Ha Oojiee OOIIMIt CIydai.

B §1-2 mra menumeitnoro ypasuenus: [lltypma-JIlnyBuiuis HafiieHbI JOCTATOYHBIE yCJIOBUsI, 0O€C-
[MEYUBAIONIIE HAJNINE OIEHKU KOIPIUTUBHOCTHU, & JJIsl IEPBOil IIPOM3BO/IHOM PEIIeHNUs 0Ty YeHbI
OIIEHKH BECOBBIX HOPM. B §3-4 06006mienb pesyibrarst §1-2 miist ypasuenust IlIpeaunrepa B ciry4dae
m = 3.

Kumrouessbie cioBa: Hejunueitnble ypaBHeHUs, HEIIPEPBIBHBIN OIIEPATODP, 9KBUBAJEHTHOCTD, TOTEH-
nuaabHas QYHKIUS.

1 Introduction

In this paper, the smoothness of solutions to the nonlinear equation is considered
Lu=—-Au+q(x,u)u = f(z) € Ly(R™)

In [1,2] for the nonlinear Sturm-Liouville equation, sufficient conditions are found that
ensure the existence of an estimate for the coecitivity, and for the first derivative of the
solution, estimates for the weight norms were obtained. In [1,2]| generalized the results of §1-2
for the Schrodinger equation in the case m = 3.

2 Materials and methods
For simplicity, we present one result for the Sturm-Liouville equation.

Theorem 1 Let the following conditions are satisfied:

a) q(z,y) = 6)0;
b) q(x,y) is a continuous function on the set of variables in R*;
Q(xv CO)

c) sup sup ——— < o0, where s any finite value. Then for any
[e—n)<1 |Co—Ci|<A  |col<a  q(x,Ch)

f(z) € Lao(R™) there is a solution () to the equation

Ly = —y"(z) + q(z,y)y = f,
which has quadratically summable second derivative, i.e. y"(x) € Lo(R™).

The proof of this theorem belongs to Muratbekov M.B. [3]. Unfortunately, in the work 8]
the author was incorrectly specified. Please apologize for inaccuracy. As we will see later (in
Section 2.4), such results hold for a wide class of nonlinear operators. For linear operators of
similar work was considered in [1-3, 5-7, 9, 11, 12, 13]

Let us enter the following designations: R™ is Euclidean m-dimensional real space of
points = (x1,T,...,2y). Q is a closure of Q where ) is an open set in R™, || - |,q. is a
norm of the element L,(€2). Instead of || - ||, o at @ = R™ we will write || - ||,, if p = 2 in
designations || - ||, and || - ||, we will omit p.
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|ex]
Do — 0'“lu
[T a1 a
Ox{' ... 0xqm
a = (ag,...,q,) — multiindex, || = o + @+ ...+ ay. C1,Cy, ... are various constants

constants, the exact value of which does not interest us.

2.1 Existence of the solution

In the given section the following equation is considered

Ly = —y"(x) + q(x,y)y = f(x) € La(R), (1)

where R = (—00,00).
The function y € Lo(R) is called the weak solution of equation (1), if there is a sequence
{yn} € W3 (R) W3 ..(R) such that

190 = Yllagoeiry = 0 1LY = fllLg sy —> 0, 1 —> 00.

It is said that the sequence {n,}>, of basic functions from C{°(R™) converges to (1)) in
R™, if:

a) for any compact K C R™ there will be such a number N, that 7,(z) =1 at allz € K
and n > N

b) functions {n, } uniformly limited in R™, |n,(z)| <1,z € R™, n=1,2,...[8].

Lemma 1 Let q(x,y) > § < 0 and is continuous on both arguments in R2, then for any
f € Ly(R) there is a weak solution of the equation (1)) in the space W3 (R).

Proof. Since, according to the assumption, the function ¢(z,y) is limited from below,
then, without losing the generality of reasoning, we can assume that the condition ¢(x,y) > 1
is hold.

First, we will be engaged in proving the existence of a solution to the first boundary value
problem

(4(@, Yn.) = Dy, — i, 2)

Ly Yn. ==y +y, +
e T e T T (5 (@) (@) — 1)+ 6@ 0 )

’27(*an70«n)

Yne(+0) = yn.(a) =0, (3)

where [—an,a,] — suppn,, and b(z,y,.) = (¢(2,Yn.) — 1)yn. in the space W3i[—an, an);
W3 ol—an, an] — is space of functions z € W3 u 2(—a,) = z(a,) = 0.

We will reduce problem - to an equivalent integral equation, to which we then
apply the Schauder principle [9].

Let us denote by Lg the operator defined on nyo[—an, a,] with the equality

Loy = —y"(x) + y(x).

Due to the known theorems for the Sturm-Liouville operator there is a completely
continuous inverse operator L; ', defined all over space Ly|[—ay,, a,]. We need Lemma.
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Lemma 2 The problem - s equivalent to the integral equation

q(z, Lyt z,.) — 1)Lyt 2,
. (4(e Ly ') = DL .

T T e(a(e, Ly ) — 1)+ elble, L 2B n
Znes fnn S LQ[_an7 an]'

The proof is obvious.
Let us denote by A the operator which acts on the following formula:

(q(x, Lalz) — l)Lalz

A<Z) - N — + fnn
L+ e(g(e, Lg'2) = 1) +ellb(z, Ly 2) |3 q.
Further we denote
< 1
5(0; V) = {0 € Lo(—an,an) : [0l < N = %} |

where ¢ = z — fn,,. Consider the operator on this ball
A() = A(z) = frimn = AW + fiin) = frin =

_ (alw, Lo* 9 + 1)) = DL " (9 + fn.)
Tt (g Lo (0 + 1)) — 1)+ elb(@ Lo 0+ f1a) B o

It is obvious that, if ¥y — is a fixed point of operator ,,, then ¥y + fn, — is a fixed point
of operator . Therefore, in the future instead of operator A, it is enough to consider Ay.

Let us prove that o reflects the ball S(0; N) € Ly[—ay, a,] in itself. Let ¥ € S(0; N). We
will consider two cases:

1.

_ _ 1
(a2, Ly (9 + fna)) = DL (0 + fra)l3 —anan) S N = NG
e (4l L52) ~ DL
q(x, Ly 2) — 1)Ly =
400} = | - . <
L+e(q(z, Ly'2) = 1) +ellb(z, Lo )3l —ap an)
_ _ 1
< |l(g(z, Ly (0 + fnn)) = DL (9 + fa)[| < N = NG
2.
(q(z, Ly ' (0 + frn)) = 1)L )@ + frmyll > N.
Then ) )
H(q(xa LE (19 + fnn)) - 1)[’(; (19 + fnn)HZ(*an,an) .
AO(QS% < —1 —1 2 -
ell(q(@, Lo~ (0 4 fnn)) — DL (0 + fn) 15, —an an)
1 1 1
= 1 1 S ==
ell(a(@, Lo (9 + fna)) = DL (0 + fna)llz(-anan) ~ EN - VE
Therefore,

||A(19) ||27(*an,an) < N7 Vi e g((), N) (5)
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Now we will show that ,, — is completely continuous operator at S(0; N). Continuity is
obvious. Further, by virtue of Riesz theorem, it is enough to prove that the set of functions
{ApY : 9 € S(0; N)} is uniformly limited and the relation is performed

lim [(Ao(9)) (2 + 1) + (Ao(¥))(2)[[2,(~an.an) = 0

uniformly on ¥ € S.
Due to estimate (5] the set of functions {Aq(¥9) : ¥ € S(0; N)} is uniformly bounded.
Due to the continuity of ¢(z, y) on combination of variables and properties of the operator
Ly", the relation ¢(z,v)

I(Ao(9) (2 + h) = Ao())(@)[13,(~a,.an) = O
uniformly at A — 0 on ¥ € S(0; N).

Thus, the operator A,, is completely continuous and reflects S(0; N) in itself. Therefore,
according to the Schauder principle; integral equation has at least one solution in the ball
S(0; N). Hence, by virtue of Lemma 2, it follows that there exists a solution to problem
— (3)) belonging to the space W3.

Further [|yn. (w2 [—ay.q,) i estimated from above by constant independent of n, e.

To prove this fact, let us take the linear operator

gz) —1

by =y"(2) + 1+ +e(G(z) = 1) +ell(q(x, yn,) — Dym. I3

)y(z),

Defined on a set W3((—an, an), where ¢(z) = q(z,yn.), and y,. — is a solution of the problem
— (13) with the right side fn,. Let us construct a scalar product (¢n., y,_, y,.). Integrating
in parts and taking into account that non-integral members disappear due to (3), we obtain

1/2

I3 g < 22 / e

00 1/2
Assume that C' = 21/2 ( i |f]2d1:> , then

”yﬂa W3 [—an,an] < C. (6)

Let us choose some sequence {yy,, } of solutions belonging to a bounded set {y,,}, so that

||ynak ||W21[—an,an] < 07 (7)

where ¢, — 0 at k — oo.
By virtue of @ from the sequence {ynk} we can select subsequence, denote it again by
{Yn., }, so that
Yn., — Yn weakly in Wi (—ay,an),
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Yn., — Yn weakly in Lo(—an, an).
From we have [|Ynllwi(—an.a,) < C, and it is not difficult to see that y,, satisfies the
equation
Lypyn = _yZ(x) + q(SL’, yn)yn = fnn and yn(_an) = yn(an) =0.
Next, each y, we continue with zero outside of [—a,, a,], continuation denote by %,.
With this continuation, we obtain elements W, (R), norms of which are limited:

[9nllwpcry < C-
Therefore, from the sequence, we can select a subsequence g, , such that
U, — y weakly in Wy (R) (8)
Un, =y weakly in Lo go.(R), 9)

and besides

lyllwary < C. (10)

Let [a, (] is any fixed segment in R. Then for any £)0 there exists such number N, that
at k = N(«, ) € sup pyy,, and by virtue

LG, = fll2, (a8 (e

From here and (9) we get that y(z) is a weal solution of the equation (I)). Lemma is
proved.

2.2 Smoothness of the solution

In this section we will show that all solutions from W3 (R) will be elements from WZ(R), as
soon as a potential function known in it has some properties.

Theorem 2 Let the following conditions hold;

a) q(x,y) > 6)0;
b) q(x,y) is continuous function on a set of variables in R?;

Q(%Cﬂ

c) sup sup — s <09,

) [z—n|<1 [C1-C2|<A  |C1|<A q(x, C2)

where A is any finite value. Then for any f € Ly(R) there exists the solution y(x) € Lo(R)
of the equation (1), such that y"(x) € La(R).

Theorem 3 Let the conditions hold:

a) q(z,y) > 6)0;
b) q(x,y) are continuous on a set of variables in R
c) sup sup M < 00, where

2€R |C1—Co|<A  |Cal<a  0%(T,c2)

0(z,C)= inf (d'+ / a(n, Ca)d),

d)0|z—t|<10
[t—h|<d
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A is any finite value. Then for any f € Ly(R) there exists the solution y(z) € Lo(R) of
the equation (1) such that y”(z) € La(R).

Theorem 4 Let the conditions a)-c) of theorem 2 are held and r(x) is a continuous, such

(y)

that sup ——= < o0.
jo—yl<1 ()
If for any k > 0 the value

1/0

B =sup sup sup nP / ()| dt
zeR |C1|<K 0<n<m~1(,C1) <
t—x|<n

is finite, then for any f € Lo(R) function

@) yl@) € Ly(R). (250 < 00, p= . m(x,Cs) = (alr. C1))""),

here y(x) is the solution of the equation (1) from Ls(R).

Proof of Theorems 2-4. At any function f € Ls(R) by virtue of Lemma 1 for the
equation there exists a solution y(z) such that y(x) € Wj(R). Therefore, by Sobolev’s
embedding theorem [10] y(z) € C(R). Then according to the condition b)

q(z,y(z)) € Croc(R). (11)

Let yo(z) is a weak solution of the equation (1) with the right side fo € Lo(R). Since
yo(x) € W(R), then
/ dyo
Yo(t) — yo(n

By the Bunyakovsky inequality and by (|1 , we have

[o(t) = yo(m)] < (It = 1)) 2[| l|2.r. (12)

Assume that G(x) = ¢(x, yo(z)) and denote by L closure in norm of L, operator, given on
C3°(R) by equality Loy = —y"(x) + ¢(z)y.

Lemma 3 Operator L is self adjoint and positive defined.

Proof. The positive definiteness of L follows from condition a) of Theorem 2. Self-
adjointness follows from (2) and from the results of [2|. The lemma is proved.

Now, assuming that yo(t) = Ca, yo(n) = C1, A = 2||f]l2 > /Anl| f]2, from we obtain
|Cy—C4| < A. From here, due to conditions a)-c) of Theorem 2, for operator L all conditions
of the Theorem 3, 4 are satisfied. Therefore, the operator L is separable, i.e.

ly"ll2 + lld(@)yll < CULyIl + llyll2),

where does not depend on i € D(L), where D(-) is the definition area, and | - || is the norm
n LQ(D)
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It remains for us to show that yo(z) € D(L). Suppose the contrary, that yo(r) ¢ D(L).
By virtue of Lemma 2, there exists y;(x) € W, (R) such that y;(x) = L™! fy. So, it is assumed
that yo(z) € W3 (R) is a solution of equation (1) with the right side of f,(x), then

f/yQ = 0,92 =y1 — ¥ € La(R).
To complete the proof of the theorem, we need a lemma.

Lemma 4 Let the conditions a) and b) of theorem 2 be satisfied. Then the equation Ly=0
does not have a solution y(x) € Ly(R).

Proof. It is well known that if G(z) > ¢ > 0, then the solution of the equation y"(x) =
q(z)y exponentially grows both at x — —o0, and at x — +o00. Therefore, this solution cannot
belong to Ly(R). The Lemma is proved.

From this lemma we obtain that yo(x) = y1(x). We get a contradiction. The theorem 2.
is completely proved.

Theorems 3, 4 are proved in the same way.

2.3 Nonlinear Schrddinger-type operator in Lo(R?)

Now let us consider the equation
—Au+q(z,u)u = f(z) (13)
in the space Lo(R?).

Lemma 5 Let q(z,u) > § > 0 and is continuous on both arguments in R?, then for each
[ € L3(R?) there is a weak solution to equation in space Wy (R?).

This lemma is proved in the same way as the lemma 1.

Lemma 6 Let q(z,u) > § > 0 and is continuous on both arguments in R, then for each
[ € Ly(R3) there is a weak solution to equation and the following inequality holds

[ll o (roy + llellwy (rey < ClfllLacrs),s (14)
Where the constant C' does not depend on u and f.

Proof. Let
r,u), if r,u) < N,
e,y = { 0o
N, if q(z,u) > N

The existence of a solution to the equation
—Au+qn(z,u)u = fx (15)

follows from lemma 5.
Let u, € W3 (R?)is a solution to equation (15). Let us consider the equation

Lu:fN> (16>
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where L = —A + ¢y(x),

Since gy(,uy) are limited and gy(z), then on the theorem (), [see 11| operator L is
self-adjoint and the equation has a unique solution that coincides with uy.

It is known, if g1 (2) < go(2), then Q1(x,y) > 0 and Qa(x,y) > 0, and Q1 (z,y) > Q2(x,y),
where Q1 (z,y) and Ny(z,y) are Green functions of operators —A + qy(z), —A + go().

Let Qn(z,y)is the Green function of the operator L, then it follows from the above fact
that

QN($7y> < QO(‘Tay)a (17)

where Qo(z,y) is Green function of the operator —A + 1. It follows from this and that

g ()] = / Qu(a, ) f(y)dy| < / Qu(e,9) f(y)dy < / Qole )\ £ (4)dy.

It is known that the operator

Q) (z) = uo(x) = / Qol, )| ()ldy (15)

acts from Ly(R3) in W2(R3). Therefore, by virtue of the Sobolev embedding theorems [10],
we have

un ()| o3y < Coll fllLars), (19)

where Cy does not depend on N and f.
On the other hand, here is an estimation

lun (@) lwp ey < CullfllLars), (20)

where C does not depend on N and f.
Indeed, we will compose a scalar product (Luy, uy). Integrating in parts, we obtain (20)).

From and we will have
|un (@) || oo (re) + [unllwp gz < Call £, (21)

where Cy = max(Cy, Cy).
Moving to limit at N — oo we get

(@) || Lo (rey + (@) g re) < Coll fllLacrs)-

It is not difficult to check that u(x) is the weak solution to equation (13| (see lemma 2).
The lemma is proved.
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2.4 Smoothness of the solution

Theorem 5 Let the following conditions be satisfied: a) q(z,y) > 6 > 0; b) q(x,y) is a
continuous function on a set of variables in R* and

q(z, CY)

sup sup —_— << oo,
e—y|<1 |C1—Cal<Alc|<a 4(Y, C2)

where A is any finite value. Then: a) for any right side of f € Ly(R?) there exists a solution
u(zx) of the equation such that Au € Lo(R?); b) let r(z) is continuous function in R, if
for any k)0 the value

1/6
B =sup sup sup nP / |r(t)|%dt

TER |C1|<K 0<n<m~(z,C1)
[t—z|<n

Is finite, then
r(z)D*u(x) = Lo(R?),

(2<0<o0, p= —g, m(z,Ch) = (q(z, Cl))1/2-

Let us enter the function

¢ (t,Co) =inf{ d"';d > inf /q(m,Co)d:U :
eeF'9 (1)
Oa(t)le

where Fa(f) (t) is a set of all compact subsets of cube 04(t), satisfying the following inequality
mese < ed", €€ (0,1).
Theorem 6 Let the conditions a), b) of the theorem 5 be satisfied and
¢ (z,Co)

sup sup ———~ < o0,
lo—y|<1 |Co—Cu<a @2 (2, C1)

Let us denote m(z, Cy) = q*(z,Cy), and by Ay(z,Cy) — the function which is defined with the
equality

Ay(x,Co) = m™ (2, Cy) sup sup n=? / q(t, Cy)dt,
|C1|<K 0<n<m~1(z,Cq) o
x—t|<n

3
where % is any value, f = 2(— — 1), p — is any number from the interval (1,2). Then, if at
p

some p € (1,2) the value
A, = sup sup A,(z,Cy)
|Co|<K z€R3
Is finite, then for any f(x) € Lao(R3) there exists a solution u(x) € Ly(R®) of the equation
(13), such that Au € Ly(R?).

Theorems 5, 6 are proved in the same way as theorems 2-4, based on results of work [7].
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3 Discussion

For differential equations one of the important questions is finding solutions in function
spaces. In this paper, using operator methods, a sufficient condition for the existence of
solutions to the nonlinear Sturm-Liouville and Schrodinger equations is found. Research
methods and results can be used in the study of other nonlinear differential equations.

4 Conclusion

The issues of separability of operators and coercive estimates, and also the existence of a
solution to differential equations, are solved in combination. The results of this work are new
and generalize previously published works.
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