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ON AN INVERSE PROBLEM WITH AN INTEGRAL
OVERDETERMINATION CONDITION FOR THE BURGERS EQUATION

In this paper we consider one inverse problem for the Burgers equation with an integral
overdetermination and periodic boundary conditions in a domain that is trapezoid. Using an
integral overdetermination, boundary and initial conditions, we reduce the inverse problem to the
study of an already direct initial boundary value problem for the loaded Burgers equation. Next, we
use a one-to-one transformation of independent variables to move from a trapezoid to a rectangular
domain, where we study an auxiliary problem, for which the methods of Faedo-Galerkin, a priori
estimates and functional analysis have been proved a theorem on its unique solvability in Sobolev
classes. Note that the obtained a priori estimates are uniform with respect to the summation index
of the approximate solution and do not depend on time. Further, on the basis of this theorem, due
to the correspondence of spaces, theorems on the unique solvability of the original inverse problem
are proved. Also, for the selected initial data, the paper presents graphs of the initial-boundary
problem for the loaded Burgers equation and the desired function of the inverse problem, which
together constitute the solution of the original inverse problem.
Key words: Burgers equation, inverse problem, a priori estimates, Galerkin method.
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Бургерс теңдеуiне қойылған және интегралдық қосымша шарты бар керi есеп туралы

Осы жұмыста бiз трапеция болып табылатын облыстағы Бюргерс теңдеуi үшiн қойылған
және интегралдық қосымша шарты және периодикалық шекаралық шарттары бар керi есеп-
тi зерттеймiз. Қосымша интегралдық шартын, бастапқы және шекаралық шарттарды пай-
даланып, бiз керi есептi жүктелген Бюргерс теңдеуi үшiн қойылған бастапқы шекаралық
есептi зерттеуге келтiремiз. Әрi қарай бiз тәуелсiз айнымалылардың өзара керiленетiн түр-
лендiруi көмегiмен трапециядан тiкбұрышты облысқа көшемiз. Содан кейiн осы облыста кө-
мекшi есептi зерттеп, Фаедо-Галеркин әдiсi, априорлы бағалаулар әдiсi мен функционалдық
талдау көмегiмен осы есептiң Соболев кластарындағы бiрмәндi шешiмдiлiгi туралы теоре-
маларды дәлелдедiк. Айта кетсек, алынған априорлы бағалаулар жуықтау шешiмiнiң сумма
алыну индексi бойынша бiрқалыпты және уакытқа тауелсiз. Одан кейiн осы теорема арқы-
лы кеңiстiктердiң сәйкестiгi негiзiнде керi есептiң бiрмәндi шешiмдiлiгi туралы теоремалар
дәлелденедi. Бұған қоса бiз арнайы алынған бастапқы шарттар үшiн Бюргерс теңдеуiне қой-
ылған бастапқы шекаралық есептiң және керi есептiң iзедлiндi функциясының графиктерiн
келтiремiз.
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В данной работе нами исследуется одна обратная задача для уравнения Бюргерса с
интегральным условием переопределения и периодическими граничными условиями в
области, представленной трапецией. Используя дополнительное интегральное условие,
граничные и начальные условия мы обратную задачу сводим к исследованию уже прямой
начально граничной задачи для нагруженного уравнения Бюргерса. Далее с помощью
взаимооднозначного преобразования независимых переменных мы переходим от трапеции к
прямоугольной области. И уже в этой области мы исследуем вспомогательную задачу, для
которой методами Фаедо-Галеркина, априорных оценок и функционального анализа была
доказана теорема об её однозначной разрешимости в классах Соболева. Отметим, что по-
лученные априорные оценки являются равномерными относительно индекса суммирования
приближенного решения и не зависят от времени. Далее на основе данной теоремы, в силу
соответствия пространств доказываются теоремы об однозначной разрешимости исходной
обратной задачи. Также мы для выбранных начальных данных в работе приводим графики
начально граничной задачи для нагруженного уравнения Бюргерса и искомой функции
обратной задачи, которые вместе составляют решение исходной обратной задачи.

Ключевые слова: уравнение Бюргерса, обратная задача, априорные оценки, метод Галер-
кина.

Introduction

The simplest equation combining both nonlinear propagation effects and diffusive effects is
Burgers’ equation

ct + ccx = νcxx. (1)

For the first time, this nonlinear parabolic partial differential equation was introduced by
J.M. Burgers [16] in 1948. Since then, the study of the Burgers equation has a long history,
which is noted in many papers. Here we present only a small part. In [7] it was shown that
(1) is an exact equation for waves described by

ρt + qx = 0, q = Q(ρ)− νρx,

in the case that Q(ρ) is a quadratic function of ρ. Although the Burgers equation is
unphysical [12], it is nevertheless relevant to various areas of applied mathematics, such
as fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow [5, 10]. An important
role in mathematical physics is played by various modifications of the Burgers equation, such
as the generalized Burgers equation [6, 14, 21], Burgers-Fisher equation [34], Korteweg-de
Vries-Burgers equation [32,39], Rosenau-Burgers [22,36] and others. The Korteweg-de Vries-
Burgers equation is obtained when in the models describing propagation of undular bores in
shallow water and in fluids containing gas bubbles a smoothing effect is added and produces
a third phenomenon, dissipation (second-order term) [3, 17]. Since the Burgers equation, in
a sense, is a one-dimensional simplified analogue of the Navier-Stokes equation, the Burgers
equation is very often used as a test example for Navier-Stokes [20,33].

As for the problems with periodic conditions for the Burgers equation and its modification,
in the work [31] they were derived to simulate wave propagation in a prestressed thick elastic
tube filled with a viscous liquid using the long-wave approximation and the perturbation
method. Such problems also arise in hydrodynamics as models of long waves in a viscous
liquid flowing down an inclined plane, and to describe drift waves in plasma [18].
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The applied importance of inverse problems is so great (it arises in various fields of human
activity: seismology, mineral exploration, biology, medicine, quality control of industrial
products, etc.) that puts them in several urgent problems of modern mathematics. The variety
of inverse problems in comparison with their direct counterparts is huge. And many inverse
problems that were derived from classical and basic direct problems are still waiting for
theoretical and numerical research. Here we will also focus only on some of them.

In the works [1, 2, 8, 9, 19, 23, 24] questions of the solvability of the inverse problems of
determining the right-hand side and the unknown coefficient of the desired function with the
integral redefenition condition are studied. Among the recent papers on inverse problems for
the Burgers equation, we note only [11,30]. In the work [2] and [9] were considered the inverse
problems heat conduction and the Burgers equation with periodic boundary conditions.

It is known that by the Hopf-Cole transformation [4, 13] the Burgers equation can be
reduced to the heat equation [11,25,28]. Theorems on the existence, depending on the initial
and boundary conditions, of a unique and non-unique solution to the inverse problem for
the one-dimensional Burgers equation in a rectangular domain were proved in [11]. Similar
results for the direct problem for the Burgers equation:{

wt + wwx − wxx = 0, 0 < x < t, t > 0,

w|x=0 = 0, w|x=t = 0.
(2)

but already in the angular domain were obtained in [25], and it was shown that boundary value
problem (2) in the corresponding weight Lebesgue class, where the weight is determined by
the nature of the degeneracy of the domain, along with the trivial solution, has a nontrivial
solution. In [28] the results obtained in [25] were extended to the case of inhomogeneous
boundary conditions.

On inverse problems for parabolic equations in degenerating domains, we can note the
works [26,27,29].

As regards boundary value problems for the Burgers equation in domains that are not
rectangles, we would like to mention the closest works [37, 38, 40]. In work [37] in the non-
rectangular domain that can be transformed into rectangle, the correctness of the boundary
value problem for the Burgers equation was established in Sobolev spaces. These studies
were continued in work [38], where the boundary value problem is already considered in a
degenerate triangular domain. In [40] new regularity results for the non-homogeneous Burgers
equation in domains that can be transformed into rectangles were obtained.

In this paper, in contrast to work [40], we consider the inverse problem for the Burgers
equation in the non-rectangular domain that can be transformed into rectangle. The
solvability issues of the inverse problem for the Burgers equation and associated initial
boundary value problem for the loaded Burgers equation are studied in Sobolev classes. The
results obtained for the latter problem are used in proving theorems on the unique solvability
of the inital inverse problem. A separate work will be devoted to the inverse problem in a
degenerating domain.

The paper is organized as follows. Section 1 is this Introduction. Statements of the
generalized initial boundary value problem for the loaded Burgers equation, the original
inverse problem, and associated with it initial boundary value problem for the loaded Burgers
equation are given in Section 2. The main results are also given here. Section 3 is devoted
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to the proof of the theorem on the unique solvability of the generalized initial boundary
value problem for the loaded Burgers equation. Theorems on the solvability of the inverse
problem and the associated initial-boundary value problem are proved in Section 4. Graphs
of the solution to the initial boundary value problem for the loaded Burgers equation, the
initial inverse problem, and the desired function are presented in Section 5. A brief conclusion
completes the work.

1 Statements of the problems and main results

Recall that Lp(0, t) and Hm(0, t) are the usual spaces of Lebesgue and Sobolev [15], for
1 ≤ p ≤ ∞, t ∈ (t0, T ), t0 > 0 and m ∈ Z. We introduce the notation, ∀t ∈ (t0, T ):

H2
per(0, t) =

{
w ∈ H2(0, t) : w(0, t) = w(t, t), ∂xw(0, t) = ∂xw(t, t)

}
.

The article is concerned with the following two questions: the first one is to study the existence
and uniqueness of the solution to the inverse problem for Burgers equation in the domain
Qxt = {x, t | 0 < x < t, t0 < t < T < ∞, t0 > 0} where Ωt = {0 < x < t, t0 > 0} is a
cross section of the domain Qxt for a fixed value of the variable t ∈ (t0, T ): to find a couple
of functions {u(x, t), λ(t)} from the conditions

∂ tu+ u∂xu− ν∂2xu = λ(t)f(x), (x, t) ∈ Qxt, (3)

∂jxu(0, t) = ∂jxu(t, t), j = 0, 1; t ∈ (t0, T ), (4)
u(x, t0) = 0, x ∈ (0, t0), (5)∫ t

0

u(x, t)dx = E(t), t ∈ [t0, T ], (6)

where ν = const > 0 is a given constant and functions f(x), E(t) satisfy the conditions{
f(x) ∈ L∞(t0, T ;L∞(0, t)) ≡ L∞(Qxt), f̄(t) ≡

∫ t
0
f(x)dx 6= 0, ∀t ∈ [t0, T ],

E(t) ∈ W 1,∞(t0, T ).
(7)

Note that (7) implies: f̄(t) ∈ L∞(t0, T ) and there exists such ε that |f̄(t)| ≥ ε > 0, ∀t ∈
[t0, T ].

Integrating the equation (3) with respect to x over the sections Ωt we will have

E ′(t)− u(t, t) = λ(t)f̄(t), t ∈ (t0, T ),

and for the unknown function λ(t) we have the following formula:

λ(t) = −h(t)u(t, t) + g(t), t ∈ (t0, T ), where h(t) =
1

f̄(t)
, g(t) =

E ′(t)

f̄(t)
. (8)

Thus, from (3)–(5) and (8) we obtain the following initial boundary value problem for the
loaded Burgers equation

∂ tu+ u∂xu− ν∂2xu+ h(t)f(x)u(t, t) = g(t)f(x), (x, t) ∈ Qxt, (9)

∂jxu(0, t) = ∂jxu(t, t), j = 0, 1; t ∈ (t0, T ), (10)
u(x, t0) = 0, x ∈ (0, t0). (11)

The following theorems are valid:
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Theorem 1 Let conditions (7) be met. Then initial boundary value problem (9)–(11) has a
unique solution

u ∈ H2,1
per(Qxt) ≡

{
L2(t0, T ;H2

per(0, t)) ∩H1(t0, T ;L2(0, t))
}
.

Theorem 2 (Main result) Let conditions (7) be satisfied. Then the inverse problem (3)–
(6) has a unique solution

u ∈ H2,1
per(Qxt) ≡

{
L2(t0, T ;H2

per(0, t)) ∩H1(t0, T ;L2(0, t))
}
, λ(t) ∈ L∞(t0, T ),

where u(x, t) is a solution to the initial boundary value problem (9)–(11), λ(t) is determined
by formula (8).

The second question concerns the following generalized initial boundary
value problem for the loaded Burgers equation in a rectangular domain Qyt =
{y, t| y ∈ (0, 1), t ∈ (t0, T ), t0 > 0, T <∞}

∂tw + a1(t)w∂yw − a2(t)∂2yw + a3(y, t)∂yw + a4(y, t)w(1, t) = q(y, t), (12)

∂jyw(0, t) = ∂jyw(1, t), j = 0, 1; t ∈ (t0, T ), (13)

w(y, t0) = 0, 0 < y < 1, (14)

where q(y, t) ∈ L2(Qyt). We also assume that there are positive constants εi, i = 1, 6, that
the given functions a1(t) ∈ C1([t0, T ]), a2(t), a3(y, t), ∂ya3(y, t), a4(y, t) ∈ C(Q̄yt) satisfy the
conditions

a′1(t) ≤ 0, ε1 ≤ a1(t) ≤ ε2, ε3 ≤ a2(t) ≤ ε4, ∀t ∈ [t0, T ],

|a3(y, t)| ≤ ε5, |∂ya3(y, t)| ≤ ε5, |a4(y, t)| ≤ ε6, ∀y ∈ (0, 1), ∀t ∈ [t0, T ].
(15)

Theorem 3 Let q ∈ L2(Qyt) and conditions (15) be satisfied. Then initial boundary value
problem (12)–(14) has a unique solution

w ∈ H2,1
per(Qyt) ≡ L2(t0, T ;H2

per(0, 1)) ∩H1(t0, T ;L2(0, 1)).

2 Proof of Theorem 3

First, we prove a theorem on the unique solvability of a generalized initial boundary value
problem for the loaded Burgers equation in a rectangular domain. The results obtained for the
latter problem are used in proving theorems on the solvability of the initial inverse problem.

2.1 Approximate problem

Let us multiply the equations (12) scalarly in L2(0, 1) by the function v ∈ H2
per(0, 1). As a

result, taking into account the initial (14) and the boundary conditions (13) we will have a
weak formulation of the problem (12)–(14):

1∫
0

∂twvdy + a1(t)

1∫
0

w∂ywvdy + a2(t)

1∫
0

∂yw∂yvdy

1∫
0

a3(y, t)∂ywvdy+
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+w(1, t)

∫ 1

0

a4(y, t)vdy =

1∫
0

qvdy, ∀ v ∈ H2
per(0, 1), (16)

w(y, t0) = 0, y ∈ (0, 1). (17)

To apply the Faedo-Galerkin method, we need to solve the following spectral problem:

−Y ′′(y) = λ2Y (y), y ∈ (0, 1), (18)

Y (0) = Y (1), Y ′(0) = Y ′(1). (19)

The solution to the problem (18)-(19) is a system of orthogonal eigenfunctions Yk(y) =
eik(2πy) with eigenvalues λ2k = (2πk)2, k ∈ Z, Z = {0,±1,±2, . . . }.

We introduce the following approximate solution

wN(y, t) =
N∑

j=−N

cNj(t)Yj(y), wN(y, t0) =
N∑

j=−N

cNj(t0)Yj(y), (20)

which we will satisfy the problem (16)–(17):

1∫
0

∂twNYjdy + a1(t)

1∫
0

wN∂ywNYjdy + a2(t)

1∫
0

∂ywN∂yYjdy +

1∫
0

a3(y, t)∂ywNYjdy

+wN(1, t)

∫ 1

0

a4(y, t)Yjdy =

1∫
0

qYjdy, j = −N,N, (21)

wN(y, t0) = 0, y ∈ (0, 1), (22)

for all t ∈ [t0, T ].

2.2 Solution of the approximate problem (21)–(22)

Lemma 1 The problem (21)–(22) has a unique solution CN = {cNj(t)}Nj=−N .

Proof. As we have mentioned earlier, the system of functions {Yk(y)}k∈Z forms an
orthogonal basis in L2(0, 1). Let WN be Gram matrix, and (·, ·) the scalar product L2(0, 1),
then for any finite N there is

det{WN} = ‖(Yk(y), Yj(y))‖Nk,j=−N 6= 0.

Next, if for all j = −N,N we introduce the notation

GN(t) = {qj(t)}, j = −N,N, PN(t) = {pj(t)}, j = −N,N,

CN(t) = {cNj(t)}, j = −N,N AN = (∂yYk(y), ∂yYj(y))Nk,j=−N
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where

qj(t) =

1∫
0

qYj(y)dy, pj(t) = −a1(t)
1∫

0

wN∂ywNYj(y)dy

−
1∫

0

a3(y, t)∂ywN(y, t)Yj(y)dy − wN(1, t)

∫ 1

0

a4(y, t)Yjdy, j = −N,N,

then the problem (21)–(22) will be equivalent to the following Cauchy problem for a finite
system of the following nonlinear ordinary differential equations

C ′N(t) = W−1
N [−a2(t)ANCN(t) + PN(t) +GN(t)] , CN(t0) = 0. (23)

Since q(y, t) ∈ L2(Qyt), then qj(t) is a square-integrable function, and the function pj(t) well
defined. In this regard, the Cauchy problem (23) is uniquely solvable on some interval [t0, T0],
where T0 ≤ T. However, because of a priori estimates from Lemmas 2–4 in Section 2.3, we
get that the solution CN(t) can be continued to a finite time T.

Thus, for each fixed finite N we find the functions CN(t) = {cNj(t), j = −N,N} as a
solution to the Cauchy problem (23), and with them the unique approximate solution wN(y, t)
of problem (16)–(17). Lemma1 is fully proved.

2.3 A priori estimates for the approximate solution (20) of problem (21)–(22)

To further prove Theorem3, we need to prove a number of lemmas on a priori estimates.

Lemma 2 There is a positive constant K1, independent of N , that for all t ∈ (t0, T ] there is
an estimate

‖wN(y, t)‖2L2(0,1) + ε3

t∫
t0

‖∂ywN(y, τ)‖2L2(0,1)dτ ≤ K1. (24)

Proof. Multiplying (21) by cNj(t), and summing the result by j from −N to N , we get

1

2

d

dt

1∫
0

|wN(y, t)|2dy + a2(t)

1∫
0

|∂ywN(y, t)|2dy = −
1∫

0

a3(y, t)∂ywN(y, t)wN(y, t)dy

−wN(1, t)

∫ 1

0

a4(y, t)wN(y, t)dy +

1∫
0

q(y, t)wN(y, t)dy. (25)

Now, integrating (25) by t from t0 to t and using ε-Cauchy inequalities

−
1∫

0

a3(y, t)∂ywN(y, t)wN(y, t)dy ≤ ε3
4
‖∂ywN(y, t)‖2L2(0,1) +

ε25
ε3
‖wN(y, t)‖2L2(0,1),
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1∫
0

q(y, t)wN(y, t)dy ≤ 1

2
‖q(y, t)‖2L2(0,1) +

1

2
‖wN(y, t)‖2L2(0,1),

−wN(1, t)

∫ 1

0

a4(y, t)wN(y, t)dy ≤ ε6|wN(1, t)|‖wN(y, t)‖L2(0,1)

≤ ε6‖wN(y, t)‖L∞(0,1)‖wN(y, t)‖L2(0,1) ≤ ε6

(
‖wN(y, t)‖L2(0,1)

+‖∂ywN(y, t)‖L2(0,1)

)
‖wN(y, t)‖L2(0,1)

≤
(
ε6 +

ε26
ε3

)
‖wN(y, t)‖2L2(0,1) +

ε3
4
‖∂ywN(y, t)‖2L2(0,1),

we will have

‖wN(y, t)‖2L2(0,1) + ε3

t∫
t0

‖∂ywN(y, τ)‖2L2(0,1)dτ

≤ A0

t∫
t0

‖wN(y, τ)‖2L2(0,1)dτ +

T∫
t0

‖q(y, τ)‖2L2(0,1)dτ, (26)

where A0 =
(

2ε25+2ε26
ε3

+ 2ε6 + 1
)
. By using estimate (26) we establish the required estimate

of the Lemma2 where K1 depends only on A0 and q, and does not depend on N .

Lemma 3 For a positive constant K2, independent of N , for all t ∈ (t0, T ] there is an
inequality:

‖∂ywN(y, t)‖2L2(0,1) + ε3

t∫
t0

‖∂2ywN(y, τ)‖2L2(0,1)dτ ≤ K2. (27)

Proof. Considering equality

N∑
j=−N

cNjλ
2
jYj(y) = −

N∑
j=−N

cNj∂
2
yYj(y) = −∂2ywN(y, t),

which follows from (18), (20) and multiplying the equality (21) by cNjλ2j , then summing the
result by j from −N to N , we get

1

2

d

d t
‖∂ywN(y, t)‖2L2(0,1) + a2(t)‖∂2ywN(y, t)‖2L2(0,1) =

= a1(t)
(
wN(y, t)∂ywN(y, t), ∂2ywN(y, t)

)
+
(
a3(y, t)∂ywN(y, t), ∂2ywN(y, t)

)
+wN(1, t)

(
a4(y, t), ∂

2
ywN(y, t)

)
−
(
q(y, t), ∂2ywN(y, t)

)
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≤ ε2

∣∣∣(wN(y, t)∂ywN(y, t), ∂2ywN(y, t)
)∣∣∣+ ε5

∣∣(∂ywN(y, t), ∂2ywN(y, t)
)∣∣

+ε6|wN(1, t)|‖∂2ywN(y, t)‖L2(0,1) +
∣∣(q(y, t), ∂2ywN(y, t)

)∣∣ . (28)

First, we will consider estimates of nonlinear terms in (28). We have∣∣∣(wN(y, t)∂ywN(y, t), ∂2ywN(y, t)
)∣∣∣

≤ ‖wN(y, t)‖L4(0,1)‖∂2ywN(y, t)‖L2(0,1)‖∂ywN(y, t)‖L4(0,1)

≤ ‖wN(y, t)‖L4(0,1)‖∂ywN(y, t)‖H1(0,1)‖∂ywN(y, t)‖L4(0,1). (29)

Further, taking into account the interpolation inequality from ( [35], Theorems 5.8–5.9, p.140–
141), ∀ ∂ywN(y, t) ∈ H1(0, 1)

ε2‖∂ywN(y, t)‖L4(0,1) ≤ C‖∂ywN(y, t)‖1/2H1(0,1)‖∂ywN(y, t)‖1/2L2(0,1),

from (29) we will get

ε2

∣∣∣(wN(y, t)∂ywN(y, t), ∂2ywN(y, t)
)∣∣∣

≤ C‖wN(y, t)‖L4(0,1)‖∂ywN(y, t)‖3/2H1(0,1)‖∂ywN(y, t)‖1/2L2(0,1)

≤ ε3
8
‖∂2ywN(y, t)‖2L2(0,1) +

[ε3
8

+ A1‖wN(y, t)‖4L4(0,1)

]
‖∂ywN(y, t)‖2L2(0,1), (30)

where A1 = 54
ε33
C4 and the boundedness of ‖wN(y, t)‖L4(0,1) follows from Lemma 2:

‖wN(y, t)‖L4(0,1) ≤ (T − t0)1/4‖wN(y, t)‖L∞(0,1) ≤ C0‖wN(y, t)‖H1(0,1) ≤ K1.

Here we used Young’s inequality (r−1 + s−1 = 1) :

|UV | =
∣∣∣∣(θ1/rU)(θ1/sVθ

)∣∣∣∣ ≤ θ

r
|U |r +

θ

sθs
|V |s ,

where θ = ε3
6
, r = 4

3
, s = 4,

U = ‖∂ywN(y, t)‖3/2H1(0,1) , V = C ‖wN(y, t)‖L4(0,1) ‖∂ywN(y, t)‖1/2L2(0,1) .

Next, for the last three terms of (28) we will have:

ε5

∣∣∣(∂ywN(y, t), ∂2ywN(y, t)
)∣∣∣ ≤ ε3

8
‖∂2ywN(y, t)‖2L2(0,1) +

2ε25
ε3
‖∂ywN(y, t)‖2L2(0,1), (31)

ε6|wN(1, t)|‖∂2ywN(y, t)‖L2(0,1) ≤
2ε26
ε3
|wN(1, t)|2 +

ε3
8
‖∂2ywN(y, t)‖L2(0,1)

≤
(
K1

K̃

)2
2ε26
ε3

+
ε3
8
‖∂2ywN(y, t)‖L2(0,1), (32)
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∣∣(q(y, t), ∂2ywN(y, t)
)∣∣ ≤ ε3

8
‖∂2ywN(y, t)‖2L2(0,1) +

2

ε3
‖q(y, t)‖2L2(0,1). (33)

The estimate (32) follows from Lemma 2 and inequalities

K̃|wN(1, t)| ≤ K̃‖wN(y, t)‖L2(t0,T ;L∞(0,1)) ≤ ‖wN(y, t)‖L2(t0,T ;H1(0,1)) ≤ K1, (34)

where K1 is the constant from Lemma2.
From (28), (30)–(33) we will have

d

d t
‖∂ywN(y, t)‖2L2(0,1) + ε3‖∂2ywN(y, t)‖2L2(0,1) ≤ A2‖q(y, t)‖2L2(0,1)

+

[
ε3
4

+ 2A1‖wN(y, t)‖4L4(0,1) +
4ε25
ε3

]
‖∂ywN(y, t)‖2L2(0,1) +K0, (35)

where A2 = 4
ε3
, K0 =

(
K1

K̃

)2
2ε26
ε3
, or, integrating (35) with respect to t from t0 to t, we will

get

‖∂ywN(y, t)‖2L2(0,1) + ε3

t∫
t0

‖∂2ywN(y, τ)‖2L2(0,1)dτ ≤ A2‖q(y, t)‖2L2(Qyt)

+

t∫
t0

A3(τ)‖∂ywN(y, τ)‖2L2(0,1)dτ +K0(T − t0), (36)

where A3(t) = ε3
4

+ 2A2‖wN(y, t)‖4L4(0,1) +
4ε25
ε3

and A3(t) ∈ L∞(t0, T ).

From the inequality (36), similarly as in the proof of Lemma2, we obtain the desired
estimate (26) where K2 depends on A2, A3(t), q(y, t), K0, and does not depend on N .
Lemma3 is fully proved.

Lemma 4 For a positive constant K3, independent of N , for all t ∈ (t0, T ] there is an
inequality:

‖∂twN(y, t)‖2L2(Qyt)
≤ K3. (37)

Proof. Let us satisfy the equation (12) to the approximate solution wN(y, t):

∂twN + a1(t)wN∂ywN − a2(t)∂2ywN + a3(y, t)∂ywN + a4(y, t)wN(1, t) = q, (38)

From the equation (38) we obtain

‖∂twN‖L2(Qyt) ≤ ε2‖wN∂ywN‖L2(Qyt) + ε4‖∂2ywN‖L2(Qyt) + ε5‖∂ywN‖L2(Qyt)

+ε6
K1

K̃
‖wN(y, t)‖L2(t0,T ;H1(0,1)) + ‖q‖L2(Qyt), (39)
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Hence, given the Lemmas 2 and 3, we get

‖wN∂ywN‖L2(Qyt) =

 T∫
t0

1∫
0

|wN |2|∂ywN |2dydt

1/2

≤

∫
Qyt

|wN |4dQyt


1/2

·

∫
Qyt

|∂ywN |4dQyt


1/2

≤ C‖wN‖2L4(Qyt)
‖∂ywN‖L2(t0,T ;H1(0,1))‖∂ywN‖L2(t0,T ;L2(0,1))

≤ C1

2

[
‖∂ywN‖2L2(t0,T ;H1(0,1)) + ‖∂ywN‖2L2(t0,T ;L2(0,1))

]
≤ C1K2. (40)

The estimate (37) follows from (39), (40) and from the statements of Lemmas 2 and 3.
Lemma4 is fully proved.

2.4 Unique solvability of the problem (12)–(14)

Lemmas 2–4 show that sequences of Galerkin approximations

{wN(y, t), N = 0, 1, 2, ...} and {∂twN(y, t), N = 0, 1, 2, ...}

bounded in spaces

L∞(t0, T ;H1(0, 1)) ∩ L2(t0, T ;H2
per(0, 1)) and L2(t0, T ;L2(0, 1)),

respectively. Thus, we can extract weakly converging subsequences (for which we will keep
the former index designations N):

wN(y, t)→ w(y, t) weakly in H1(t0, T ;L2(0, 1)) ∩ L2(t0, T ;H2
per(0, 1)), (41)

wN(y, t)→ w(y, t) strongly in L2(t0, T ;L2(0, 1)) and a.e. in Qyt, (42)

wN(1, t)→ w(1, t) strongly in L2(t0, T ). (43)

Lemma 5 Let conditions (15) and q ∈ L2(Qyt) be satisfied. Then initial boundary value
problem (12)–(14) has a weak solution in space H2,1

per(Qyt).

Proof. Let us introduce the notation vj(y, t) = ϕ(t)Yj(y), where Yj(y) ∈
H2
per(0, 1), ϕ(t) ∈ C∞([t0, T ]). Now, multiplying the integral identity (21) by the function

ϕ(t) ∈ C∞([t0, T ]) and integrating the result with respect to t from t0 to T , we will have

T∫
t0

1∫
0

[
∂twN + a1(t)wN∂ywN − a2(t)∂2ywN + a3(y, t)∂ywN

+wN(1, t)a4(y, t)] vj dy dt =

T∫
t0

1∫
0

qvj dy dt, ∀ϕ(t) ∈ L2(t0, T ), ∀ j = −N,N, (44)
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since the set of all linear combinations of vj(y, t) is dense in L2(t0, T ;H2
per(0, 1)), then the

integral identity (44) can be rewritten as

T∫
t0

1∫
0

[
∂twN + a1(t)wN∂ywN − a2(t)∂2ywN + a3(y, t)∂ywN

+wN(1, t)a4(y, t)] v dy dt =

T∫
t0

1∫
0

qv dy dt, ∀ v(y, t) ∈ L2(t0, T ;H2
per(0, 1)). (45)

In the integral identity (45) we pass to the limit at N → ∞. In the expressions
corresponding to the linear terms of the equation (12), the transition to the limits is carried
out according to the ratios (41) and (43). As for the nonlinear term, here we have the following:

T∫
t0

1∫
0

a1(t)wN(y, t)∂ywN(y, t)v(y, t) dy dt =

T∫
t0

a1(t)

1∫
0

[wN(y, t)

−w(y, t)]∂ywN(y, t)v(y, t) dy dt+

T∫
t0

a1(t)

1∫
0

w(y, t)∂ywN(y, t)v(y, t) dy dt

→
T∫

t0

a1(t)

1∫
0

w(y, t)∂yw(y, t)v(y, t) dy dt, (46)

since according to (41) and (42) there is a limit ratio

T∫
t0

a1(t)

1∫
0

[wN(y, t)− w(y, t)]∂ywN(y, t)v(y, t) dy dt→ 0.

So, passing to the limit at N → ∞ in the integral identity (45) and taking into account
the limit ratio (46), as well as the initial condition (22), we get

T∫
t0

1∫
0

[
∂tw + a1(t)w∂yw − a2(t)∂2yw + a3(y, t)∂yw

+w(1, t)a4(y, t)] v dy dt =

T∫
t0

1∫
0

qv dy dt, ∀ v(y, t) ∈ L2(t0, T ;H2
per(0, 1)), (47)

1∫
0

w(y, t0)ψ(y) dy = 0, ∀ψ ∈ L2(0, 1). (48)

Thus, from (47)–(48) we get that the weak limit function w(y, t) satisfies the equation
(12), boundary conditions (13) and initial condition (14). Lemma5 is fully proved.
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Lemma 6 Under the conditions of Lemma5 the solution w ∈ H2,1
per(Qyt) to initial boundary

value problem (12)–(14) is unique.

Proof. Let the initial boundary value problem (12)–(14) has two different solutions
w(1)(y, t) and w(2)(y, t). Then their difference w(y, t) = w(1)(y, t) − w(2)(y, t) will satisfy the
following problem:

∂ tw + a1(t)w∂yw
(1) + a1(t)w

(2)∂yw − a2(t)∂2yw

+a3(y, t)∂yw + a4(y, t)w(1, t) = 0, (49)

∂jyw(0, t) = ∂jyw(1, t), j = 0, 1; t ∈ (t0, T ), (50)

w(y, t0) = 0, 0 < y < 1. (51)

According to Lemmas 2 and 3 we have

w(i)(y, t) ∈ L∞(t0, T ;H1(0, 1)) ∩ L2(t0, T ;H2
per(0, 1)), i = 1, 2. (52)

Multiplying the equation (49) by the function w(y, t) scalarly in L2(0, 1) and taking into
account (50)–(52), we get

1

2

d

d t
‖w(y, t)‖2L2(0,1) + a2(t) ‖∂yw(y, t)‖2L2(0,1) = −

∫ 1

0

a3(y, t)w∂ywdy

−a1(t)
1∫

0

[
w2∂yw

(1) + w(2)w∂yw
]
dy − w(1, t)

∫ 1

0

a4(y, t)wdy. (53)

Let us estimate the right-hand part of (53). According to (52) and by Lemma2 we obtain:

−
∫ 1

0

a3(y, t)w∂ywdy ≤
ε3
8
‖∂yw(y, t)‖2L2(0,1) +

2ε25
ε3
‖w(y, t)‖2L2(0,1), (54)

−a1(t)
1∫

0

[
w2∂yw

(1) + w(2)w∂yw
]
dy = −a1(t)

1∫
0

[
−2w(1)w∂yw + w(2)w∂yw

]
dy

≤ 2ε22
ε3

[
2‖w(1)‖L∞(0,1) + ‖w(2)‖L∞(0,1)

]2 ‖w(y, t)‖2L2(0,1) +
ε3
8
‖∂yw(y, t)‖2L2(0,1)

≤ A4‖w(y, t)‖2L2(0,1) +
ε3
8
‖∂yw(y, t)‖2L2(0,1), (55)

where A4 =
2ε22
ε3

[
2‖w(1)‖L∞(0,1) + ‖w(2)‖L∞(0,1)

]2.
−w(1, t)

∫ 1

0

a4(y, t)wdy ≤
(
ε6 +

ε26
ε3

)
‖w(y, t)‖2L2(0,1) +

ε3
4
‖∂yw(y, t)‖2L2(0,1) (56)

Based on relations (53)–(56) we get

d

d t
‖w(y, t)‖2L2(0,1) + ε3 ‖∂yw(y, t)‖2L2(0,1) ≤ A5‖w(y, t)‖2L2(0,1) ∀ t ∈ [t0, T ],
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where A5 =
(

4ε25+2ε26
ε3

+ 2A4 + 2ε6

)
.

Hence, applying the Gronwall inequality, we get:

‖w(y, t)‖2L2(0,1) ≡ 0, ∀ t ∈ [t0, T ].

This means that w(1)(y, t) ≡ w(2)(y, t) in L2(Qyt), i.e. the solution to initial boundary
value problem (12)–(14) can only be one. Lemma6 is fully proved.

Thus, from the statements of Lemmas 5 and 6 the validity of Theorem3 follows. Theorem3
is fully proved. Theorem3 will also be used in the following sections when proving Theorems 1
and 2.

3 Proof of Theorems 1 and 2

Using reversible transformation of independent variables

y = y(x, t) =
x

t
, t = t; x = x(y, t) = yt, t = t; (57)

we go from (x, t) to (y, t). In this case, the domain Qxt will be transformed into a rectangular
domain Qyt = {y, t : 0 < y < 1, t0 < t < T <∞, t0 > 0}.

The problem (9)-(11) takes the following form:

∂ tw +
1

t
w∂yw −

ν

t2
∂2yw −

y

t
∂yw + h(t)f̃(y, t)w(1, t) = q̃(y, t), (58)

w(0, t) = w(t, t), ∂ yw(0, t) = ∂ yw(t, t), t ∈ (t0, T ), (59)

with initial condition

w(y, t0) = 0, y ∈ (0, 1), (60)

where w(y, t) = u(x(y, t), t), f̃(y, t) = f(x(y, t)), q̃(y, t) = f̃(y, t)g(t) = f(x(y, t))g(t). Note
that according to condition (7) f̃(y, t) ∈ L∞(t0, T ;L2(0, 1)).

Thus initial boundary value problem (58)–(60) is a special case of the first auxiliary
problem (12)–(14), where

a1(t) =
1

t
, a2(t) =

ν

t2
, a3(y, t) = −y

t
, a4(y, t) = h(t)f̃(y, t),

and the conditions (15) are provided. Therefore, as a consequence of the Theorem3 we get

Theorem 4 Let the conditions (7) and q̃ ∈ L2(Qyt) be satisfied. Then initial boundary value
problem (58)–(60) is uniquely solvable in space

w(y, t) ∈ H2,1
per(Qyt).
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Further, given the correspondence of spaces in domains Qxt and Qyt:

q̃ ∈ L2(Qyt)⇐⇒ f(x)g(t) ∈ L2(Qxt),

w ∈ H2,1
per(Qyt) = L2(t0, T ;H2

per(0, 1)) ∩H1(t0, T ;L2(0, 1))⇐⇒ u ∈ H2,1
per(Qxt)

= L2(t0, T ;H2
per(0, t)) ∩H1(t0, T ;L2(0, t)),

we get the validity of Theorem1.
Thus, we have proved the Theorem1. Proof of the Theorem2 follows from the proof of

Theorem1, where u(x, t) is the solution to initial boundary value problem (9)–(11), λ(t) is
found by the formula (8). Thus, the coefficient inverse problem (3)–(6) is completely solved,
the unknown coefficient λ(t) is found.

4 Graphs of the solution and the desired function

Below we present graphs of approximate solutions of initial-boundary value problem (58)–
(60), original inverse problem (3)–(6) and λ(t), when f(x) = 1.5 + cos 2πx, E(t) =
cos 2πt, T = 3, t0 = 1. The solution of initial-boundary value problem (58)–(60) is found
according to the formula (20), for N = 0 and N = 1, where CNj(t) are solutions to the
Cauchy problem (21)–(22) with appropriate coefficients, Yj(y) are solutions to the spectral
problem (18)–(19). The solution to (3)–(6) is found as the solution to the initial boundary
value problem for the loaded Burgers equation (9)–(11) from the solution of initial-boundary
value problem (58)–(60) using (57), λ(t) is determined by formula (8).

For problem (58)–(60) in Figure 1, the domain of change of variables (y, t) is the rectangle
Qyt = {y, t| 0 < y < 1, 1 < t < 3}, and the solution surface w(y, t) is built over it. For
problem (9)–(11) in Figure 2, the domain of change of variables (x, t) is the trapezoid
Qxt = {x, t | 0 < x < t, 1 < t < 3}, and the solution surface u(x, t) is built over it. Figure 3
shows the graph of the desired function λ(t). Thus, Figures 2-3 show graphs of the solution
of the original inverse problem.

Figure 1: Graphs of solution to problem (58)–(60).
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Figure 2: Graphs of solution to problem (9)–(11).

Figure 3: Graph of function λ(t).

Conclusion

The paper establishes theorems on the solvability in Sobolev classes of the inverse problem
for the Burgers equation with periodic boundary and an integral overdetermination and the
associated initial boundary value problem for the loaded Burgers equation. Graphs of solution
w(y, t) to the initial boundary value problem for the loaded Burgers equation and of solution
{u(x, t), λ(t)} to the original inverse problem are presented.
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