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BLOW UP OF SOLUTION FOR A NONLINEAR VISCOELASTIC
PROBLEM WITH INTERNAL DAMPING AND LOGARITHMIC SOURCE
TERM

This paper is concerned with blow up of weak solutions of the following nonlinear viscoelastic
problem with internal damping and logarithmic source term

t
|we|Puee + M(||u|\2)(—Au) — Auy + /0 g(t — s)Au(s)ds + u; = u\u|’;{2 In |u|%

with Dirichlet boundary initial conditions in a bounded domain 2 C R"™. In the physical point
of view, this is a type of problems that usually arises in viscoelasticity. It has been considered
with power source term first by Dafermos [3], in 1970, where the general decay was discussed. We
establish conditions of p, p and the relaxation function g, for that the solutions blow up in finite
time for positive and nonpositive initial energy. We extend the result in [15] where is considered
M =1 and external force type |u[P~?u in it. Further we estate and sketch the proof of a result
of local existence of weak solution that is used in the proof of the theorem on blow up. The idea
underlying the proof of local existence of solution is based on Faedo-Galerkin method combined
with the Banach fixed point method.

Key words: Nonlinear Viscoelastic Equation, Logarithmic Source, Blow Up, Local existence.
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16 Blow up solution for a nonlinear viscoelastic problem ...

ecebiHIH oJICi3 merntiMIepiHiH Kupaybia 3epTTeyre apHajarad. Qu3nKaIbIK, TYPFBIJIAH ajJraHa, 0y
9JIeTTe TYTKBIP CEPIIMILIIKTE maiijja 6oiaThiH Mocesesep s 0ip Typi. OHbI KyaT Ke3i TepMUHIMEH
aqram per 1970 xouibr JTadbepmoc [3| KapacThipibl, OHIA KaJIIbl bIIBIPAY TaJkblIanrad. MyH-
Ia OH >K9HE Tepic OacTanKbl SHEPrUsl YIMiH IMIENiMIepPIiH aKbIPJIbl YAKBITTa KAPAYBl TYPAJIBL P, P
JKoHe ¢ pestakcanus GyHKIUSCHIHA MapTTap aabHabl . Hormkeni [15] ymin ge keHeiiTTik, MyHIa
M = 1 ajbIH/Ib K9HE OFaH CBIPTKBI KYMITiH TYpi |u[P~2u. Bisz kupay Teopemachin jpieieyinse
KOJIJIAHBLJIATBIH 9JICI3 JIOKAJIIK IeNiMHIH MeniMIIrNH 1o/esiH KeaTtipemis. Jlokayaik merriM-
HiH O6oJybIH mmosteseiiTin unest Paemo-laneprun ojticine Herizmesren xoue BanaxTeiH OekiTiireH
HYKTE 9/iciMeH OipiKTipinreH.

Tyiiia cezzep: TyTKbIpcepmiMIi CHI3BIKTHI €MeC TEHIEY, JJOTapudMIiK K3, MEMiMHIH KUPaybl,
JIOKAJITIK 6ap 6oury.
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PazpyiieHue peinieHus HeJIMHEHOUN BSI3KOYIIPYTOU 3aaYM C BHYTPEHHUM 3aTyXaHUEM U
JgorapudMUYIEeCKUM UCTOYHUKOM

DTa CTaThsl MOCBSIEHA PA3PYIIEHUIO CIA0BIX PENIeHUil CJIeIYIONNX HEJINHEHHBIX BI3KOYIPYTast
3a/la9a C BHYTPEHHUM JIeMII(OUPOBAHUEM U JIOTAPU(PMUIECKUM UCXOTHBIM UJIEHOM

t
|we|Puee + M(||u|\2)(fAu) — Auyg + /0 g(ts)Au(s)ds + us = u|u|§’{2 In \u|’§

C TPAHUYHBIMU HAYAJBHBIMU ycioBusimu lupuxie B orpanmdennoii obsactu ) C R™. C dbusznye-
CKOIl TOYKM 3PEHUsi ITO THUIl MPOHJIEM, KOTOPbIE OOBIYHO BOZHUKAIOT B BA3KOYIPYrocTu. BriepBhie
oH ObLI paccMOTpeH ¢ TepMHHOM ucrogHuka sHeprun ladepmocom [3| B 1970 roxy, rue obcyx-
JaJicst OOINMiT PacIaj] SHEPIUH. YCTAHABJIUBAIOTCH YCJIOBHUS P, p U DYHKIMH PEJIAKCAIUNA ¢, TIPU
KOTOPBIX PEIeHUs] pa3PyLIAI0TCA 38 KOHEYHOE BPEMsl IPU IIOJIOKUTEJIBHON M HEIOJIOKUTEbHON
HauasbHOI Heprun. Mbl pacupocrpansieMm pesyibrar Ha [15], rime pacemarpusaercss M = 1 u B
HeM BHemHss cuna tumna [ulP~2u. Jamee Mbl ccopMyampyeM 1 HabpocaeM JI0Ka3aTeIbCTBO Pe3yiTb-
TaTa JIOKAJIHLHOIO CYIIECTBOBAHUSA CJIAOOTO PEIIeHHs, MCIOIb3yEeMOr0 B JOKA3aTEIbCTBE TEOPEMbI
o pazpymiernn. Wes, jexkalast B OCHOBE JIOKa3aTeILCTBA JOKAJIBLHOTO CYIIECTBOBAHUS PEIIEHNS,
ocHOBaHa Ha coderannu merosa Pasno-lajepkuHa ¢ METOJOM HENO/IBUXKHON TOYKN OaHaxa.
Kurouessbie cioBa: HejuneiiHoe ypaBHeHMe BA3KOYIIPYTOCTH, JIOTAPUMPMUAIECKUI NCTOYHNK, pa3-
pyllleHue, JOKAJIbHOE CYIIeCTBOBAHNE.

1 Introduction

In elasticity the existing theory accounts for materials which have a capacity to store
mechanical energy with no dissipation (of the energy). On the other hand, a Newtonian
viscous fluid in a nonhydrostatic stress state has a capacity for dissipating energy without
storing it. Materials which are outside the scope of these two theories would be those for which
some, but not all, of the work done to deform them, can be recovered. Such materials possess
a capacity of storage and dissipation of mechanical energy. This is the case of viscoelastic
materials.

Viscoelastic materials are those for which the behavior combines liquid-like and solid-like
characteristics. Viscoelasticity is important in areas such as biomechanics; power industry
or heavy construction; Synthetic polymers; Wood; Human tissue, cartilage; Metals at high
temperature; Concrete.
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Polymers, for instance, are viscoelastic materials since they exhibit an intermediate
position between viscous liquids and elastic solids. The formulation of Boltzmann’s
superposition principle leads to a memory term involving a relaxation function of exponential
type. But, it has been observed that relaxation functions of some viscoelastic materials are
not necessarily of this type. See [13,|14]. In this work, we are concerned with the following
initial boundary value problem:

el + M (|[ull*) (= Auw) = Aug + [ g(t = 5)Au(s)ds + u,

= uful ?Injull in Qx(0,00)

u=0 on 0N x|0,00) (1)
u(z,0) =upg(x) in Q

ug(z,0) =uy(x) in €.

where Q@ C R" (n > 1) is a bounded domain with a smooth boundary 92, p > 2, p > 0 and
k > 0 are constants and g : RT — R* and M : [0,00) — R are C' functions, respectively,
left to be defined later.

As mentioned in [9], the logarithmic nonlinearity appears in several branches of physics
such as inflationary cosmology, nuclear physics, optics, and geophysics. With all this specific
underlying meaning in physics, the global-in-time well-posedness of solution to the problem of
evolution equation with such logarithmic-type nonlinearity captures lots of attention. See 9]
for the references related to each branch listed above.

The dispersive term Auy arises in the study of extensional vibrations of thin rods, see
Love [7], via the model

Ut — AU — Autt = f

and was studied by one of the authors in [11]. The function M(\) in has its motivation
in the mathematical description of vibration of an elastic stretched string, modeled by the
equation

U — .M(/Q ]Vu|2dx> Au =0,

which for M(\) > mgy > 0 was studied in |2}4}/5,/10%/12].
Concerning blow-up results, Messaoudi [8] considered the equation

t
Uy — Au + / g(t — s)Au(s)ds + aus|ug|" " = blu|""*u
0

and proved that any weak solution with negative initial energy blows up in finite time if

r<mand [;°g(s)ds < Tf;i%. Also, Liu [6] studied the equation

t
uy — Au + / g(t — s)Au(s)ds — wAu; + puy = |u|""?u
0

where he proved that the solution with nonpositive initial energy as well as positive initial
energy blows up in finite time.
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Our blow up result is motivated by the viscoelastic wave equation with delay considered
by [15]

t
lug|Pug Au — Auyy + / g(t — 8)Au(s)ds + prug(z,t) + pouy(z,t — 7) = blul|P*u.
0

We implemented the technique employed in it, in order to extend his/her problem to the case
of logarithmic source term and M variable.

This work is divided as follows. The section 2 presents the notation and results underlying
the methods used in this paper. In section 3 is stated and proved a result of blow up for locally
defined solutions.

2 Preliminaries and assumptions
For simplicity of notations hereafter we denote by | - | the Lebesgue Space L?*(2)-norm,
|-l == Jo |V()|gndz the Sobolev space Hj(Q2)-norm, || - ||, := || - [|zr) and | - |z and | - |gn
for absolute value of a real number and the norm of a vetor in R”, respectively.
Lemma 1 There exists C' > 0 such that

el < € (Jlel® + ful;)

for anyu € H} () and 2 < s <.

We start setting some hypotheses for the problem . Firstly, we shall assume that

2
0<,0§—2 ifn>3, orp>0ifn=1,2, (2)
n_

2(n—1
2<p§(n—2) ifn>3, orp>2ifn=1,2. (3)

Secondly, we assume:
(H.1) M € C'([0,00),R) is such that M(\) > mg, VA € [0, 00), where mq > 0.
(H.2) g : Rt — R" is a Lebesgue integrable and absolutely continuous function such that

1 —/ g(s)ds =:1> 0.
0

(H.3) There exist positive constants &; and &, verifying
—&9(t) < ¢'(t) < =&g(t) for almost all ¢ > 0.

We will need the very useful relation

/0 g(t — 7)(Vu(r), Vu(t))dr = %(g' o Vu)(t) — %(g o Vu)'(t)

L % {% (/Otg(s)ds) |vu(t)12} = %g(t)lvu(t)F (4)
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that can be checked directly, where

(gou)(t) = / g(t — $)ly(t) — y(s)ds

Let us denote M(s) = Jo M(7)dr. If u(t), ue(t) € Hy(S2), then we define the total energy
functional of equation (|1)):

1 L[~ ¢ 1
,_ p+ 2y 2 1 2
£1t) = 5l + 5 (M0l = [ o(e)dslul® ) + 5l
1 1
—|——2/ |u|pd:v—|——(g<>Vu)(t)——/ |u|ﬁln|u|{§dw. (5)
p* Ja 2 P Ja

From (4) and (H.3) one deduce that

£(t) = ~lu® + 55/ o Vu)(t) = gD Vu(t)? <0. (6)
Using (H.1), (H.2), we infer

m0+l bt
> — || I + (QOVU)() ’ ]

> F(\/(mo + 1= Dful* = (g0 Vu)(t)

where ¢, is the constant obtained from Sobolev embedding H}(Q2) < LPT(Q), and F(x) =

1 .
1o? — LBPHaptl with By =
P

E(t)

(m0+(l:il)1/2 .
Remark 1 As noticed in [15], F is increasing in (0, A1), decreasing in (A, 00), and F' has

_ptl
a mazimum at \y = By *~" with the mazimum value By = F(\) = 26);;1))\%.

Lemma 2 ( [15]) Supposing ), (), (H.1) and (H.2), and that (mo—+1—1)|jue||* > A} and
E(0) < E1, then there exists Ay > A1 such that, for allt € [0,T),

(mo +1 = Dlull® + (g0 Vu)(t) = A3 (7)
and
BP
lullpis > =25 (8)
3 Blow up

Theorem 1 Assume that 3), (H.1) and (H.2), and that mo +1—1 > 0. Let f €
L*(0,T; H () and ug,uy E H 0 (). Then there ezists a unique weak solution w for the
problem

{ M([[u]?)(~Au) — Auy + [} gt — s)Au(s)ds +u; = f
u(

0) =up, w(0)=runy. (9)

Further, uy belongs to the class L>=(0,T; Hy(£2)).
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Proof. Employ the Faedo-Galerkin method and Aubin-Lions Lemmas as in reference [1]|. O
For our purposes hereafter, let us define

W= {w Lw,wy € C(0,T; HY(Q)), we € L0, T H&(Q))}
equipped with the norm

[w||% = O‘”wHiN(O,T;Hé(Q)) + 5Hth%°°(O,T;H3(Q)) + ’YHwttH%%o,T;Hg(Q))a

. mo+l-1 1 1
where o 1= M0, 5'_\/_T and vy := T O
It is easy to check that W is a Banach space with the norm || - ||w.

Theorem 2 Let ug,u; € H}(Q2) and assume that (H.1)-(H.3) and and are valid.
Then the problem has a local weak solution u in W for T small enough.

Sketch of the proof. Let M > 0 and 7" > 0 and denote Z(M,T) the class of functions

w belonging to W, satisfying w(0) = ug, w(0) = uy and ||w|lw < M. Let us consider the

application A : Z(M,T) — W defined in the following way. For each v € Z(M,T), take

u := A[v] as the unique solution of the problem (@) with f = v|v|} *In[v]|% — v |%vs. One

can prove that with the hypotheses for p and p, A is a contraction from Z(M,T) to itself if

M is large and 1" small enough. Apply next the Banach fixed point Theorem. ([l
In order to establish our result, an extra assumption on g is required:

(H.4)
o moC
A o) < 25

with ( := ((p —-2)—0B(p— 1)) (p —B(p— 1)), where 0 < 8 < g%? is a fixed number.

Theorem 3 Assume that [2), (), (H.1) and (H.2), and that (mg + 1 — 1)||ue||* > A} and
E(0) < BE; and p < p — 2. Also assume that M (1) < M(7)7. Suppose that ug,u; € HJ(£2).
Then the solution u of blows up in finite time.

Proof. By contradiction we suppose there exists K; > 0 such that
lu(t)|]* < K, Vt > 0.

Set
H(t) = By — E(1),
where E; € (E(0), BE1). By Lemma [6, we obtain H () > 0 and H'(t) > 0, V¢ > 0. Also, since

— _p=1 2

H(t) < 851 = 5 ((mo+ 1= DJul’ + (g0 Tu)(®) + - /Q uff In ol

1 1 1
<8 - N [ infuide < [ uinfulids, (10)
P Ja P Ja
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Define

Lit)=H"(t) + — d d u*d 11
(1) ()+p+1/]ut|Rutu x+6/VutVu x+2/Q X, (11)

where ¢ is chosen small enough for that L(0) > 0. Taking derivative of and using (7)),
we get

t
L'(t)=(1+0)L77L" + 6{ — M([Jull*)lul* + / g9(t = 5)(Vu(s), Vu(t))ds
0
€
+ e +—/ P+2d+/v Endz. 12
[ g luac} + <5 [ e+ e [ (Vada (12)
It is easy to check the following inequality
t 1 t
e [ att = sivuts). vatonas = (1= 1) [ aolal? - g e T (13
0 0

holds for all n > 0.
Employing the inequalities into (|12)) we obtain

luellp s — enlg o Vu)(t)

e = wQt?+ (1= 1) [ ooy

+€/ |u]f§ln|u|§dm—l—€/ |V |3ndr. (14)
0 0

1
L'(t)y>(1—0)H °H +¢
p+1

Adding ep(H (t) — E; + E(t)) into (14), and regarding the equation of the total energy in
and that M (1) > M(7)7, Vt > 0, it follows

1 D D
! > . ory/ p+2 P
L0z (- e (e g e (5 - ) o Va0
_ 2 2, Py oy (P—2 1 ! 2
+ & | = M)l + S3 () <ﬁ7~hm)lg®MﬂW}
ek » 1 9
+— [ Julgdxr +e 1+ = |Vui|gndx + epH(t) — epEy
D Jo 2) Ja

1 p
>(1—0)H "H +e| —+ —— P2y (1—— ) o Vu)(t

re[ 20— (2524 L) [ aterastol?]
+ %/Q\u]ﬁgdﬁg (1 + 5) /Q Vrlgndz + epH(t) — e(p+ 1) B (15)

Taking now 7 to satisfy
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1—-1 p(1—B)
2 (p—2)—6(p—1)](mo+l—1)

+ 8, (16)

which is possible by (H.4). Noticing that M(7) < M(7)r and that (mg 41 — 1)|ul]> + (g o
Vu)(t) > A3 (Lemma [2)), we get

B2 y2 (]%2 T %) /Otg(s)ds||u||2 +(5-n) (go V) — 0+ DE:
S Bl =1 <<
2

Spel b L (ma+ 1= )l + (g0 Tu)(0)

n @%((mo +1=D|ul?+ (goVU)(t)) -+ 1E;

> cl<(m0 1= 1) fuf? + (goVu)(t)) + e

mo+1=1ull® + (g0 Vu)(1)) = (p+ DE;

where ¢; = _5(p;1) %%;’\2 and ¢y = —’B(pgl))\% — (p+1)E;. From E, < BE; and E) = (1;:1 A2 wi
have
—1 — 1)\
ey = %A% —(p+1)E, > ﬁ(% ~(p+DE) =0,

By the above estimates we deduce there exists K > 0 such that

L) = K (H () + Jal 53 + Nl + lul® + ] ?). (17)

Next steps are aimed to estimate L(t)ﬁ. Let

1 1
0<o< ————. 18
7 p+2 p (18)

From Holder inequality and Young’s inequality we obtain:

e oL
(| ] tulgude]) ™ < el S5l < 03||ut||p+2||u||;-“ (19)
< ea (el 55" + 13", (20)
where i+% = 1. Choosing p = (1_;)# > 1, it follows from that % =
(1_0)(p$2)_(p+1) < p. Thus, Lemmaimplies

/ ulfucuda| )7 < e (253 + ull + ). (21)
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Similarly as derived in , we also obtain

ﬁ 2(1_ ) 2(1—0) ﬁ
J1vuvuleds ) < o (JulP0) + )
Q

1

< er (Nl + flul =) 77 (22)
Notice that
2 = = H(t)
Jul =27 < K7 < K H(0) ~ csH(t). (23)

Therefore, from , and we infer that

L(0)™ < e (HO0) + a3+ ll + ul? + 7). (24)
Combiningwith it yelds

L'(t) > eroL(t) 7. (25)

Integrating from 0 to ¢, we have

1—0o

L{t) > (L(O)% - t>7T. (26)

This is a contradiction with the supposition that ||u|| is globally bounded in t. Hence, the
proof is complete. O

4 Conclusion

This work deals with a nonlinear viscoelastic problem with internal damping and logarithmic
source term, which is an improvement of the problem considered in |15] in the case of absence
of the term involving delay. By admitting the initial energy to be even positive, the problem
becomes slightly difficult, what makes necessary a study of the growth of the terms of the
total energy separately (Lemma . This work also states and sketches the proof of local
existence of solution assumed to exist in the Theorem [3
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