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A NUMERICAL SCHEME ON S-MESH FOR THE SINGULARLY
PERTURBED INITIAL BOUNDARY VALUE SOBOLEV PROBLEMS WITH
LARGE TIME DELAY

The purpose of this article is to provide a numerical method for time delay singularly perturbed
Sobolev type equations. First, asymptotic estimates for the Sobolev problem solution with
singular perturbation and delay parameters were obtained. This estimate showed that the solution
depends on the initial data. It is constructed and examined to solve this problem using a finite
difference technique on a specific piecewise uniform mesh (Shishkin mesh)whose solution converges
pointwise independent of the singular perturbation parameter. A discrete norm was used to
investigate the stability of difference schemes. It is showed that the completely discrete scheme
converges with order O (72 + N 1_2 In? Nl) in both space and time, independent of the perturbation
parameter. Finally, with a test problem and numerical experiments, the theoretical accuracy and
computational effectiveness of the proposed methods are further testified.
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Singular perturbation; Sobolev problem.
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Kermriryi yiaken 6osatbiH Cob0JIEBTIH CUHTYJISPJIbI ayBITKBIFAH OacTanKbI-IITEKAPaJIbIK eceOiHiH,
S TopbIHJAFBI CAHOBIK CYJI0AChI

Byn MakanaHbIH MakcaThl Kemniryi 6ap CHHTYJIsIpJIbI aybITKbiraH (Co0ojieB THUOTI TEHIEYJIEPJIiH,
caHNBIK ojicin Oepy Oosbin TabbLIaAbI. DBipiHITiZEH, CHHTYJISAPJIBI AyBITKBIFAH MEH KeIIiry
napamerpisiepi 6ap CobosieB ecebGiH IMentyiH, aCHMITOTHKAJBIK, Oaraiaysapbl ajblHIbL. By
OaraJiay MIEMTiMHIH OacTaKbl JepEeKTepre ToyeJ I eKeHin kepceTTi. bys ecenTi HAKTHI KeCiHiTiK-
Giprekri Topma (IIIumkuH TOPBIHAA) IMEKTI-afBIPBIMIBIK O/iCiMEH IHeNly KypPACThIPbLIFAH
2KOHE 3epTTeJIIeH, OHBIH IIeNIiMi CHHTYJSIPJIBIK KyH3esic MapamMeTpiHe KapaMacTaH HYKTEJiK
MaFbIHAJA YKUHAKTAIAIBI. ARBIPBIMJIBIK, CYI0AIAD/bIH, OPHBIKTHUILIFBIH 3€PTTEY YIINiH JTUCKPETTI
HOPMa KOJIJAHBLIABI. TOJIBIK, JUCKPETTI CYI0AHBIH, KEHICTIKTE e »KOHE YaKbIT OOoffbIHINA 13,
COHBIMEH KATap, CHHTYJISDPJbI AybITKY I[apamerpine Kapamacrtan O (7'2 + Nlen2 Nl) perti-
MEH JKHMHaKTaJaTbIHbI KepceriireH. COHbIHIA, CbIHAK eCeDiHIH »KoHe CaHIBIK TOXKipubOeIepIiH,
KOMETIMEH YChIHBIIFAH 9/IICTEP/IiH, TEOPUSLIBIK, IDJIITT MEH eCenTey TUIM/ILIIr KOCBIMIIIA PACTAJIIHI.

Tyitia cesnep: Kemikripinren gepbec muddepeHmaniibK TeHIeY, aKbIPJIbl albIPBIMIBIK, OIiCi,
MMumkus TOpsI, CHHTYASIPIBIK, aybITKY; CoboseB ecedi.
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esnpio JaHHOM CTATHU SBJISETCS NIPEJOCTABIEHUE YNCIEHHOIO METO/IA JIJIsl CHHI'YJISIPHO BO3MYIIIEH-
HBIX ypaBHEHU! CODOJIEBCKOI'O THUIIA C 3alla3/IbIBAHNEM. BO-11€pBbIX, IOJIYyYeHO aCHUMIITOTHYECKHE
oleHKH perenns 1A 3agadn CoboseBa ¢ CHHIYJISPHBIME IapaMeTpaMH BO3MYIIEHUS U 3alas3-
JBIBaHUs. JTa OIEHKA ITOKA3aJia, 4TO PeIleHne 3aBUCUT OT HAYaJbHBIX JAHHLIX. llocTpoeHo n
HCCJIEJIOBAHO PEIIeHne 3TOH 3aJadl METOJOM KOHEYHBIX Pa3HOCTell Ha KOHKPETHOI KyCOYHO-
pasHoMmepHoii cerke (Ha cerke IIlumkuna), perreHne KOTOPOH CXOAUTCs MOTOYEIHO HE3ABUCUMO
OT IapaMeTpa CHHI'YJISIDHOIO BO3MyIneHus. Jljist ucciie/loBaHusl yCTONINBOCTH PA3HOCTHBIX CXEM
HCIOJIb30BajIach JUCKpeTHas HopMa. lloka3aHO, YTO IIOJTHOCTBIO JUCKPETHAsl CXeMa CXOILUTCS
¢ nopsikoM O (72 —|—le2 In? Nl) KaK B IIPOCTPAHCTBE, TaK W BO BPEMEHHU, HE3aBUCHUMO OT
rmapamMerpa BO3MYyIIeHUsI. HakoHell, ¢ MOMONIBbIO TECTOBOH 3aJaYM M YNUCJIEHHBIX SKCIIEPUMEHTOB
JIOTIOJTHUTEJIFHO TIOJATBEPXK/IAETCST TEOPETHIeCKasl TOYHOCTh M BBIMUCTUTEIbHAs 3MDEKTUBHOCTD
TIPE/IJIOZKEHHBIX METOOB.

Kirouessbie cioBa: 3anaszipiBaoliee ypaBHeHNEe B YACTHBIX TPOU3BOIHBIX, METOJ] KOHEUHBIX Pas-
wvocreit, cerka [[lumkuna, cunryaspraoe Bosmymienue, [Ipodiema Cobosiesa.

1 Introduction

In this study, the following linear singularly perturbed delay initial-boundary value Sobolev
problem is taken into account in the domain D = Q x [0,T]; © = [0,{], 2 = (0,1), D =
Qx (0,77

Lu =1, [%] + Ly [u(z,t)] +c(t)u(x,t —7r) = f(z,t), (z,t)e D, (1.1)

zéix,t) =((z,t), (z,t)€Qx[-r0], (1.2)

E(Q},O) = (x), z €10,]], (1.3)

w(0,t) = u(l,t) =0, t € (0,77, (1.4)
where

Lo [u(z,t)] = —6% +b(x,t)u(x,t),

and 0 < € < 1 is a perturbation parameter; a, b, f, Cand v are sufficiently smooth functions,
r > 0 is delay parameter and a(x) > a > 0.

These types of problems arise in a variety of areas of mathematical physics and fluid
mechanics. Sobolev type equations are also known as pseudoparabolic equations in some
conditions. They are applied in the investigation of ion-acoustic waves in plasma, waves in
transmission lines, and other physical models ( [7], [15], |16], [20]).

It has been discussed in ( [3], [11]- [14]) and ( [19]), how to solve equations of this type
numerically in the usual conditions. The numerical explo Due to the boundary-layer behavior
of the exact solutions, numerical simulations of singular perturbation scenarios has never
been an easy process. Applied mathematicians are focusing more attention to the subject
of singular perturbations, nonetheless ( [10]). Degenerate equations of the Sobolev type and
equations of the Sobolev type with an alternating or non-invertible operator as the coefficient
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of the greatest derivative with respect to time were investigated from an abstract perspective
in (|10], [16]) . Many important consequences were obtained for systems of equations that
were unresolved with respect to the highest derivative with respect to time ( [8], [14], [15]).
In ( |13]), the local solubility of equations of the Sobolev type was taken into consideration.

In comparison to typical instantaneous singularly perturbed partial differential equations,
singularly perturbed delay partial differential equations (DPDESs) offer more realistic models
for phenomena in a variety of scientific domains that exhibit a time-lag or an aftereffect
(PDEs). The derivatives of an unknown function are related to it by singularly perturbed
PDEs when they are evaluated at the same instance. Singularly perturbed DPDEs, on the
other hand, represent physical issues whose evolution depends not only on the system’s
current state but also on its historical development.

In recent decades, several authors have explored and developed singularly perturbed
PDEs in great detail (see ( [4]) and the references therein). The theory and numerical
solution of singularly perturbed DPDEs, however, are still in their development. The various
approaches to the numerical solution of singularly perturbed delay initial-boundary value
Sobolev problem can be found in ( [5], |6]). Additionally, the existence, uniqueness, and
smoothness of exact solutions to the problems mentioned were investigated in ( [18|, [22]).

The numerical solution of partial differential equations with two-time derivatives
appearing as a small parameter in the highest order term is presented in this study. Since this
type of problem’s solutions quickly alter in the neighborhood of the endpoints, where they
have an extremely steep gradient and their derivatives are unbounded. Standard discretization
techniques are known to be unstable and to produce inaccurate results when used to solve
singular perturbation problems for differential equations. Then, according to references ( [9])
and ( [9]), classical difference schemes do not converge to an exact solution.

The development of practical numerical methods for solving this type of equations, whose
accuracy does not depend on the parameter ¢, that is, methods that are uniformly convergent
with respect to the parameter ¢, is crucial for providing accurate results when the perturbation
parameter is small ( [1], [2]). The method of approximation has the advantage that the base
functions are selected such that, the error of the method on terms of higher order derivative
is vanished. Because of this selection, there is no heavy conditions on the solution of the
considered continuous problem under certain restrictions. By remainder term in integral form
the continuity of the solution conditions are alleviates. Throughout this paper the constant
C will be the positive generic constant, independent of the singular perturbation parameter
€.

2 Estimation of Asymptotic Solution

In this section we show some useful asymptotic estimates of the exact solution of (1.1)-(|1.4)),
which are essential for the rest of the article to analyze numerical solution.

Lemma 1 The solution u(x,t) of the problem (1.1)-(1.4) satisfies the following inequality:

akz-ﬁ-su
H otkoxs

< C {2 1130 + 16, O + 2 ¢, OIF + [l + ')

= )] + 565 = 1) [ @ O o) + 19" yom] }o - 2)
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where k,s = 0,1,2, 0 < t < T and .|| = [l|,0y- The constants Cj, i = 1,2,... are
independent of the small parameter as well as h and T in this part and the following sections.

Refer ( []) for the idea of the proof.
Lemma 2 Under the assumptions a € C?[0,1], b€ C3 (D), f € C (D) and
la(0) — b(0,t)| < Ce, |a(l) —b(l,t)| < Ce (2.2)

The following form represents the asymptotic expansion of the solution of problem —

:
u(x,t) =ug (x,t) + o (&, t) + wo (n, t) (2.3)

+\/g[u1 (l‘, t) + U (ga t) + wy (777t)] + R’ (:E7t) )
where the functions ug (z,t), uy (z,t), I (&,1), wo (n,t), 91 (&,1), wy (n,t) are as follows:

{a() + (2, t)uo + c(t)ug (z,t — 1) = f(x,1),
uo(z,t —7) = ((x,1), —r<t<07%(1’ 0) = ¥(x),

a (@) S8 +b(z,t)us + c(thu (x,t_r):_\/g[ﬁgggﬁ%;o]7
U1($,t>—0,—7“§t§07 %(I’,O):(L

[ — 2% +a(0) e — 2l + a(0)0 + c(t)o (z,t — 1) =0,
Jo(€,1) =0, —7’<t<0 3190( 0)
90(0,t) = —uy (0,) 5 Yo(gzit) =

— g+ o) 58 — B8+ all)w + c(t)uwo (.t = 1) =0,
) =0, <50 20,0) =0,
wo(\[, t) = 0;wo(0,t) = —uy (1 t),

( _8({:2(19952 + (O) 8t1921 - 3 L+ (0)191 + C(t)ﬁl (l’,t — 7”)
= —£582(0, )90 — £d/ (0 )2 -
191(6725) = 07 —r<t< O

9(0.1) =~ (0,0): 9 <}

o0, ¢, 0=0
/) =

6221807;2 + (Uaai’él — S T a(wy + c(t)wr (v, 0 —1)

8
= =092 (l, two — na’ (1) 82,

wl(na ) O -r < t< 07 ag:gl (77’0> = Oa

wl(\[, )—O w1(0 t)——ul(l t),

\

where £ = 7,77 ===
&g €
It is possible to write the remaining term of the asymptotic expansion as follows:

8k+sR*

<Ok s=0.1.2.
BT Ce ,s=0,1,
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One can find the similar proof given in ( [5]).

Lemma 3 Under the conditions , using

8’“*8190
<C —s/2 —x/a(0)/e
otkgrs| = €
and
ak+sw0
<C —s/2 _—(l—x)y/a(l)/e
otk | =5 €
the following inequality can be expressed
ak—f—s
o <C {1 L es/? [ —ay/a(0)/e e—(l—x),/a(l)/a} }7 (2.4)

(r,t)eD, k=0,1, 2 s=0, 1, 2.
See ( [6]) for proof.

3 The Difference Scheme’s Construction

Let a set of discretizing mesh nodes for the variable D be given by
W =WnN, X WNp,
with
wy ={0<z <z <..<any =1l h=x—x,1},
WNT = {t] :jT, j = 1,2, ..,NT — 1,7’ = l/NT},
and
wy, = wn, U{zy =1}, @y, =wy, U{ze =0, 2y, =1},
WNy = WNyp U {to = 0}7 W = Wy, X WNy-

At the conclusion of the section, the nonuniform mesh @y, specification will be given.
For each mesh function v; = v(x;) provided on wy,, we define the following finite difference:.

v — Ui — Vi—1 v — UVit1 — U4 v — Vit1 — Uy Vo — Uz — Uz
T -5 o2 V= 7 Ve — — = »Vzzg — — £
hi Piy1 h; h;
where f; = %(hl + hiy1) . These are the inner products for the mesh functions v; and w;

defined on wy, ([15]):

(v,w)o = (v,w OUJNZ Z hv;w;,
(o] = () e =,
S
Nj—1
w) = Z hv;w;.
i=0
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Vanishing for ¢ = 0 and ¢ = N; are stated with in addition to the norms for any mesh
function v;,

2 2
[vllg = HUH(),le = (v, v)o,

o]l = (vs, vl
2 2 2
lolly = llvllo + llolls

ol = 10l = 0% il

We shall also use the notation,

J j—1
i 9 — G
g{’i - T )
Jj+1 J
gj 9 — G
Jo=2
5t T ’
j+1 § -1
i 9 - 29; g;
it = -

where g = g/ = g(w;,t;) defined on wy,.

Using the basis function ®;;(x,t) and the interpolation quadrature formulae with the
weight and remainder term in integral form ( |1| ) to subintervals [t;_1,¢;11] and [x;_1, ;1]
are created.

The integral identity is used as the method for generating difference

Ljit1  [Tit1
hilTl/ / Lu— f(a,8)] @y, )dadt = 0, 1 <i< Ny—1, 1< j < Np, (3.1)
ti—1 Ti—1

where the basis functions ®;;(x,t) have the form
Dij(x, 1) = wi(x)x;(t),
with the space’s piecewise linear functions

(r —xiz1)/h, i <2< ay;
pi(r) = (i1 —2)/h, 2 < < @i
0, otherwise,

and for the time

P (t —tj-1)/T, ti <t <t
X]<t>:]_—’ e (tj+1—t)/7', tj<t<tj+1;
T 0, otherwise.

Here, the ¢;(x) and x; (t) functions, respectively, represent the solutions of the following
problems:

epi(2) =0, 2y <2 <2y, @i(wim1) =0, () =1,
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epi(x) =0, 2, <& < xig1, @i(x;) =1, @i(zi1) =0
and
ex;(t) =0, ;1 <t <ty x;(t;1) =0, x;(t;) =1,

€X;,(t) =0, t]’ <t < tj+1, X](t]) =1, Xj(tj—i-l) =0.
According to ( [1], [2]), we have the relation for the exact solution in (3.1)),

lit1  fTig1
T / / Lyu(z,t) @i(x)x;(t)drdt = —eugzs + aug + R,
tj—1 Ti—1

where

R = 0t [ - ) o ) o

Ti—1

Tit1 4 Tit1
+a (x;) byt /:CH df% /mi_l [Ty (z — &) @ (x)dx — T (x; — &)] .

Furthermore, we have
tit1 Ti+1 . .
i / / Lou (z,t) @i(x)x; (t)dedt = —5%@,@' + bju] + Ry,
tj—1 Ti—1

and

ht /xi+lc(t)u(x,t—7") ¢; (z)dr = h'e(t) /xi+lu(:c,t—r) i () dx

o = c(tu (:E:ti r)+ R,
where

Ry, =h! /+ b(w, ) u(a,t) i (x) da — b (s, ) u (3, 8)
and

R=ie) [ date) [ 1 o T - ) e

Ti—1 Ti—1

Finally, we have
ti+1 Tif1 .
Tlhil/ / f (@, t) pi(@)x; () dwdt = f] + R},
tj—1 Ti—1

where

Tiy1 Tit1 2
R=n [ ave) [ -0 -1 - e e

Ti—1 Ti—1
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As a result, the relation for the solution to improve is given from (3.1

0%u O?u(t) .
—& (W)ii +a; ( 12 )Z — EUgzsz i + bz (t) U; (t) +c (t) U; (t - r) - fz (t) + Rz = 0, (32)
where
R: = RZ,Z‘ + RZJ + RZZ- - R;z

After that, we define the difference schemes with regard to the time variable. In this
instance, we multiply both sides of the formula (3.2]) by 7 'x; (¢), then integrate in [t;_1, t;41].
From here, we get

ti+1 fi 0%u 0%u
" /t . s = F o Dl (O de =7 /t { ) (atQ)x:eJral L%QL

Jj— j—1

—EUzzi + by + ¢ (t) u (it — 1) — f(25,1) + R x; ()} dt.

Furthermore, with 7 = T'/M and rM/T = M,, we have u (x;,t; —r) = u (x;, t;_p,), and
applying the same computing we get

lu— f(x;,t5) = —su,gt:m—l—aiu&—5u§;j+bgu+cjug_M°—fij—f—R =0, (z,t) € wy, XwWn,, (3.3)
that the remainder term is
R=—¢(RY)__+RY+R,
where
_ fia azu X, 1 Khs
RO = 7'1/ dn% / Ty (t—m)x; (t)dt =Ty (t; —n)| ,
tj_l tj—l

1 tjt1
RV = RW 41 / R:x; () dt,
t

and
RY=R),~ R}, R.=R
1 = Ay, f.i0 c = L1 ;-

Here R ;, R;, and R}, remainder terms are

) ti+1 Tig1 2 )
m = [ [ e 245
t

H 022
. U Ti o - o) do = Ti (0= )] s ()

i+l 2 A
+7’1/ dnb (x,n) —8 u(s b))

tj+1
o / Ty (t—m)x; (t)dt =Ty (t; —n)| ,
ti—1

ti—1
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. [l Ou (zj,m—r tit
R, =7 1/ dnc(n)M[/ Ty (t—n)x; (t)dt =T (t; —n)

ti—1 8t2 ti—1
ti+1 ror QP (6t —1)
o /tjl C( ) { ’ Ti_1 £ O?

| [ - 9w Tiw-9)| b o

Ti—1

. ti+1 Tig1 62
R?i - T_l /t"1 {hl_l /x'1 dﬁ%
’ U =g () de T (- éﬂ } X5 (1) dt
it 92 f (ay, tit1
[t [ [ o (tj_m]_

We take use of the following integral equality for the initial condition (|1.3)

1 / 1 /%Hl [Lu — f (z,t)] wi (x) xo (t) dxdt = 0,

where the basis function xq (¢) is given by

t—t
Xo(t)zl—‘ 01ty <t<t,.
T
In general, we get
Oy 5utm + a,ut + u; Moy o — —eWzs + a;; + = gf;x - —bOCO + ff], (3.4)

where remainder term is

r=—¢ (T(O))ﬁ + W 4 Teis

that here

Pu () [ [

0 / a1 1) / Ty (t =) xo () dt — T (b0 — 1) |

to ot to

t1

r® = 4 [ R o (1) dt,
to

7“%1) = Tg’i—T%i, rc,izrgi,

and 7y, 7y, and 70, the remainder terms are

e = /tl dnb(wi,n)w [/tl Ty (t —mn)xo (t)dt = Th (1 —n)]

to to

t1 Tit1 62
e

[ gn@a-nie-o] oo,

Ti—1
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o= [ [ - w01 -

to

+ /: {h—l /:j dg%

<[ =g ) de = T (i o] b,

= [ ane = -1 -

to to

t e QPu (€t —)
1 y
+ /to c(t) {hi /‘wi_1 df—a$2

|- gn@a-tim-o]fuwa

Ti—1

Therefore based on (3.2), (3.3) and (3.4), we propose the following difference scheme for

approximating (L)-(T9):

lu ' = —€Ypse + QYn — EYia + b]y + C‘]yj Mo — Z-j, (3.5)
y(z,0)=¢(z,1), =z€[-r0], (3.6)
Oy = —eyls+ay) + y; " =9, zeuwy, (3.7)
y(0,t) =y (l,t) =0, =z € wny, (3.8)

where

¢ = —ePzz + a P + %SCQ(;]:C - —bOCO +35 fo

3.1 The Piecewise Uniform Mesh

We introduce a piecewise uniform mesh w, which will be implemented as follows. This is a
piecewise uniform mesh that is enhanced in the boundary layer. The fitted special piecewise
uniform mesh w,, on the interval [0, (] is created by dividing the interval into three subintervals
[0,01], [01, 02] and [o9, ], where

[
o1 = min{é—l, —oz_lslns}, o9 =1 — 0.

The mesh points are denoted with

x0+(¢—1)%' 0,1,...5 2, €[0,0], o1 < L,

;=X o+ (i—1-— ) (72— Jl),i—Nl+1 ,STNl, x; € |01, 09,

02 — (2_1 1)4&1 A_SNl‘l’l N, x; € [02,1].
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4 Estimates of Error

Let y; and w; be solutions of (3.5)-(3.8)) and (1.1])-(1.4) respectively. Let z(z;, t;) = y(x;, t;) —

u(wi, t;), (23,t;) € wn, X wn,. We have

bz = —€Zpsy + Qizm — gzm +bz+ Mo =R,
—€ (R(O))m + R + R, (z;,t;) € whr, (4.1)
z(z,t) =0, te[rO] (4.2)
Oz = —ezl, +az) + 5 =r=—(r?)__+r04r, (4.3)
2(0,t) =2 (l,t) = (4.4)

For the convergence of the approximate solution, we prove the following theorem.

Theorem 1 Letu; andy; be solutions of - and -@ respectively. If u(z,t) €
C2(2), then and under the following conditions

b* 2
O()T < 1, CO = max <L77*_1> )
2c

the error of the - satisfies,

12| + \/_HzixH<C{5||r(0 I+ 7 [|r O] + el ?

+Tjg[ - ||RO(

2

LR

112
R ]},tEwT,(ZLS)
Lz(wh)

I7 :
"I La(wn) ¢

where

2
-
1——>~,>0.
2_7

One can find the similar proof given in ( [5]).

Theorem 2 According to the assumptions made for the data in Lemma for u(z,t) €
C? (Q), the following estimate is valid:

Tit1 - -
IR <C {72 + h? {1 + 5_1/ (e_z\/; e ?> dx ] } (4.6)

For proof of the Lemma from

Rl = —(R®)_ +R"W+RI,

R(l) _ R(l) -1 thR* ()dt = Rj _Rj -1 thR* "y
= hy'+7 ai X5 (D)dl = Ry ; i tT o X (t)dt,

ti—1 ti—1

we show that

1R7i]| = O (7% + B7)
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and
Rl =clem|iee [ (eVE etV gl L
175, Z

The similar procedure may be used to estimate the error for the terms R(®) and Ril From

. _ tit1 82 Xy, tit1
wy =t [ [ - a1 - )

tj+1 Tit1 02 ’t Ti41
wrt [ [T LS [ i - 9 e - 0 b o
tj—1 Ti—1 Ox Ti—1
the estimation that we get is as follows

82 i ti+1
E [ e w-ti =l an

0°f (&, 1)

0x?

8] < max
’ t

4+ max
X

/ T @ - ) ~Ty (s — ) dE < C (P2 4+ 1),

Ti—1

We consider the explicit expression of Rgi when proving the lemma. Let’s take the

expression
Ri’z‘ — 7_l/t.thrl {hz_l /"xiJrl d562 {b (gvgjq);2u (I7 t])]
< [T = 9 @) do = T (- €))

Ti—1

et [ an g b ) [ @ 0T - 77>>} -

j—1 tj—1

By using the

Oktsy, s a(0) a()
s a0 (1—a)y /2D
otkozs SC{l—l—a 2(6 +e )},
inequality, it stands to reason that
- e P (e.1)
Il < a7 agmaxib e[ S5
Ti—1

< U Ty (¢ — &) i (x) do — T (a; — 5>}

’ 82U (xh 77) ‘

tj+1
+T—1/ dnmax |b (z, 1)] | =

ti—1

X [/tHlTl (t—mn)x; (@) dt =T (tj—ﬂ)]

ti—1

Tit1 o o
< C{TQ + B2 +a—1hi/ (7VE 4 e VE) dw}.

Ti—1

The Lemma’s proof is finished with this.
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Lemma 4 The following estimate is accurate given the data from Lemma (t:1) for the
remainder term R! :

|R|| <C (7> + N ’InN,) .
We come to an inequality of the remainder terms

IS RO, iy + 1Ay + 1B

and by using (?7) inequality, the inequality is shown below

Tit1 a a
IR <C {72 +h?+ 5‘1hi/ (ﬁx/? + e*U*x)ﬁ) dx} : (4.7)

Ti—1

In the first case, consider oy = [/4 and oy = [ — oy = 31/4. We obtain /4 < ay'eIn N; and
31/4 > | — ap'eIn N, by attention to h(V) = h(®) = h® = [N;"!. Hereby, since

Tit1 a Alazt In N,
6_1h(1)/ e_x\/;dx < el (h(l))Z < % _ 4la51Nl_2 In N,
l

Ti—1

il @ 4oy In N,
61h(3)/ o=V g <! (h(S))Q - % = dlag N2 ln N,
Ti—1 1

|R|| <C{m*+ N >In N}, 1<i<N,.

We now consider the case o = a;'eIn N; and estimate R on [0,0], [o,l — o] and [l — o, ]]
separately. In the layer region [0, o] the inequality (4.7) reduces to

IR < cfr+ (142 (1))
ap2eIn® N,

2 -1
< C{r +(1+e) N7T16

}, 1<i< N/
Hence
|R[| < C{m*+ NI Ni}, 1<i<N/d

Estimate R for 3N;/4 +1 < i < N; is in same method. It remains to estimate R for
N;/4+1<i<3N;/4. In this case we are able to write (4.7) as

IR < c{r+ (1+e7) (1)}
< {4+ (1) 1200t (e VE —emmnVE L
N /4+1<i<3N,/4 (4.8)
Since x; = o1+ (i — 1 — %)h(?)7
o~ (a0 e Ni(i—2=T)R®) /T —(ag el N+ (i-5)n )\ /T
< %e‘“”‘?)’*”\@ (1-eVE) <on,

l
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and this together with (4.8) to give the bound
|R|| <C {7’2 + Nfz} ,

This completes the proof of Lemma.
Lemma — grant the main conclusions of the paper.

Theorem 3 Let u represent the solution to — and y represent the solution to —
(@). Consequently, the following estimate is true under the Lemma — hypotheses:

ly —ull,,, <C (7? + N ?In® ;) .

5 Numerical Results

In this section, we confirm experimentally the theoretical outcomes obtained in the previous
section. The following test problem introduces error approximations and convergence rates

for the finite difference method. Pay attention to the problem

O*u Pu *u , .
8—8t28x2 + (1 + tanh(x)) — 52 6% + ((1 — x)sinh(xt)) u + t*u (x,t — 1)

= exp(—t)tanh(t)(1 + (1 — z)x + sinh(z)), (x,t) € (0,1) x (0,7],
u(z,t) = (z,t) = exp(—t)tanh(xt), (x,t) € Q x [-r,0],

ou

o = Y (z) = cosh(z), x € (0,1),

u(0,t) = u(l,t) =0, t € (0,1],
where x € (0,1) and ¢ € (0, 1]. The difference scheme (3.5)-(3.8) can be rewritten as
Ayt = Cy ™ + Byl = —F, (i=2,3,.,N,—1, j=23.,M-1),
where
Ay = —eh'hi'r? B = 5hz+1h 172 = =172 (2ehih R + i),
F o= — (= (chy'h7 22 = 1))yl
— (25h;+11h;1(1 —277%) — 2a.7'_2 + bj> yf
= (hi b 22 = D)yl + (e iy 2) il
772 (2eh Rl +a) yl T+ (ehi TR vl
] =y M)
as well as from ([1.3)) Difference schemes are for initial conditions is

D;kyzl—l_Fz*yzl—l—E:yzl—‘,—l:_(b*? (i:2’37"'aNZ_1a j:2735"'7M_1)7

(2

(5.8)
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where
D = —eh'ni'r7l, Ef=—ch hn F* = —2ch b v —ar
O = —((—eh;y 'R\t ) yiy + (2eh LT ) Yar )y
(ehth ' _1) y’?—‘rl - (5h' 'hi )¢i—1 + (QEhi_Jrllhi_l + ai) (08

0 Ty T o
(ghz-‘rlh )w1+1+ (th)c <2hzhz+1 + 2bz)<z

+( ET > 0o OyMO‘i‘—FiO), (M():TM/Z)

2hi+1h7j i+1 CY; 2

By using Thomas Algorithm, this provides us the tridiagonal system. The following
factorization process, which is incredibly quick, may be used to solve the systems (5.7 and

63):

Q1 = 07 /61 = 07
Qi1 = ———, Bi= o,
1 C A-ozl i CZ - AZ‘Oéi
y(])-i-l — O ]+1 _ O,

yljJrl :Oéi+1yzj~:_r11+ﬂi+1y (i:NlaNl_lv‘”ul)v

and
O{I g O’ /8; = 07
. E? 5 O + DI j;
QL = —_— K e . AL——
i F* — Dfa;” "' Fr — Doy’

yo =0, yy, =0,
ygza:_’_ly;_'_l‘{'ﬁa_la (i:NlaNl_lv"'71)7

that using recently correlated data, we estimate the value of y; (i = 0,2,...,N;). It is

simple to confirm that
AZ' > 0, Bi>0, DZ:C’l—Az—BzZO, (59)
and
D > 0, Ef>0, Gi=F'—D;—E>0, 5.11)
(5.12)

|D:‘§’Ez*|v =12, ,N— 1L

The invariant imbedding algorithm is stable and can be demonstrated to hold under the
conditions given in . - We define the quantities in order to test the order of uniform
convergence with

Ny 2N
y2z .

eV = max

0<i<N, Yi




108

A case of impulsive singularity . ..

We compute an experimental order of uniform convergence as follows,

In (eNl/ele)

In2

where eM

is the maximum difference between the solutions on two succeeding meshes.

The following tables present the computed results in tabular form. The difference scheme’s
computational solutions are shown to be uniformly convergent with order two regard to h in
Tables 1.1 and 1.2. We use our Method to solve these problems with N; = 2 | (i = 3,...,7)

for various values of ¢ (e = 107%, w =2,3,...,7).

Table 1.1. Computed convergence rates p on wy, X wy, for
e=10"" (w=2,3,...,7). rx (k=0,1) is the maximum error.

€ Nl
8 16 32 64
ro | 0.00640507 | 0.00258361 | 0.00074854 | 0.00018385
1072 | 71 | 0.00258361 | 0.00074854 | 0.00018385 | 0.00004202
p | 1.30982464 | 1.78723672 | 2.02554265 | 2.12939634
ro | 0.01267443 | 0.00927360 | 0.00464861 | 0.00162134
1073 | ry | 0.00927360 | 0.00464861 | 0.00162134 | 0.00045180
p | 0.45071949 | 0.99632945 | 1.51961721 | 1.97959627
ro | 0.01389840 | 0.01271322 | 0.00904426 | 0.00492418
107 | ry | 0.01271322 | 0.00904426 | 0.00492418 | 0.00197943
p | 0.12858930 | 0.49125537 | 0.87712056 | 1.31479549
ro | 0.01368416 | 0.01371739 | 0.01094833 | 0.00716860
1075 | vy | 0.01371739 | 0.01094833 | 0.00716860 | 0.00394297
p | —0.00349907 | 0.32529456 | 0.61094806 | 0.86240923
ro | 0.01317381 | 0.01405847 | 0.01193968 | 0.00831550
1075 | 7y | 0.01405847 | 0.01193968 | 0.00831550 | 0.00499958
p | —0.09376640 | 0.23567540 | 0.52188957 | 0.73399692
ro | 0.01259547 | 0.01414086 | 0.01262576 | 0.00916503
1077 | r; | 0.01414086 | 0.01262576 | 0.00916503 | 0.00569825
p | —0.16696470 | 0.16350026 | 0.46215819 | 0.68562197
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Table 1.2. Computed convergence rates p on wy, X wy,. for
e=10"" (w=2,3,...,7). rx (k=0,1) is the maximum error.

3

N,

128

256

512

1024

1072

To
T1
p

0.00004264
0.00001130
1.91587226

0.00001222
0.00000315
1.95578248

0.00000315
0.00000080
1.98264458

0.00000080
0.00000020
1.99502989

1073

To
(&1
b

0.00045180
0.00011456
1.97959627

0.00011456
0.00002785
2.04030234

0.00002785
0.00000660
2.07800764

0.00000660
0.00000155
2.08926215

1074

To
™
p

0.00197943
0.00060906
1.70044202

0.00060906
0.00016529
1.88159512

0.00016566
0.00004254
1.96142581

0.00004389
0.00001108
1.98673141

107°

To
1
p

0.00394297
0.00176957
1.15587980

0.00211618
0.00069383
1.60880456

0.00155926
0.00046194
1.75509398

0.00047779
0.00012712
1.91016961

107

To
1
p

0.00499958
0.00269679
0.89056492

0.00269679
0.00129466
1.05866635

0.00165923
0.00051680
1.68283185

0.00228391
0.00072718
1.65110973

1077

To
(&1
b

0.00569825
0.00320253
0.83130542

0.00320253
0.00168619
0.92544530

0.00168619
0.00083514
1.01367404

0.00093345
0.00037102
1.33105726

In Fig.1, the numerical solutions to the test problems for ¢ = 1072 and ¢ = 1075 are

displayed. In particular, we can see boundary layers in the right-hand figure at x = 0 and
r=1fore=10".

25 T T T T 3

15F

051

0 L L L L 0 L L L L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

X X

Fig.1. Solution of test problem for ¢ = 1072, 1 = 1, r = 1, T' = 2. b) Solution of test
problem for e =107, l=1,r=1,T = 2.

6 Conclusion

In this study, we developed a difference scheme for the linear singularly perturbed
Sobolev delay initial-boundary value problems on the Shishkin mesh. The method was



110

A case of impulsive singularity . ..

based on an classical difference scheme on Shishkin mesh. As results from the method,
O (7'2 + N[2 In? Nl) order convergence with respect to space and time variable in the discrete
maximum norm was obtained. However, using the method, a numerical example were solved
and the obtained results were displayed in Tables 1.1 and 1.2. In Fig.1, the numerical
solutions to the test problems for e = 1072, e =107, [ =1, r = 1 and T = 2 was displayed.
The results in the table are obtained by keeping time variable ¢ constant. These results show
the efficiency and accuracy of the our method. It shows that the theoretical results from this
example and the results obtained are supported.
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