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SMOOTHNESS OF SOLUTIONS (SEPARABILITY) OF THE NONLINEAR
STATIONARY SCHRÖDINGER EQUATION

The equation of motion of a microparticle in various force fields is the Schrödinger wave equation.
Many questions of quantum mechanics, in particular the thermal radiation of electromagnetic
waves, lead to the problem of separability of singular differential operators. One such operator is
the above Schrödinger operator. In this paper, the named operator is studied by the methods of
functional analysis. Found sufficient conditions for the existence of a solution and the separability
of an operator in a Hilbert space. All theorems were originally proved for the model Sturm-Liouville
equation and extended to a more general case.
In §1-2, for the nonlinear Sturm-Liouville equation, sufficient conditions are found that ensure
the existence of an estimate for coercivity, and estimates of weight norms are obtained for the
first derivative of the solution. In Sections 3-4 the results of Sections 1-2 are generalized for the
Schrödinger equation in the case m = 3.
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Шредингер теңдеуiнiң сызықты емес стационарлық теңдеуiнiң шешiмдерiнiң тегiстiлiгi

(бөлiмдiлiгi)

Микробөлшектердiң әртүрлi күш өрiстерiндегi қозғалыс теңдеуi Шредингер толқынының
теңдеуi болып табылады. Кванттық механиканың көптеген сұрақтары, атап айтқанда элек-
тромагниттiк толқындардың жылулық сәулеленуi сингулярлы дифференциалдық оператор-
лардың бөлiну мәселесiне әкеледi. Осындай операторлардың бiрi жоғарыдағы Шредингер
операторы болып табылады. Бұл жұмыста аталған оператор функционалдық талдау әдiстерi-
мен зерттеледi. Шешiмнiң болуы және Гильберт кеңiстiгiндегi оператордың бөлiнуi үшiн жет-
кiлiктi шарттар табылды. Барлық теоремалар бастапқыда Штурм-Лиувилл теңдеуiнiң үлгiсi
үшiн дәлелдендi және жалпы жағдайға дейiн кеңейтiлдi.
§1-2-де сызықты емес Штурм-Лиувилл теңдеуi үшiн коэрцивтiлiк бағасының болуын қамта-
масыз ететiн жеткiлiктi шарттар табылды және шешiмнiң бiрiншi туындысы үшiн салмақ
нормаларының бағалаулары алынды. 3-4 бөлiмдерде 1-2 бөлiмдердiң нәтижелерi m = 3 жағ-
дайындағы Шредингер теңдеуi үшiн жалпыланған.
Түйiн сөздер: Сызықты емес теңдеулер, үздiксiз оператор, эквиваленттiлiк, потенциалдық
функция.
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Уравнением движения микрочастицы в различных силовых полях является волновое урав-
нение Шредингера. Многие вопросы квантовой механики в частности тепловое излучение
электромагнитных волн приводят к задаче разделимости сингулярных дифференциальных
операторов. Одним из таких операторов является вышеуказанный оператор Шредингера.
Данной работе исследуется названный оператор методами функционального анализа. Най-
денный достаточные условия существовании решении и разделимости оператора в Гильбербо-
вом пространстве. Все теоремы первоначально доказаны для модельного уравнение Штурма
-Лиувилля и распространено на более общий случай.
В §1-2 для нелинейного уравнения Штурма-Лиувилля найдены достаточные условия, обес-
печивающие наличие оценки коэрцитивности, а для первой производной решения получены
оценки весовых норм. В §3-4 обобщены результаты §1-2 для уравнения Шредингера в случае
m = 3.
Ключевые слова: Нелинейные уравнения, непрерывный оператор, эквивалентность, потен-
циальная функция.

1 Introduction

In this paper, the smoothness of solutions to the nonlinear equation is considered

Lu = −∆u+ q(x, u)u = f(x) ∈ L2(Rm)

In [1,2] for the nonlinear Sturm-Liouville equation, sufficient conditions are found that
ensure the existence of an estimate for the coecitivity, and for the first derivative of the
solution, estimates for the weight norms were obtained. In [1,2] generalized the results of §1-2
for the Schrödinger equation in the case m = 3.

2 Materials and methods

For simplicity, we present one result for the Sturm-Liouville equation.

Theorem 1 Let the following conditions are satisfied:
a) q(x, y) ≥ δ〉0;
b) q(x, y) is a continuous function on the set of variables in R2;

с) sup
[x−η)≤1

sup
|C0−C1|≤A |C0|≤A

q(x,C0)

q(x,C1)
< ∞, where is any finite value. Then for any

f(x) ∈ L2(Rm) there is a solution (x) to the equation

Ly = −y′′(x) + q(x, y)y = f,

which has quadratically summable second derivative, i.е. y′′(x) ∈ L2(Rm).

The proof of this theorem belongs to Muratbekov M.B. [3]. Unfortunately, in the work [8]
the author was incorrectly specified. Please apologize for inaccuracy. As we will see later (in
Section 2.4), such results hold for a wide class of nonlinear operators. For linear operators of
similar work was considered in [1-3, 5-7, 9, 11, 12, 13]

Let us enter the following designations: Rm is Euclidean m-dimensional real space of
points x = (x1, x2, . . . , xm). Ω̄ is a closure of Ω where Ω is an open set in Rm, ‖ · ‖p,Ω. is a
norm of the element Lρ(Ω). Instead of ‖ · ‖p,Ω at Ω = Rm we will write ‖ · ‖ρ, if p = 2 in
designations ‖ · ‖ρ,Ω and ‖ · ‖p we will omit ρ.
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Dα
u =

∂|α|u

∂xα1
1 . . . ∂xαm

m

,

α = (α1, . . . , αm) – multiindex, |α| = α1 +α2 + . . .+αm. C1, C2, . . . are various constants
constants, the exact value of which does not interest us.

2.1 Existence of the solution

In the given section the following equation is considered

Ly = −y′′(x) + q(x, y)y = f(x) ∈ L2(R), (1)

where R = (−∞,∞).
The function y ∈ L2(R) is called the weak solution of equation (1), if there is a sequence

{yn} ⊂ W 1
2 (R)

⋂
W 2

2,l>c(R) such that

‖yn − y‖α2,loc(R)
→ 0, ‖Lyn − f‖L2,loc(R)

→ 0, n→∞.

It is said that the sequence {ηn}∞n=1 of basic functions from C∞0 (Rm) converges to (1) in
Rm, if:

а) for any compact K ⊂ Rm there will be such a number N, that ηn(x) = 1 at all x ∈ K
and n ≥ N

b) functions {ηn} uniformly limited in Rm, |ηn(x)| ≤ 1, x ∈ Rm, n = 1, 2, . . . [8].

Lemma 1 Let q(x, y) ≥ δ < 0 and is continuous on both arguments in R2, then for any
f ∈ L2(R) there is a weak solution of the equation (1) in the space W 1

2 (R).

Proof. Since, according to the assumption, the function q(x, y) is limited from below,
then, without losing the generality of reasoning, we can assume that the condition q(x, y) ≥ 1
is hold.

First, we will be engaged in proving the existence of a solution to the first boundary value
problem

Lnεynε = −y′′nε
+ ynε +

(q(x, ynε)− 1)ynε

(1 + ε(q)(x, ynε)− 1) + ε‖b(x, ynε)‖2,(−an,an)

= fηn, (2)

ynε(+a) = ynε(a) = 0, (3)

where [−an, an] − sup pηn, and b(x, yne) = (q(x, ynε) − 1)ynε in the space W 2
2,0[−an, an];

W 2
2,0[−an, an] – is space of functions z ∈ W 2

2 и z(−an) = z(an) = 0.
We will reduce problem (2) – (3) to an equivalent integral equation, to which we then

apply the Schauder principle [9].
Let us denote by L0 the operator defined on W 2

2,0[−an, an] with the equality

L0y = −y′′(x) + y(x).

Due to the known theorems for the Sturm-Liouville operator there is a completely
continuous inverse operator L−1

0 , defined all over space L2[−an, an]. We need Lemma.
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Lemma 2 The problem (2) – (3) is equivalent to the integral equation

znε =
(q(x, L−1

0 znε)− 1)L−1
0 znε

1 + ε(q(x, L−1
0 znε)− 1) + ε‖b(x, L−1

0 znε)‖2
2

+ fηn,

znε , fηn ∈ L2[−an, an].

(4)

The proof is obvious.
Let us denote by A the operator which acts on the following formula:

A(z) =
(q(x, L−1

0 z)− 1)L−1
0 z

1 + ε(q(x, L−1
0 z)− 1) + ε‖b(x, L−1

0 z)‖2
2,[−an,an]

+ fηn.

Further we denote

S(0;N) =

{
ϑ ∈ L2(−an, an) : ‖ϑ‖2 ≤ N =

1√
ε

}
,

where ϑ = z − fηn. Consider the operator on this ball

A(ϑ) = A(z)− fηn = A(ϑ+ fηn)− fηn =

=
(q(x, L−1

0 (ϑ+ fηn))− 1)L−1
0 (ϑ+ fηn)

1 + ε(q(x, L−1
0 (ϑ+ fηn))− 1) + ε‖b(x, L−1

0 (ϑ+ fηn))‖2
2,(−an,an)

.

It is obvious that, if ϑ0 – is a fixed point of operator m, then ϑ0 + fηn – is a fixed point
of operator . Therefore, in the future instead of operator A, it is enough to consider A0.

Let us prove that 0 reflects the ball S(0;N) ∈ L2[−an, an] in itself. Let ϑ ∈ S(0;N). We
will consider two cases:

1.
‖(q(x, L−1

0 (ϑ+ fηn))− 1)L−1
0 (ϑ+ fηn)‖2

2,(−an,an) ≤ N =
1√
ε
.

Then

‖A0(ϑ)‖2 =

∥∥∥∥ (q(x, L−1
0 z)− 1)L−1

0 z

1 + ε(q(x, L−1
0 z)− 1) + ε‖b(x, L−1

0 z)‖2
2

∥∥∥∥
2,(−an,an)

≤

≤ ‖(q(x, L−1
0 (ϑ+ fηn))− 1)L−1

0 (ϑ+ fηn)‖ ≤ N =
1√
ε

2.
(q(x, L−1

0 (ϑ+ fηn))− 1)L−1
0 )(ϑ+ fηn)‖ ≥ N.

Then

A0(ϑ)2 ≤
‖(q(x, L−1

0 (ϑ+ fηn))− 1)L−1
0 (ϑ+ fηn)‖2,(−an,an)

ε‖(q(x, L−1
0 (ϑ+ fηn))− 1)L−1

0 (ϑ+ fηn)‖2
2,(−an,an)

=

=
1

ε‖(q(x, L−1
0 (ϑ+ fηn))− 1)L−1

0 (ϑ+ fηn)‖2,(−an,an)

≤ 1

εN
=

1√
ε
.

Therefore,

‖A(ϑ)‖2,(−an,an) ≤ N, ∀ϑ ∈ S(0;N). (5)
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Now we will show that m – is completely continuous operator at S(0;N). Continuity is
obvious. Further, by virtue of Riesz theorem, it is enough to prove that the set of functions
{A0ϑ : ϑ ∈ S(0;N)} is uniformly limited and the relation is performed

lim
h→0
‖(A0(ϑ))(x+ h) + (A0(ϑ))(x)‖2,(−an,an) = 0

uniformly on ϑ ∈ S.
Due to estimate (5) the set of functions {A0(ϑ) : ϑ ∈ S(0;N)} is uniformly bounded.
Due to the continuity of q(x, y) on combination of variables and properties of the operator

L−1
0 , the relation q(x, y)

‖(A0(ϑ)(x+ h)− A0(ϑ))(x)‖2
2,(−an,an) → 0

uniformly at h→ 0 on ϑ ∈ S(0;N).
Thus, the operator Am is completely continuous and reflects S(0;N) in itself. Therefore,

according to the Schauder principle; integral equation (4) has at least one solution in the ball
S(0;N). Hence, by virtue of Lemma 2, it follows that there exists a solution to problem (2)
– (3) belonging to the space W 2

2 .
Further ‖ynε‖W 1

2 [−an,an] is estimated from above by constant independent of n, ε.
To prove this fact, let us take the linear operator

`nεy = y′′(x) + (1 +
q̃(x)− 1

1 + ε(q̃(x)− 1) + ε‖(q(x, ynε)− 1)ynε‖2
2

)y(x),

Defined on a set W 2
2,0(−an, an), where q̃(x) = q(x, ynε), and ynε – is a solution of the problem

(2) – (3) with the right side fηn. Let us construct a scalar product 〈`nε, ynε , ynε〉. Integrating
in parts and taking into account that non-integral members disappear due to (3), we obtain

‖ynε‖W 1
2 [−an,an] ≤ 21/2

 ∞∫
−∞

|f |2dx

1/2

.

Assume that C = 21/2

( ∞∫
−∞
|f |2dx

)1/2

, then

‖ynε‖W 1
2 [−an,an] ≤ C. (6)

Let us choose some sequence {ynεk
} of solutions belonging to a bounded set {ynε}, so that

‖ynεk
‖W 1

2 [−an,an] ≤ C, (7)

where εk → 0 at k →∞.
By virtue of (7) from the sequence {ynεk

} we can select subsequence, denote it again by
{ynεk

}, so that
ynεk
→ yn weakly in W 1

2 (−an, an),
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ynεk
→ yn weakly in L2(−an, an).

From (7) we have ‖yn‖W 1
2 (−an,an) ≤ C, and it is not difficult to see that yn satisfies the

equation
Lnyn = −y′′n(x) + q(x, yn)yn = fηn and yn(−an) = yn(an) = 0.

Next, each yn we continue with zero outside of [−an, an], continuation denote by ỹn.
With this continuation, we obtain elements W 1

2 (R), norms of which are limited:

‖ỹnε‖W 1
2 (R) ≤ C.

Therefore, from the sequence, we can select a subsequence ỹnk
, such that

ỹnk
→ y weakly in W 1

2 (R) (8)

ỹnk
→ y weakly in L2,` oc(R), (9)

and besides

‖y‖W 1
2 (R) ≤ C. (10)

Let [α, β] is any fixed segment in R. Then for any ε〉0 there exists such number N, that
at k = N(α, β) ∈ sup pỹnk

and by virtue (8)

‖Lỹnk
− f‖2,(α,β)〈ε.

From here and (9) we get that y(x) is a weal solution of the equation (1). Lemma is
proved.

2.2 Smoothness of the solution

In this section we will show that all solutions from W 1
2 (R) will be elements from W 2

2 (R), as
soon as a potential function known in it has some properties.

Theorem 2 Let the following conditions hold;
a) q(x, y) ≥ δ〉0;
b) q(x, y) is continuous function on a set of variables in R2;

c) sup
|x−η|≤1

sup
|C1−C2|≤A |C1|≤A

q(x,C1)

q(x,C2)
<∞,

where A is any finite value. Then for any f ∈ L2(R) there exists the solution y(x) ∈ L2(R)
of the equation (1), such that y′′(x) ∈ L2(R).

Theorem 3 Let the conditions hold:
a) q(x, y) ≥ δ〉0;
b) q(x, y) are continuous on a set of variables in R2;

c) sup
x∈R

sup
|C1−C2|≤A |C2|≤A

q(x, c1)

θ2(x, c2)
<∞, where

θ(x,C1) = inf
d〉0|x−t|≤10

(d−1 +

∫
|t−h|≤d

q(η, C2)dη),
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A is any finite value. Then for any f ∈ L2(R) there exists the solution y(x) ∈ L2(R) of
the equation (1) such that y′′(x) ∈ L2(R).

Theorem 4 Let the conditions а)-c) of theorem 2 are held and r(x) is a continuous, such

that sup
|x−y|≤1

r(y)

r(x)
<∞.

If for any k > 0 the value

B = sup
x∈R

sup
|C1|≤K

sup
0<η≤m−1(x,C1)

η−p ∫
|t−x|≤η

|r(t)|0dt


1/θ

is finite, then for any f ∈ L2(R) function

r(x)
d

dx
y(x) ∈ L2(R), (2 ≤ θ <∞, p = −θ

2
,m(x,C1) = (q(x,C1))1/q),

here y(x) is the solution of the equation (1) from L2(R).

Proof of Theorems 2-4. At any function f ∈ L2(R) by virtue of Lemma 1 for the
equation there exists a solution y(x) such that y(x) ∈ W 1

2 (R). Therefore, by Sobolev’s
embedding theorem [10] y(x) ∈ C(R). Then according to the condition b)

q(x, y(x)) ∈ C`oc(R). (11)

Let y0(x) is a weak solution of the equation (1) with the right side f0 ∈ L2(R). Since
y0(x) ∈ W 1

2 (R), then

y0(t)− y0(η) =

t∫
η

dy0

dx
dx.

By the Bunyakovsky inequality and by (10), we have

|y0(t)− y0(η)| ≤ (|t− η|)1/2‖f‖2,R. (12)

Assume that q̃(x) = q(x, y0(x)) and denote by L̃ closure in norm of L2 operator, given on
C∞0 (R) by equality L0y = −y′′(x) + q̃(x)y.

Lemma 3 Operator L̃ is self adjoint and positive defined.

Proof. The positive definiteness of L̃ follows from condition а) of Theorem 2. Self-
adjointness follows from (2) and from the results of [2]. The lemma is proved.

Now, assuming that y0(t) = C2, y0(η) = C1, A = 2‖f‖2 ≥
√
Aη‖f‖2, from (12) we obtain

|C2−C1| ≤ A. From here, due to conditions а)-c) of Theorem 2, for operator L̃ all conditions
of the Theorem 3, 4 are satisfied. Therefore, the operator L is separable, i.e.

‖y′′‖2 + ‖q̃(x)y‖2 ≤ C(‖L̃y‖+ ‖y‖2),

where does not depend on y ∈ D(L̃), where D(·) is the definition area, and ‖ · ‖ is the norm
in L2(D).
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It remains for us to show that y0(x) ∈ D(L̃). Suppose the contrary, that y0(x) 6∈ D(L̃).
By virtue of Lemma 2, there exists y1(x) ∈ W 1

2 (R) such that y1(x) = L̃−1f0. So, it is assumed
that y0(x) ∈ W 1

2 (R) is a solution of equation (1) with the right side of fo(x), then

L̃y2 = 0, y2 = y1 − y0 ∈ L2(R).

To complete the proof of the theorem, we need a lemma.

Lemma 4 Let the conditions a) and b) of theorem 2 be satisfied. Then the equation L̃y = 0
does not have a solution y(x) ∈ L2(R).

Proof. It is well known that if q̃(x) ≥ δ > 0, then the solution of the equation y′′(x) =
q(x)y exponentially grows both at x→ −∞, and at x→ +∞. Therefore, this solution cannot
belong to L2(R). The Lemma is proved.

From this lemma we obtain that y0(x) = y1(x). We get a contradiction. The theorem 2.
is completely proved.

Theorems 3, 4 are proved in the same way.

2.3 Nonlinear Schrödinger-type operator in L2(R
3)

Now let us consider the equation

−∆u+ q(x, u)u = f(x) (13)

in the space L2(R3).

Lemma 5 Let q(x, u) ≥ δ > 0 and is continuous on both arguments in R2, then for each
f ∈ L3(R3) there is a weak solution to equation (13) in space W 1

2 (R3).

This lemma is proved in the same way as the lemma 1.

Lemma 6 Let q(x, u) ≥ δ > 0 and is continuous on both arguments in R2, then for each
f ∈ L2(R3) there is a weak solution to equation (13) and the following inequality holds

‖u‖L∞(R3) + ‖u‖W 1
2 (R3) ≤ C‖f‖L2(R3), (14)

Where the constant C does not depend on u and f.

Proof. Let

qN(x, u) =

{
q(x, u), if q(x, u) ≤ N,

N, if q(x, u) ≥ N

The existence of a solution to the equation

−∆u+ qN(x, u)u = fN (15)

follows from lemma 5.
Let ux ∈ W 1

2 (R3)is a solution to equation (15). Let us consider the equation

Lu = fN , (16)
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where L = −∆ + q̃N(x),

Since qN(x, uN) are limited and q̃N(x), then on the theorem (3), [see 11] operator L is
self-adjoint and the equation (16) has a unique solution that coincides with uN .

It is known, if q1(x) ≤ q2(x), then Q1(x, y) ≥ 0 and Q2(x, y) ≥ 0, and Q1(x, y) ≥ Q2(x, y),
where Q1(x, y) and Ñ2(x, y) are Green functions of operators −∆ + q1(x), −∆ + q2(x).

Let QN(x, y)is the Green function of the operator L, then it follows from the above fact
that

QN(x, y) ≤ Q0(x, y), (17)

where Q0(x, y) is Green function of the operator −∆ + 1. It follows from this and (17) that

|ux(x)| =

∣∣∣∣∣∣
∫
R3

QN(x, y)f(y)dy

∣∣∣∣∣∣ ≤
∫
R3

QN(x, y)f(y)dy ≤
∫
R3

Q0(x, y)|f(y)|dy.

It is known that the operator

(Qf)(x) = u0(x) =

∫
R3

Q0(x, y)|f(y)|dy (18)

acts from L2(R3) in W 2
2 (R3). Therefore, by virtue of the Sobolev embedding theorems [10],

we have

‖uN(x)‖L∞(R3) ≤ C0‖f‖L2(R3), (19)

where C0 does not depend on N and f.
On the other hand, here is an estimation

‖uN(x)‖W 1
2 (R3) ≤ C1‖f‖L2(R3), (20)

where C1 does not depend on N and f.
Indeed, we will compose a scalar product 〈LuN , uN〉. Integrating in parts, we obtain (20).
From (19) and (20) we will have

‖uN(x)‖L∞(R3) + ‖uN‖W 1
2 (R3) ≤ C2‖f‖, (21)

where C2 = max(C1, C2).

Moving to limit at N →∞ we get

‖u(x)‖L∞(R3) + ‖u(x)‖W 1
2 (R3) ≤ C2‖f‖L2(R3).

It is not difficult to check that u(x) is the weak solution to equation (13) (see lemma 2).
The lemma is proved.
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2.4 Smoothness of the solution

Theorem 5 Let the following conditions be satisfied: а) q(x, y) ≥ δ > 0; b) q(x, y) is a
continuous function on a set of variables in R2 and

sup
|x−y|≤1

sup
|C1−C2|≤A|C1|≤A

q(x,C1)

q(y, C2)
<∞,

where A is any finite value. Then: а) for any right side of f ∈ L2(R3) there exists a solution
u(x) of the equation (13) such that ∆u ∈ L2(R3); b) let r(x) is continuous function in R3, if
for any k〉0 the value

B = sup
x∈R

sup
|C1|≤K

sup
0<η≤m−1(x,C1)

η−p ∫
|t−x|<η

|r(t)|θdt


1/θ

Is finite, then
r(x)D2u(x) = Lθ(R

3),

(2 ≤ θ <∞, p = −θ
2
, m(x,C1) = (q(x,C1))1/2.

Let us enter the function

q∗ε(t, C0) = inf

d−1; d ≥ inf
e∈F (ε)

d (t)

∫
θd(t)|e

q(x,C0)dx

 ,

where F (ε)
d (t) is a set of all compact subsets of cube θd(t), satisfying the following inequality

mese ≤ εdn, ε ∈ (0, 1).

Theorem 6 Let the conditions а), b) of the theorem 5 be satisfied and

sup
|x−y|≤1

sup
|C0−C1|≤A

q∗ε(x,C0)

q∗ε(x,C1)
<∞,

Let us denote m(x,C0) = q∗ε(x,C0), and by Ap(x,C0) – the function which is defined with the
equality

Ap(x,C0) = m−1−β(x,C0) sup
|C1|≤K

sup
0<η<m−1(x,C1)

η−β
∫

|x−t|<η

q(t, C1)dt,

where к is any value, β = 2(
3

p
− 1), p – is any number from the interval (1,2). Then, if at

some p ∈ (1, 2) the value
Ap = sup

|C0|≤K
sup
x∈R3

Ap(x,C0)

Is finite, then for any f(x) ∈ L2(R3) there exists a solution u(x) ∈ L2(R3) of the equation
(13), such that ∆u ∈ L2(R3).

Theorems 5, 6 are proved in the same way as theorems 2-4, based on results of work [7].
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3 Discussion

For differential equations one of the important questions is finding solutions in function
spaces. In this paper, using operator methods, a sufficient condition for the existence of
solutions to the nonlinear Sturm-Liouville and Schrodinger equations is found. Research
methods and results can be used in the study of other nonlinear differential equations.

4 Conclusion

The issues of separability of operators and coercive estimates, and also the existence of a
solution to differential equations, are solved in combination. The results of this work are new
and generalize previously published works.
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