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FINITE ELEMENT METHOD SCHEMES OF HIGHER ACCURACY FOR
SOLVING NON-STATIONARY FOURTH-ORDER EQUATIONS

High-order Sobolev-type equations are mathematical models used in many applied problems. As is
known, in many cases, it is difficult to obtain analytical solutions to high-order equations; therefore,
they are mainly solved by numerical methods. At present, the method of straight lines is often used
to solve non-stationary problems of mathematical physics; in this method, discretization is first
realized only in spatial variables, and the resulting system of ordinary differential equations of high
dimension is solved by finite difference methods or finite elements of higher accuracy. In this study,
for a system of ordinary differential equations of the fourth order, new multi-parameter difference
schemes of higher accuracy based on the finite element method are constructed. The presence
of parameters in the scheme makes it possible to regularize the schemes in order to optimize
the implementation algorithm and the accuracy of the scheme. The stability and convergence of
the constructed difference schemes are also proved, and accuracy estimates are obtained on their
basis. An algorithm for the implementation of the constructed difference schemes is presented.
The results obtained can be further applied in the numerical solution to initial-boundary value
problems for the equations of dynamics of a compressible stratified rotating fluid, magnetic gas
dynamics, ion-acoustic waves in a magnetized plasma, spin waves in magnets, cold plasma in an
external magnetic field, etc.

Key words: finite element method, difference schemes, stability, convergence, accuracy.
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Cranmonep emMec TOPTIHIIN TOPTIOTI TeHaeysepAi HMIeNly YIIH >KOFapbl O9JOIKTI ITEKTi
JIEMEHTTIK 9/iC cxeMaJiapbl

2Korapsr perri CobosieB TUIITI TEHIEYIIEP KOIITEreH KOJIIaHOabI €CEIITEP/IIH, MATEMATHKAIBIK, MO-
Jenbiaepi 60mbIT TabbLIa bl Besriai Oosramgai, KenTereH »Karmailapiaa »KOrapbl peTTi TeHie-
YJIep/liH, aHAJIUTUKAJIBIK, IIENTiM/EPIH ajly KWUBIH, COHJBIKTAH OJIap HEri3iHEeH CaH/IbIK, 9/iCTepMEeH
mrermisieri. COHPBI Ke3/1e MAaTeMAaTUKAJIBIK, (DU3UKAHBIH, CTAIIMOHAPJIBIK, eMeC €CEIITEePIH ey YIMiH
CBI3BIKTAP O/IiCi 2KUi KOJJIAHBLIAIBI, OHJA JTUCKPETU3AIMS aJIIbIMEH TeK KEHICTIKTIK affHbIMaJIbLIap
OOMBIHIIA YKY3ere aChIPBLIAIbI, a1 AJbIHFAH YIKEH OJIIMEeMIl KapamaibiM 1uddepeHITnaIabK TeH-
JieyJiep Kyiieci akbIpJIbl affbIPMJIBIK HEMeCe YKOFapbhl JIQJIJIIKTErl aKbIPJIbl 9JIEMEHTTED 9licTepiMeH
mernrisie . Bys kyMbicTa TOPTIHIT peTTi Kapanaibiv JuddepeHInaIbK, TeHIeyaep Kyiieci yirin
aKbBIPJIbI DJIEMEHTTED OJIiCiHe Heri3Jie/ITeH YKOFapbl JOJIJIKTErl >KaHa KeIlapaMeTpJi albIPMIbIK
cxeMaJIapbl KYPBLIBII Y)KoHe 3epTresreH. Cxemaa mapamMeTpiepIis, 00Iybl CXeMaJIap IblH JTJITiH
JKOFapFbl PETKE KEJITIpyre K9HE 2Ky3ere achIpy aJTOPUTMIH OHTAMIAHIBIPYFA MYMKIHIIK Oepes.
Conpaii-aK, KypbLIFaH aflbIPMIBIK, CXeMaJIaPbIHBIH TYPAKTHIILIFBI MEH YKMHAKTHLIBIFDI J19JIeJIIeH 11
2KOHE OJIap/IbIH, HeTi3iH/Ie MR//IiK Oarajgapbl aJblH b, Kyphlaran afibIpMaJIbIK, CXeMaJIaphbiH Ky3ere
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achIpy aJIrOPUTMI Oepijii. AJIbIHFaH HOTUXKEJIEP/Il apbl Kapaii CHIFbLIATBIH CTPATH(QUKAIIUSIIAHFAH
affHaIMAJIbl CYUBIKTBIK JTUHAMUKACHIHBIH, MATHUTTIK Ta3 JUHAMUKACHIHBIH, MATHUTTE/ITCH TLIa3-
MaJarbl MOHJIBIK-IBIOBICTHIK, TOJKBIHIAD/IBIH, MATHETUKTEP/IEr] CIIMHIK TOJKBIHIAPIBIH, CHIPTKBI
MAarHuT ©PiciHjeri CybIK IJIA3MAaHbIH KoHe T. 0. TeHeyJIepi YIriH OacTalKbI-IIIeKapa eCerTepIi CaH-
JIBIK TIIETTy i€ KOJIJanyra 00J1aIbl.

TyitiH ce3ep: aKbIPJIbL JJIEMEHTTED 3/Iici, albIPBIMIBIK, CXeMaJIaP, TYPAKTHIIBIK, }KUHAKTHIIBIK,
JTOJITIK.
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CxeMbl METO/Ja KOHEYHBIX IJIEMEHTOB IOBBINIEHHON TOYHOCTH /[IJIsi PEIIEeHUsI HECTAIIMOHAPHBIX
YPaBHEHUII YEeTBEPTOro IOPSIKa

Vpasuenus CoOOJIEBCKOTO THITA, BBICOKOTO MOPSIKA SBJISIIOTCS MATEMATHIECKUMU MOIEISMHI MHO-
IUX TPUKJIATHBIX 33/1a9. Kak M3BECTHO, BO MHOTUX CJIyYasx MOJIYIUTh AHAJUTAIECKAE PEITeHUST
ypaBHEHH!I BBICOKOT'O MOPSIJIKa 3aTPYAHUTEIBLHO, IIO9TOMY, OHU B OCHOBHOM PENIAIOTCs YNCJIEHHBI-
MH MeTojiaMu. B 1ocjie/iHee BpeMsi JIJisi peIlleHHs] HeCTAIIMOHAPHBIX 3aJia9 MaTeMaTUIecKoil du-
3UKW 9aCTO TPUMEHAIOT METO/]I IPSAMBIX, B KOTOPOM JUCKPETH3aIis CHa4YaJsIa ITPOBOJIUTCS TOJIBKO
110 TIPOCTPAHCTBEHHBIM [IEPEMEHHBIM, & [TOJIy9€HHAs CUCTEMa OOBIKHOBEHHBIX MM MEPEHITNATBHBIX
YpaBHEHHUI BBICOKOIM Pa3MEPHOCTH PemraeTcs MeTOJaMMU KOHEYHBIX PA3HOCTeN MM KOHETHBIX dJjie-
MEHTOB MOBBIIIEHHOW TOYHOCTHU. B mannoit pabore 111 cucTeMbl OOBIKHOBEHHBIX I depeHInab-
HBIX yPaBHEHUI YE€TBEPTOIO MOPSJIKA IIOCTPOEHBI U MCCJIEJOBAHbI HOBbIE MHOIOIIApAMETPUYECKUE
Pa3HOCTHBIE CXEMbI MOBLIINEHHON TOYHOCTH Ha, OCHOBE METO/Ia KOHEUYHBIX d1eMenToB. Hammane ma-
PAMETPOB B CXeMe II03BOJISET IIPOU3BECTH PETYIIAPUIAINIO CXEM C IIEJIbI0 ONTUMU3AINN aJITOPUTMa
peau3aIy 1 TOYHOCTH CXeMbl. TakKe JOKa3aHbl YyCTOWIUBOCTh W CXOANMOCTH ITOCTPOEHHBIX Pa3-
HOCTHBIX CXeM M Ha WX OCHOBE IOJIYIEHBI OIEHKM TOYHOCTH. lIpumBejieH ajropuT™M peaTu3aliinn
IIOCTPOEHHBIX Pa3HOCTHBIX cxeM. [losrydeHHble pe3ysabTaThl MOI'YT HAlTH JaJIbHEiilllee IPUMEHe-
HHE DU YUCJIEHHOM DpeINIeHU!l Ha4daJbHO-KPAEBbIX 3aJa4 JIjIs YPaBHEHUIl JUHAMUKH C:KUMaeMON
cTpaTuUIMPOBAHHON BPAIIAOIIEHCsT KIIIKOCTH, MATHUTHOM ra30BON JUHAMUKH, HOHHO-3BYKOBBIX
BOJIH B 3aMarHUYEHHO!N IlJIa3Me, CIMHOBBIX BOJIH B MarHeTHUKaX, XOJIOAHOI IIJIa3Mbl BO BHENIHEM
MarHuTHOM TIOJIe U T.II.

KuroueBble cjioBa: MeTO/T KOHEUHbBIX 9JIEMEHTOB, PA3HOCTHBIE CXEMbI, YCTONINBOCTD, CXOIMMOCTb,
TOYHOCTb.

1 Introduction

Recently, in the numerical solution of non-stationary partial differential equations, semi-
discrete methods have been more often used, where differential operators with respect to
spatial variables are approximated by the finite difference method or the finite element
method, and the time variable is kept in differential form. The result is a system of ordinary
differential equations of large dimensions [1-6]. In [1], for the abstract Cauchy problem for
a system of second order ordinary differential equations, a two-parameter difference scheme
of the fourth-order accuracy was constructed on the basis of the finite element method.
The increase in accuracy is achieved due to a special choice of test functions involved in
the replacement of the differential equation by some integral identity. The convergence of
the scheme of the fourth-order accuracy to the solution of the original problem and its
derivative is proved. These results are generalized in [2], [3], where three-parameter two-layer
difference schemes of the fourth-order accuracy are constructed by a similar method for a
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system of second-order ordinary differential equations. On the basis of these results, initial-
boundary value problems for Sobolev-type equations were studied in [4-6|. In particular,
in [4], the problem of the internal wave propagation in a weakly stratified fluid was studied,
and in [5], the convergence of the finite element method scheme for the equation of internal
waves was considered. In [6], the convergence of the scheme of the finite element method
for the equation of gravitational-gyroscopic waves in a stratified fluid was studied. Similar
studies were conducted in [7-12| for various non-stationary initial-boundary value problems.
In particular, in [7], a second-order accuracy estimate was obtained by the finite difference
method for a fourth-order nonlinear Sobolev-type equation. In [8], [9], based on the Runge-
Kutta methods, numerical methods were constructed and studied for the general fourth-
order partial differential equation, where the spatial variables were approximated by the finite
difference method. In [10], based on the tau-method, and in [11], [12], using the finite difference
method, solutions to fourth-order ordinary differential equations were studied. Fourth-order
accuracy estimates were obtained, and methods for obtaining a higher order of accuracy were
indicated.

In this paper, based on the studies given in [1]|, the authors construct new parametric
difference schemes for a system of fourth order ordinary differential equations of the form

DU + Bii+ Au=f, to<t<T, (1)

SR

U (ty) = Uom, m=0,3, (2)
where D, B and A are linear constants independent of ¢, operators from H — H, D* = D > 0,
B*=B >0 A" =A>0,Vt >0, u=u(t),f = f(t) € H- is the Hilbert space,
v
w o= d/dtt, i = d*u/dt?.

Let us give some examples of partial differential equations; spatial approximation of these

equations leads to the solution of the abstract Cauchy problem (1), (2).
1. Dynamic equations for a compressible stratified rotating fluid are [13|

1 0% 02 { < a? , 0%u
- = _— A Awu— 52+—) }+wAu+a Oézﬁzu, (3>
2ot o |’ c? 072 ox2

where u = (z,t) is the flow velocity, x = (x1, 22, 23), Ay = *u/dz} + 0*u/0x3, Az = A,
+0%u/dz2, c is the speed of sound, w3 is the Viiséld-Brent frequency, «, 3 are some constants.
2. Equation of magnetic gas dynamics is [14]

0*u 0? 0
g~ (@ ) ghaut g A= [, 1) Y

where a, b are some constants.
3. The equation of ion-acoustic waves in a "magnetized" plasma is [15]

0? ([ o? 1 0? 0?u

BT ((%2 + B) (Agu ) ) —i-wp 8t2A3u+wple 9i2 = f(z,1), (5)
where 1% = T2?/(4me?ng) is Debye radius, wp, = eBy/(Mc) is the ion gyro-frequency,
w2 = 4me’ng/M is the Langmuir ion frequency, M is mass, ¢ is the speed of light in

vacuum, By is the external constant magnetic field, ng is the unperturbed particle density, e
is the absolute value of electron charge, T, is the electron temperature.
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2 Constructing a scheme

Consider the abstract Cauchy problem of finding a solution to equation (1) that satisfies initial
conditions (2). The generalized solution of equation (1) is defined as continuous function
u(t) € C3)0, T satisfying the following integral identity for arbitrary function 9(t) € C?(t, t,)
t e
. . . t
/ (Diid) — Bid) + Aud)dt + [Dm — D + Bw} - / (f,9) dt, (6)

ty
tH tH

where 0 < t, <t <T,u=du/dt, U = d>u/dt>.

Let us introduce in [0, 7] uniform grid @, = {¢t, =n7, n=0,1,...; 7 > 0}. On each of
the intervals (¢,,t,.1), an approximate solution to problems (1), (2) is sought in the form of
quintic polynomials

y(t) = Gho®)y" + oi Oy + @l (5™ + G ()7 + 05 (0)i™ + @5y ()5, (7)

where y* = y(t,), y"" = y(tar1), ¥" = dy(t)/dt, §" = dy(tas)/dt, §° = d?y(ta)/dt,
§" = d?y(t,41)/dt*. Next, we need to find the basis functions ¢} (t), ¢ (¢), k =0,1,2.
We assume that

y(t) = ap + a1 & + a2&® + a3&” + ast + az€’, (8)

where € = (t —t,,)/(tns1 — tn) = (t —t,) /7. Coeflicients ag, a1, as, as, a4, as are determined by
the following conditions:

g
yn+1(§) = y(l) =ap+a; +az+ as+ as + as,

YA€) = 4(0) = ap, §(€) = (@)5 =,

d
yn+1(£) = (_y> = a1 + 2a9 + 3as + 4ay4 + Has,
i),

§"(§) = e = 2ay, " (§) = ) = 2ay + 6az + 12a4 + 20as.
5 =0 f =1

Solving systems (9), we obtain the following expressions for the coefficients

ap =y", a1 =", as = 0.55", az = 10(y" " —y™) — 2(29" " — 3y™) — 0.5(5" T — 3¢"),
ay = =15(y" —y") + (79" + 85") — 0.5(25" — 3ij"),
as = 6(y" " — ") = 3(25" T + ") + 0.5(5" = §").
Therefore, expression (8) takes the following form
y(t) = (—6&° + 156" + 6£° — 10€% + 1)y + (6€° — 15¢* + 106%)y"+!

+7(=367 + 86" — 66" + )y + 7(=3¢7 + 761 — 4%y (10)
+7'2(_§5/2 + 354/2 _ 353/2 + 52/2)yn + 7_(55/2 i 54 + 63/2):&714_1'
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Comparing (7) and (10), we find expressions for ¢} (), @i (t), k=0,1,2:

o (t) = —66° + 156* +6£° — 10€% + 1, o (t) = 6£° — 156* + 10€3,

Plo(t) = T(—38> + 8¢ — 667 + €), ¢l (t) = T(—38> + 76" — 4¢%),

who(t) = 72(—€7 /24 36" /2 = 367 124+ €2/2), o, (t) = 7(£°/2 — €' + £/2),
E=(@t—tn)/T.

(11)

Now, in (6) instead of u(t) we substitute y(t) and take t,, = t,,, tx = t,11. Then with (11)

from (6), we obtain

tnt1 lnt1 tn+1
. . . tn+1
D / @01?96# — B / 300119(175 + A / (le'Lgdt + (DSO()l’& - D@Olﬁ + 85001’19) !
tn tn tn "
B tny1 tnt1 tn+1 T
tn+1
+ | D / (,011?9dt - B / ngﬂgdt + A / Q01179dt + (D901119 D§01119 + BQ01119) !
tn . .
tn+1 tn+1 tn+1 7
. . . tn+1
+ | D / Yor1¥dt — B / Yo 0dt + A / wo10dt + (D919 — Dpo1) + Bpor 1) ) '
tn tn ! J
tn+1 tn+1 tn+l T
. . . tnt1
+ |D / @ogﬁdt — B / (poo'ﬂdt + A / @ooﬁdt + (D@o(ﬂ? — nggoﬁ + BQOO()??) ’
tn tn ! J
B tny1 tnt1 tn+1 T
tn+1
+ | D / (ploﬁdt - B / ngoﬁdt -+ A / Q01079dt -+ (D901019 Dg01019 + BQ01019> '
tn ! .
tn+1 tn+1 tn+1 7
. . . tn+1
—I— D / (pgo’ﬁdt — B / @Qoﬁdt —I— A / (,020196# + (DQOQO’& - D@Q()’ﬁ —f- B(,02019) "
L in tn tn ! _
tn+1
= / fudt.
tn
A : N . . N
Herey =y", ¥y =y gy =9, 9 =¢"*, §=4", § ="'

A
)

Further, choosing ¢, we obtain difference approximation (1). Since equation (12) contains

A A A
three unknowns ¥, ¢ and §j , three functions 9(¢) should be chosen. 9, (t), ¥2(t) and J5(t) are
taken as the following linear combinations of interpolation functions g, (t) with parameters

01, 09 and o3:

Y (t) = o1pe0 + (1 — 01)por,
Va(t) = o2p10 + (1 — 02) 11,
V3(t) = o320 + (1 — 03) a1,

(13)



D. Utebaev et al. 47

and parameters oy, 0o, 03 are chosen from the condition of the maximum order of
approximation of the resulting difference equations. Substituting successively (13) into (12)
(at f =0), we obtain the following system

AN
MYy +GY =0, (14)
where
A ?2 Y mi1 M2 Mag 911 912 G13
Y = ?{ Y =1y, M= |mamame]|,G=1| g2 g22 923 |,
y y mgy M3 M33 931 932 933

T 540 10 131
mi1 = ZA + (1 - 20’1) (ﬁD - 7—7_B + @TA) s

Mg = —%D + %B — %TZA + (1 —20y) (—%D + gB - %72A> :
miz = %D + ﬁ7214 + (1 — 209) <;l—iD - 8%17'3 -+ 55%7’%4) ,
Mo = —%D + %B - 2i317'2A + (1 — 209) (2—1()7'2/1) ,
Moy = %D — %73 4 1854873,4 + (1 — 20) (%D — %73 + 22—;072,4) ,
s = _gD * %723 N 11(1);8074‘4 1 =20) (_%D * %723 N 101018OT4A> ’

1 1
ms1 = —7'314 -+ (1 — 20’3) (ED ——7B -+ o 7'314) y

240 70 84 T 554
3 11 3 | 17
- D+ 2B AL (120 (2Dt 7B~ 14
ma = —15P+ 5557 B~ qo0s0” A+ (1 209) < 2" "1™ 7 T Tioes0” )

1 1 1 1
5=—7D— —73B+(1-2 —7D — 5B
m33 T T°B + ( o3) (287 5530 ),

20 840

1 540 10 131
=t A+(1-20)(-2=D+ —B— 1A

g =T A+ Ul)( T T T a )’

6 1. 1 270 5 4
= —-D—-—-B+—7?A+(1-2 —~_D+-7B—- —1°A
g12= D= 5B+ opm A+ U3)< R 231" )
3 1 45 1 5
Dt A+ (1-20)(-2D+ 7B~ 34
913 TapT A Ul)( 70 T8 T s )
60 3 4
= 2D B4+ A (1-20) (124
g = gD - Bt ogm A= (1= 202) <207 ) ’

30 3 5 6 17 31
DB+ 2 PAr(1-200)(——D+ 7B~ 54
gz = 7D = 5T B T A UQ)( 577 120 0 T 2520 )
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5 1 17
_°p__—~ 2B
9 =7 = 7657 P 110880

3 3 11
1A+ (1-20) (-2D+ > 2B 44
T A+ (1= 20) | =D+ 5enT 10080" )"

1 . 1
g1 = =1 A+ (1 — 203) <—3D +—78— iTBA> ,

240 gAY 5544
| 3 11 3 1 17
=_—D—-—1B A+ (1-2 ——D+—1*B— 1A
92 = 750 ~ 5507 B+ qp0s0” A+ (L 208) ( TR 110880 )"
L op_ L ospy (1 — 203) L opr L op
=—7D——7 —203) | —==T T .
) 840 3\ 728 2520

Having made some transformations with system (14), we obtain the following difference
equations approximating (1):

N AL
(D_T_B>y—y Tty ity

12 T 120 2 2
A A
90 572 473 y+y 4572 73 Uy — 9
—(1-2 ~Zp+2p--_A D-—B =0
( Ul){( 77T 693) 2 +(42 504) T ’
2 N A .
™ \NY -y N+ TG =)
D-—B —(p-B)22+ " p
( 40 ) T ( 40 ) 2 1Y 7
A A
73 173 ._- 73 3 .. .
ey d (T YT NI g (T T NG gL (15)
5 1200 T 50 | 800 2

D e TV 2 28 7 252 =0

A A
1 3 . . 1 3 .. _ ..
—@D 57’B 7TA)y+y_(OTD TB)y i
-
On sufficiently smooth solutions wu(t) of equation (1), the approximation error of the
resulting scheme (15) is

30 45 5
=(1-2 “ paH — 2pa® 4 220
Y1 = ( 01)(70 u g DU+ T Bu
4

e 1 1
T gz L aae o L pa@) 4 o
+12(24 ET AT A 5 DU ) 0,

A 1
Yy = (1 — 205) (1731)@(2) — 1721)@(3)) + (——Ba@ — —Dﬂ(5)) +0(79),

50 50 24\ 40 12
30 5 50 19
= (1-203) | ——Da"V + —7rBa" — —7 Da® + ——7*Bu®
va = ‘73>( 7o TR TR T P e

™l 4@ 6
+% ?Bu —Au +O(T ),
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where u* = d*u(t, + 7/2)/dt*. If we choose oy = 0y = 03 = 1/2, then scheme (15) will have
the fourth-order of approximation and the form of the scheme is greatly simplified:

A A

2 - 2 . .
poTp)ioi P iy i

12 T 12 2 2

-2 2 o 2

y—y T y+y 1Y —Y

p-_nB D--—B)|2 24D = (16)
( 40 ) T < 40 ) 2 120 7 0

; A L oA A
D—LB ¥=Y _(p_Tpn M_T_szg,

28 T 42 2 12 2

Difference scheme (16) is a two-layer vector scheme. Each grid node @, is triple - it defines
S

three values: y", y", y".
Let 09 = 09 = 03 = 1/2 in (13). Then we get

0 =1/2, ¥y = ﬁ5>—r<3£5+155 /2 = 563 +€/2) = TE(1 — €)(€ — 1/2)(3€* — 3¢ — 1),
9y =95 = 72626 — 1)’ /4, € = (t —ta)/T.

Function 199 is an odd function with respect to point ¢t = t,, + 7/2, i.e. the middle point
of interval (¢,,t,+1). Then, leaving function ¥; = 1/2 unchanged, ¥, and 93 are chosen as a

linear function, an odd one with respect to t = ¢, +7/2: ¥ = 19&5) =7(£-1/2)(362 -3¢ 1),
V3 = 72/4. As a result, we get the following scheme

A AN
_ 2 . ..
<D__B)y gty piti_g

12 T 12 2 2
-2 n -2 -2 AR
p-Tp)\Y =Y _(p_-Tp y—+y+ TplTi_y, (17)
60 T 60 2 12 T
2 2 Lo 2 7
y -y T y+y T Yty
T _ TR\ YUY T YRV,
(D 1OB> T <D 603) > 1ty

Approximation errors coincide with scheme (16) ¢; = O(74), 1o = O(7), 13 = O(7?).

3 Construction of a parametric family of schemes

As seen from the form of schemes (16) and (17), by choosing function ¥ we can obtain the
following parametric family of schemes:

Dy — nr* Ay — Djj*% = 0,
Dy — D,y + 2 Dij, = 0, (18)
Do — Dgi*™? — 2 Ay *? =0,

A A N
WhereD =D — mTQB m—a 6 Y, N, Y = (y_y)/Tv yt:<y_y)/T7 yt:(y_y)/Ta
y O = (4 +1)/2, 509 = (5 +§)/2, §°9 = (§ +i)/2.
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Here, the approximation errors are

2

12(Du( ) +12nBu® + 12nA7) + O(t4),

Yy =
Y2 = —7%[(1/12 = ) Da®] + O(rY),

3 = I—Q[DH(‘*) +12(a — B)Ba® + 12nAu)] + O(r*),

where u®) = d*u(t, + 7/2)/dt*.
For the fourth order of approximation, it is sufficient that the parameters of scheme (18)
be related by the following relations

a—B=1/12, n=1/12, (19)

« is an arbitrary constant. Therefore, parameters (19) are the conditions of the fourth-order
approximation of scheme (18). We choose function 5 such that the corresponding equation
coincides with the second equation of scheme (18). This function is sought in the following
form

95 = 5108 + 5295, (20)
with parameters si, Ss, to be determined, where ﬁgl) = 7§ —1/2), 1955) = 7(3¢° 4+ 15¢%/2

— 58 +¢/2).
Substituting (20) into (12), we obtain the difference equation

A
1 1 1 Y-y
D——7B) —Zs,(D— —7°B
( < 60" ) 752( 40" )) T
1 1 1 bty (1 1 i — i
+9 j—i
D——mB) -z (D= =72B) LY 1 (=6, — —s, ) 2DL—Y .
( ( 60" ) 752( 10" )> > +(1251 8482> .

To match it with the second equation in (18), it is necessary that sq, s, satisfy the following
relations:

S2 S1 S2 S1 S2

ST T T e e s T

From this system we find

s1=3—1207, so = 14 — 840, n=1/12.

Now we choose function 3 such that the corresponding equation coincides with the third
equation of scheme (18). This function is sought in the following form

O = 5398 + 540957, (21)

with parameters sz, sy, to be determined, where ﬁéQ) =726 -1)/2, 19 = 7262(6 — 1)%/4.
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Substituting (21) into (12), we obtain the difference equation

A
1 1 3 ) — 1
(s (- 578) ~ 1o (2= 557°8) ) 22 - (s (0= 557°8)
1 1 ivi (1 1 y
+ij Y +y
s p-=2r2B)\Y — s, ) 2AZ T .
1054< 12" )) 2 (12 % 12054> 2

To match it with the third equation in (18), it is necessary that sz, s4 satisfy the following
relations:

1 . Lo 3 1 . 1 4 1
83 — —S5 ——S3+ —=S54 =, ——=§ — - —
T 10°° " 280 © 60 T 0™ TP 2% 120

S4 =
From this system we find

s3 = 140 + 15, s4 = 1400a + 140, n=1/12, a—f=1/12.

B:m)

Now, using as 13 constructed function 19%“’ , we can built a scheme with parameters

a, B, v, n for the case f(t) # 0:
Dyy: — 7772Ay(0'5) - D?J(Oﬁ) = ¥1,
Dyyy = Dy + 0Dy = s, (22)
Dag — Dgij ) — nr? Ay ®) = s,

where . )
n+1 9
or=—3 [ 1w =-T [ e+ e
tn 0
tn+1 7 9 1
/ FOIS )t =~ [ e+ 7€) (5108 + 5ot (€))e

0

tn+1

1
_¥ / f(t)ﬁgavﬁ,n)(t)dt = _10/f(75n + 75)[8319?) i 54791(34)]016
0

The first initial condition is approximated exactly, and the remaining initial conditions are
approximated as in [16], by the fourth order, using the Taylor series and the initial equation:

2

y° =g, 9° = uos + E— —D 'B ) ugs + —U03 + D "£(0) — Augy),
2 6 24 (23)

3
. 72 _ T _1r . .
yO = Up,2 —+ TUo,3 + ?D l[f(O) — BUOQ — AUO,O] + ZD l[f(O) — BU072 — AU0,0].

It is easy to check that scheme (22), (23) has the fourth order of approximation error on
smooth solutions if conditions (19) are satisfied.
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4 Stability of the scheme

Let us introduce into consideration a real finite-dimensional Hilbert space H®> = H ® H & H
(direct sum of spaces H) with scalar product

(U,V)g = (SU,V) = i (SUa, Vi)

a=1
and norm
3
1UII5 = (U.U)s =D _ lualls, U,V € H, U = (w1, uz, uz), V = (9,9, Js).
a=1
Scheme (22) after simple transformations takes the following form
DDy — nr* D Ay™® — Dy Dij*® = Dy,

AD,y, — AD,y*? + nr? ADjj, = Aps, (24)
ADagt . ADﬁy(05) . 7”]7'2142y(0'5) _ ASOS

We introduce Y™ = (", 4™, y") € H*. Then, scheme (23) can be represented as:

— Y +Y
BY, +U + = o,
where
. 0 l)ﬂll7 O —DgD 0 —777'2D5A
B = |nr?AD 0 AD, |, U= 0 —AD, 0
0 nt?AD, 0 —n12ADg 0 —n?r2A?

Operators B, U act from H? into H®, ® = (Dgp1, Aps, nT2Aps) € H.
Canonical form of scheme notation (24)

BY, +UY = &,

corresponds to operator B = B + 0.57U [17].
Based on Theorem 6 from [17, p. 193], we obtain the following theorem.
Theorem 1. Let

D, >0, a, B, 7, n, (25)

U=U"> —c¢.FE, ¢, = const > 0, (26)

U is a constant operator and the following conditions are met

B>eE+057U", U =U+ ¢ E, ¢ = const > 0, (27)
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where ¢; = 2¢,. Then for the solution of scheme (22), (23) the a priori estimate holds

n

) 14t toas 41
Y (tas) I < e <HY(0)HQU/+2—6+ZT“‘I’/€”2) O =202 (28)
k=0

Condition (25) imposes restrictions on the grid step 7:
D > m7*B, m = max(a, 3, v, n). (29)

Condition (26) is satisfied since operator U is sign-undefined in structure, and (27) will
be satisfied if the stability condition (29) is met.

5 Convergence of the scheme

Let us introduce the error of the scheme 2" = y™ — u(t,), 2" = y" — a(t,), 2" = §" — i(t,),
where u(t) is the solution of problem (1), (2). Substituting y™ = u(t,) + 2", y" = u(t,) + 2",
§" = i(t,) + 2" into (22), we obtain the problem for the error of the scheme

Dyzy — Az — DO = gy,
D,z — D, 2% 472D =ty
D,z — D32(0'5) — n72A2(0'5) = 13,

with appropriate initial conditions. Therefore, based on Theorem 1, we obtain the convergence
of the scheme with the fourth order, i.e., the following theorem holds.

Theorem 2. Let the conditions of Theorem 1 and (19) be satisfied. Then, on the basis
of estimate (28), we obtain that scheme (22), (23) converges to the solution of problem (1),
(2) with the fourth order so, its solution satisfies the accuracy estimates:

ly" = ulta)llor < M2 (15" = alta) o < M7 G = ilta)lor < M7

6 Algorithm for implementing the scheme

Let us consider one of the possible algorithms for implementing scheme (26). We rewrite it
in the following form

mny + m12?§ + m13?2 =@y,
mo1y + Moy + Maslj = Dy, (30)
ma1y + Ma2y + masy = Ds.

Here
3
T T T
miy; = —7]514, mig = Dn, mis = —§D, mo1 = Dm Mmoo = —§D7, Mo3 = 777'2D7
73 T 73 T
msp = —77?147 M3y = Do, ma33 = _§D67 ¢ =791 + n;Ay + Dyy + §Dy7

3

T . T .
-y + Day + —Dﬁy.

T . .
Dy = 7o + Dyy + =Dy +n72Dij, @3 =Tp3+1 5 5

2
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Assuming the mutual commutability of operators D, B and A, we exclude 4 from the
system of equations (30). As a result, we obtain the following system of equations

gy + g2y = ?17 (31)
9219 + G20y = Do,
where g11 = magmyiy — mM13Mo1, Gi12 = Ma3Mig — MM13Mo2, Go1 = M33M11 — M13Ma3y,
g22 = M33Myz — Mi3Mzz, P1 = Moz Py — m3Py, Py = maz®y — my3Ps.

Further, excluding 3 from (31) we obtain
Cj=F (32)

where C' = g22911 — g12921, F' = 921‘51 —A912£I;2~
Finding 3 from (32), we determine y from one of equations (31), for example, from the
first equation
Cly = F17

where C7 = g22912, F1 = 922<I>1 — g22g11y- Further, the value of §j is found from system (30)
for example, from the first equation C’Qy = F,, where Cy = my3, Fy = &1 — my1y — myay.

7 Conclusions

New multi-parameter difference schemes of the fourth-order accuracy are constructed and
investigated for systems of the fourth order ordinary differential equations. The constructed
schemes can be interpreted as schemes of the finite element method, since the approximate
solution is determined from the condition of orthogonality of function ¥ (t), which differs
from the interpolation functions ¢y (¢). Then we can say that these schemes are based on the
Galerkin-Petrov method [16]. On the other hand, scheme (22) is obtained from the integral
identity (3), replacing differential equation (1), when interpolated by quintic polynomials the
solutions at each grid step w,, and it can be considered as schemes of the integro-interpolation
method [17].

The family of schemes (22) has certain disadvantages and advantages. We note the
following:

1. The scheme is conditionally stable and for its implementation, it is necessary to spend
approximately three times more arithmetic operations than for conventional schemes of the
finite difference method. However, this scheme allows choosing large time steps to achieve a
certain accuracy.

2. The advantages of the schemes include the following: a) higher order of accuracy;
b) in addition to the solution itself, we obtain its first and second derivatives (with the
same accuracy order); for example, for problems of fluctuations in a continuous medium, in
addition to displacements, we simultaneously determine velocity and acceleration; c) using
the interpolation representation (7), if necessary, it is possible to obtain a solution and its first
and second derivatives at any time point ¢ € (t,, t,11); d) since the schemes are two-layer, it
is possible to use variable step 7 without loss of accuracy.

Thus, we can state the advantages of scheme (22) in solving various initial and initial-
boundary value problems for partial differential equations of the type (3)-(5).
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