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GLOBAL SOLVABILITY OF INVERSE PROBLEM FOR LINEAR
KELVIN-VOIGT EQUATIONS WITH MEMORY

In this paper, the inverse problem for a linear system of Kelvin-Voigt equations with memory
describing the dynamics of a viscoelastic incompressible non-newtonian fluid is considered. In the
inverse problem under consideration, along with the solution (velocity and fluid pressure) of the
equation, it is also required to find the unknown (intensity of the external force) on the right
side, which depends only on the time variable. Definitions of weak and strong solutions are given.
Weak and strong solutions of the set inverse problems satisfy the boundary condition of sliding
at the boundary. The sliding boundary condition gives a mathematical and physical character
to the study of a linear system of Kelvin-Voigt equations with memory. The applicability of the
Faedo-Galerkin method for this type of system of equations is analyzed. With the help of the
Faedo-Galerkin method, the global theorem of the existence of solutions to the presented inverse
problem is proved in a weak and strong generalized sense. To prove the theorem of the existence
of a solution "as a whole"in time, it is associated with obtaining a priori estimates, the constants
in which depend only on the data of the problem and the magnitude of the time interval. And also
the uniqueness theorem of the solutions of the considered inverse problems for a linear system of
Kelvin-Voigt equations with memory is obtained and proved.

Key words: Inverse problem, Kelvin-Voigt system with memory, global existence and uniqueness.
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By xKyMbIcTa TYTKBIP CEPHIMIl CHIFBIIMANTEHIH HHIOTOHIBIK, €MEC CYHBIKTBIKTAPIBIH, KO3FAJIBICHIH
cunaTTaiiTei uHTErpo-auddepenimaibik, (2Kaapl 6ap) Keappun-Doiirr Tenneynep kyiteci yimin
KOHMBIIIFAH Kepi ecen KapacThIpbLIa bl. Kepi ecenre TeHaeyain mmerrimi 60161 TaObLIATHIH CYHbIK-
THIH, >KbIJIJIAMIBIFBIH YKOHE KBICBIMBIH, COHBIMEH KATap CHIPTKBI KYIITEP/[iH, UHTEHCUBTLIIr jer aTa-
JIATBIH YAKBITTAH OyeJJIi OH YKAFbIH aHbIKTAY Ke3JesreH. Makaaia »KajbLiaMa, 9JICI3 2KoHe 911
mrenmiMaepaiH, anbIkTaMachkl 6epinmi. Kepi ecenrin »KasmblLiaMa 9/ICi3 ¥KoHe OJI1 IIEITiMIepi 1re-
KapaJa Kyry IeKapasblK MapThIH KaHAFaTTaHIbIPAabl. 2KyFy MeKapasiblK MapThl 63 Ke3eriHme
naTerpo-muddepennnaaabk Keabpun-QoirT TeHgeyaep XKyitecii MaTeMaTHKAJBIK, KoHe (DU3n-
KAJIBIK, TYPFBIJAH 3€PTTEY/e V/IKEH FBLIBIMU KBI3BIFYIIBLIBIK TYFbI3aabl. 2KyMbICTa KapacThIPbI-
JIBITT OTBIpFaH Kepi ecenike Pazno-l'ajmepkun o/1iciHiH KOIIaHbICH TaJaKbLIaHa bl Pasgo-larepkun
OMICIHIH KOMeriMeH Kepi eCeNTiH YKaJIIblJIaMa 9JICI3 KoHe dJIIi MENTiMIEPiHiH Ke3 KeITreH YaKbIT
Me3eTi OOMBIHITA TUI00ATBIBI Oap OOJTYBI TyPaJIbl TeOpEeMa ARJIe/aeH 1. TeopeMaHbl T2JIeIIey arpu-
OpJIBIK Oarajayiap aayra Heri3JesreH, aablHFaH allpUOPJIBbIK baramayaap ecenTin Oepiirenaepinen
Toyesi 60k TabbLIabl. COHBIMEH KOCa, KAPACTBIPBLIBII OThIPFaH HHTErPo-auddepeHInaIbK,
Kesibun-QoiirT TeHaeyep XKyiieci VIIiH KONbIIFaH Kepi eCelTiH, YKaJFbI3/IbIFbl TYPAJIBl TEOPEMA
AJIBIHJIBI YKOHE OJI allPUOPJIbIK OaraJiaysiap Heri3iHIe ToJIelIeH/T.

Tvyitiu cesnep: Kepi ecem, xanpr 6ap Kenpeun-Doiirt xyiieci, merrimuiy rirobasasr 6ap 601ybI
KOHE KAJIFBI3/IBIFDI.
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Kazaxckuit Harmona/bHbI yHUBepcuTeT nMmenn ajib-Papabdbu, Kazaxcran, r. Ajmars
e-mail: ajdossakir@gmail.com
I'sob6anbHast pa3penimMoCcTh O0paTHON 3amaun JAJis JuHelHbIX ypaBHenuii KeabBuna-Poiirra c
NaMsAThIO

B pmammoit pabore paccmarpuBaercs oOpaTHasi 3ajada sl JIMHEHHON CHCTeMbl ypaBHEHWUIA
KenpBuna-@oiirta ¢ maMsaThO, OMUCHIBAIONIEN NMHAMUKY BSI3KOYIIPYTOil HECXKUMAEMON HEHDBIO-
TOHOBCKOI kuukocTu. B paccmarpuBaemoii o6paTHOl 3ajade BMeCTe ¢ pelieHueM (CKOPOCTb U
JIABJIEHNE JKUJIKOCTH) yPaBHEHUsI, TpeOyeTcst TakyKe HAMTH HeM3BeCTHOE (MHTEHCUBHOCTD BHEITHeNH
CWJIbI) B NIPABO YaCTH, KOTOPOE 3aBUCUT TOJBLKO OT BpeMEHHOH nepemennoil. Jlambl ompemee-
HUsl CJIADBIX U CHJIbHBIX pernenuit. Crabble U CUIbHBIE PEIIeHUs] TOCTABJIEHHBIX OOPATHBIX 33144
VAOBJIETBOPAIOT KPAEBBIM YCJIOBHUSM IMPOCKAIL3bIBanusA Ha rpanurie. IlocrtaBientnoe kpaesoe yciao-
BHE TIPUIAeT MaTEMATHIECKUi 1 (pU3MIECKUil XapaKTep N3y IeHNIO TUHEHHON CUCTEeMbI ypaBHEHMIT
Kennpuna-®oiirra ¢ mamarsio. Pazobpana npumerumocts Metoaa Paspo-lamepkuna s JAHHOTO
Tuna cucreMbl ypaBHenuili. C momombio MeromgoMm DPasio-lajepkuna riobajibHasi TeOpeMa CyIle-
CTBOBaHUsI PEIeHUs] PACCMATPUBAEMbBIX OOPATHBIX 3a]a4d JO0Ka3aHa B CJIa0OM U CUJIbHBIM 0000-
IMEHHOM cMbIcsIe. JIjist ToKa3aTebCTBO TEOPEMBI CyIeCTBOBaHUs pelrenust "B memoMm'"mo BpeMeHn
CBSI3aHO € IIOJTy'€HUEM AIPUOPHBIX OIEHOK, MOCTOSHHBIE B KOTOPBIX 3aBUCAT TOJHKO OT JAHHBIX
381890 W BEJIMUMHBI MHTEPBAJIA BpEMEeHN. A Tak»Ke MOJIydueHa TeopeMa €IMHCTBEHHOCTH PEeIIeHNUsI
paccMaTpuBaeMoit oOpaTHON 3aa4 i JuHeiHoi cucteMbl ypasHeHuit Kenbsuna-QPoiirra ¢ ma-
MSITBIO.

Kurouesbie ciioBa: Obparnas 3amaua, cucrema Kenpeuna-@oiirra ¢ mamMsaTbio, TJ00aJIbHOE Cy-
IIEeCTBOBAHUE U €IMHCTBEHHOCTb.

1 Introduction

Let Q be a bounded domain in R¢, d = 2,3 with a smooth boundary 99, and Q7 = Qx (0, T,
T is a fixed positive finite constant, and I'r = 9 x [0, T|. This paper deals with the recovering
of a solely time-dependent source function f(t) in the system of integro-differential Kelvin-
Voigt equations governing flows of incompressible viscoelastic fluids. More precisely, we study
the following inverse problems of determining the functions (u(x,t),p(x,t), f(t)), from the
system of equations

u, — A, — vAu — /K(t —s)Au(x,s)ds — Vp = f(t)g(x,t) in Qr, (1)
0

divu(x,t) =0 in Qr, (2)
supplemented with the initial condition

u(x,0) = uy(x) in Q, (3)
the sliding-boundary condition [3}-5]

uy(x,t) =u-n=0, curluxn=0, (x,t) €'y (4)

and overdeterminition condition

/Quw(x)dx:e(t), te 0,7, (5)
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where u,, is the normal component of u(x, t) on 012, and n denotes the unit outward normal
vector to Of).

Here the bold letters denote vector-valued functions and u(x,t) = (uy,us,...,u,) and
p(x,t) are respectively a velocity field and a pressure, and v and » > 0 are coefficients of
the kinematic viscosity and relaxation of the fluids, respectively. The vector-function g(x,t)
uy(x), w(x), e(t) and K (t) are given functions. The intensity of external force f(t), a velocity
field u and a pressure p are unknown functions.

The system of equations (I)-(2) is called a system of Kelvin-Voigt (Navier-Stokes-Voigt)
equation with memory [8] or Oskolkov system [9] and it models of an incompressible
viscoelastic non-Newtonian fluids. The integral term in with the convolution kernel K (t)
is a memory term, which designs the viscoelastic property of non-Newtonian fluids. For
the details on the physical background and its mathematical modeling, we refer readers
to [8,[10H12].

The well-posedness of various direct problems for —7 i.e. in the case the external
source term F(z,t) = f(t)g(x,t) is given, have been investigated by different authors, see for
instant [9,/10,/13|, and references there in.

The local existence and uniqueness of solutions to the presented inverse problem —
was established in work [1] to the case when the given data satisfy

”
12 lg®)lz0 llolygy < m <2
0 telo,T

The main goal of this paper is to investigate global in time existence and uniqueness of
weak and strong solutions to the inverse problem ())-(5) in the patricular case g(x,t) = w(z).

The outline of the paper is the following. In Section [2, we introduce the functional spaces
and some auxiliary materials related to the boundary condition (4)), reduce the investigating
inverse problems to an equivalent nonlocal direct problems and define a weak and strong
solutions.The uniqueness of weak and strong solutions of these inverse problems is proved
in Section . The existence of weak solutions of inverse problems - is established in
Section 5] Section [6] devoted to prove the global in time existence of strong solution of inverse
problem.

2 Preliminaries.

In this section, we introduce the main functional spaces and some useful inequalities related
to the boundary condition () from [3].

We denote by L?(Q2) the usual Lebesgue space of square integrable vector-valued functions
on 2, and by W™2(Q)) the Sobolev space of functions in L*(€2) whose weak derivatives of
order not greater than m are in L?*(2). The norm and inner product in L?(2) denoted by
| - [l and (-, ), o, respectively.

We use the following functional spaces, introduced in [3] and [2]

V(Q):={ue Cyr):divu =0},

H,,(Q) := closure of V in the norm of L*(Q2), and
H () := closure of V in the norm of W12(Q);
H2(Q) := HL(Q) N W*(Q).
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The weak and strong solutions of — understood as the sense as in the following
definitions. Similarly, definitions of weak and strong solutions of other inverse problems are
will defined, replacing corresponding boundary or overdetermination conditions.

Definition 1 The functions (u, f) is a weak solution to the inverse problem (1)-(F)), if:
1. u e L0, T; HL(Q)) N L0, T; HL(Q)), u; € L2(0, T; HL(Q)), f(t) € L?[0,T);
2. u(0) = uy a.e. in€;

3. For every ¢ € H.(Q) and for a.a. t € (0,T) holds

< ©)yq + # (curlu, curlyp), Q) + v (curlu, curlyp), o +
K

(t — s) (curlu, curl <p)2 ods = f(t) (w, gp)Q’Q

O\“ S

Definition 2 The functions (u, f) is a strong solution to the inverse problem (1)-(9]), if:

1w e L0, T; HL(Q)NH2(Q)) NL2(0, T; H. () NH2(Q)), u, € L2(0, T; H2(Q)), f(t) €
L2[0,T);

2. Fach equation holds in the distribution sense in the their corresponding domain.

Assume that data of the problem satisfy the following conditions

uo(x) € H, (9); (7)
wo = [lw(x) 5.0 < 00; (8)
w(x) € Hy(9), e(t) € W5 ([0, T)); (9)
(19, w)5 o = €(0); (10)

K(t) € L(0.T)) : [ K1)l ooy = Ko < oc. (11)
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3 Uniqueness of inverse problem

Theorem 1 Let the conditions — are valid. Then a weak and all the more strong
solution of the problem —(@ 1S unique.

Proof 1 Let (uy, fi) and (uy, fo) be two weak solutions to the inverse problem (1))-(3)
regarding to same data. Subtracting the equation for (ug, fo) to the equation for (uy, f1),
and taking inner product at with u :=uy — vy in Ly(QQ) and using (@, we obtain

1d
5 (10 + ol o) + 0 ulfy o) = = [ K= 7) (curlus), curlufe)), g ds. (12)
0

where

1 n n n 2
| f(t )HLz[OT < w—o ||W||H11,(Q) %HutHH;(Q)JFVHu HH},(Q)JFKO /||u (S>HH},(Q) ds

Using the Holder and Young inequalities estimate the terms on the right hand side of ,
analogical as we have got with assumption ey = v and integrating by s from 0 tot € [0, 7],
we obtain the following integral inequality

t

2
o)+ v [l < C [ (s)ds (13)
0
or the function y(t) = ||u 2 o+ o |lullF o with y(0) =0, where C' = KT s g positive finite
2,0 HL(Q) v
number.

Therefore, by Granwall lemma, it follows from that y(t) = 0 for all t € [0,T1], i.e
u; = uy and fi1 = fo.

4 An equivalent nonlocal direct problems

Let us multiply the equation by w(x) and integrate over (). Integrating by parts and using
and the assumption (§), we define f(¢)

Wo

t
f(t) = — | €(t) + »(curluy, curlw), o, + v (curly, curlw), , + /K(t — s) (curly, curlw), , ds
0

Substituting f(f) into the system ([I)-(2)), we obtain the following system of nonlocal equations
for unknown functions u and p

u, — »xAu, — vAu — /K(t — s)Au(x, s)ds — Vp = L

<e’(t) + s (curluy, curlw), o +
Wo ’

t
v (curlu, curlw), ,, + /K(t —s) (curlu, curlw), o ds | w(x), divu(x,t) = 0.
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(14)

The following lemma is valid.

4.1 Reducing to an equivalent nonlocal direct problems

Jlemma 1 Assume that the conditions — are fulfilled. Then the solvability of the inverse
problem —(@ 15 equivalent to the nonlocal direct problem , , .

Proof of the Lemma (1| is similar to the lemmas in |1] and [7].

5 Existence of a weak solution of inverse problem -

By Lemma , we prove the existence of solutions of the nonlocal direct problem , —
for the existence of solutions of inverse problems -, respectively.

Theorem 2 Let the conditions (@— be fulfilled. Then the nonlocal direct problem ,
(@- has, at least, a global weak solution u(x,t) in Qr. Moreover, the weak solutions satisfy
the estimate

ML o 72 @ ) + L2 2y ) + 10T i@y o)) < Cs (15)

where C' 1s a constant depending on data of the problem.

Proof 2 The existence of this theorem consists of the steps: constructing Galerkin’s
approximations, obtain first and second energy estimates for Galerkin’s approximations and
passage to the limait.

5.1 Galerkin’s approximations

Let {¢k}reny be an orthonormal family in L*(Q2) formed by functions of H, whose linear
combinations are dense in HJ(Q). Given n € N, let us consider the n-dimensional space
X" spanned by ¢g, k = 1,...,n, respectively. For each n € N, we search for approximate

solutions to the problem ,- in the form
u'(z,t) =Y (t)e(r), ¢ €X, (16)
j=1

where unknown coefficient c%(t), j = 1,...,n are defined as solutions of the following system
of ordinary differential equations (ODE) derived from

d

pr ((u", Pk)gq + 5 (curlu”, curl gok)zQ) + v (curlu”, curl p), o =

t
1
— /K(t —s) (curlu”, curl ), o ds + — <e’(t) + s (curluy, curlw), , + (17)
2 wo k)
0

t

v (curlu”, curlw), , + /K(t —s) (curlu”, curlw), o ds | (w, ¥r)yq
0
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for k=1, 2, ..., n.
The system is supplemented with the following Cauchy data
u"(0) =ug in Q. (18)
where

Z U—OaSOJ 2.0 Pi

is sequence in L*(Q) N HL () respectively such that
uj — ug(r) strong as n — oo in L*(Q) N HL(Q). (19)

According to a general theory of ordinary differential equations, the system — has a
solution ¢} (t) in [0,%o]. By a priori estimates which we shall establish below, the solution can
be extended to [0,Ty] C [0,7], where [0, Tp] is a maximal time interval, such that a priori
estimates are hold.

Proof 3 Multiply by ci(t) and %Lt(t) and sum up the results from k = 1 until k = n,

and integrate over Q). Using the formula of integrating by parts, and adding results, we obtain

DN | —

d n|l2 ni 2 n|l2 n 2 n 2
7 <||u 2,0+ (v + ) |lu ||H,11(Q)> v Ju" g o) + 07 (O)l50 + 2 [[0f (D) 1 ) =

- /K(t — s) (curlu”(s), curlu®(t)), o ds + ®(u", t)e(t)—

(20)
¢ 4
/K(t — 5) (curlu”(s), curluj(t)), o ds + ®(u", t)e'(t) = Z Ji
0 i=1
where ®(u",t) := €'(t) + s (curluy(t), curlw), o, +
(21)
v (curlu”(t), curlw), o + /K(t — s) (curlu”(t), curlw), , ds.
0
Neat, estimate the term on the right-hand side of
v 3K2
Al < |- [ K5 eurlur(s) curl w (1), ds| < 2 [y / I (g
(22)

t

2K?
gl < | [ Kt =) (eurlw (o), curluf (), 0 ds| < % [ lgey + 20 [ 10"(6) iy
0
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(23)
t 2
Ja| < M / t n n K n 2 d
| Ja] < o e'(t)| + HWHH;(Q) x [Juy ||H},(Q) +vu ||H},(Q) + Ko [u <S)HH.£(Q) s
0
2 172 Z a2 |€(t)|2 2 Vo g2
g (eOF +1EOF) + 5 Iy )+ (4 +30) 0 Tl o + 10 gy +
t
K2 2 2 1 n 2
+ g O 1l + 5 [ 10y s
0
(24)

t 2
|6/(t)| n n n 2
| Ja] < o €'+ llwllm o | 2 1l @) + v 10" | ) + Ko " () || () ds
0
1 2 M2 ' (1) 2 Vo2
o e'()]” + 3 [ [y () + (43¢ + 3v) o Wl (@) + 6 0" {4 () +

K} /
1
0 2 2 n 2
+ 3 O [l + 5 | 106y ds
0
(25)
Plugging (22))-(25)) into (@, then integrating by s from 0 to t, we have

t

n||2 ni2 ni2
y(@) + v a" 72070 ) + 10 17200 + 2 10 7200 7011 (0)) < C1 + Co /Z/(S)dsa (26)
0

n|l2 n||2 .
where y(t) = [[u" |5 o + (v + 3) [[u" [ q) 3

2|le' (1)1}
Lz[o,T]+

2
o + =

4 3 2\ lle(®|? + |l ()17
0, = (1+ »+ov + 0) | ()HL?[O,T] | ()||L2[0,T] e

Wo Wo

v V4 V+x

3K?2 4K? T
n 2 n 2
gl o+ (v + ) 10820 0y ; Co = (—0 LA +z)

Apply classical Grénwall’s lemma to (26)), we have
y(t) < Cre®T < o0 (27)

Applying the estimate to the right hand side of (@) and taking the supremum by t €
[0, T, we obtain the following estimate

n 2 2
Ju HLOO(O,T;L?(Q)OH}](Q)) + ||un||L2(o,T;H;,(Q)) + ||u?||L2(0,T;L2(Q)mH;,(Q)) < My = My(Cy, Gy, T, 52).
(28)

IN
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6 Existence of a strong solutions of inverse problem —
Theorem 3 Assume that all conditions of Theorem[d be fulfilled and
uy(x) € H,, () N HE(Q)

holds.. The direct problem , @, has global in time a unique srtong solution u(x,t)
in Qr, and for a strong solution the following estimate is hold for all t € (0,T]

2 2
||u||Loo(0,T;H},(Q)mHg(Q)) + ||ut”L%O,T;H},(Q)mH%(Q)) < C < oo. (29)
where C' is positive constant depending on data of the problem.

Proof 4 We prove the existence of a strong solutions to these problems by using the special
basis, associated to the eigenfunctions of the Stokes operator

A:VEQ) 5 V(Q), (30)
and

Apy = —App = A\ ok, or € Hy(Q) NHZ(Q) (31)
in the case (4). The latter is due to the fact (see [1])])

(Ap, Vplag =0 for any » € HLNHZ(Q), p € WH(Q), and L*(Q) = H,(Q) & G(Q).

It is known from [14] and [15], that the system {pi},c.. Of eigenfunctions of spectral
problem are orthogonal in Hy, and an orthonormal basis in the space HL(Q) N HA(Q),
respectively.

Let us first consider the —. In this case, all first and second estimates are true for
strong solution. Thus, in order to complete the proof this theorem, it is sufficient to get more
strong estimates, i.e. estimate Au”™ and Au}.

In this case, the equation can be written as the form

t
d
o (00 4 (B )y ) + 0 (S i)y = — [ (= 5) (AW ), s+
0
D) (e’(t) + s (curluy(t), curlw), o + v (curlu”(t), curlw), , + (32)
0

t

+ / K(t — s) (curlu®(l), curlw), o ds | (w, ¢x)yq
0

and multiply the k-th equation of by —Arcp(t) and —\y dcgt(t), and sum up respect to k

from 1 to n and adding results, taking in account the Stokes operator (@), we obtain

v+axd

n||2 n n|2
5 1AW [l20 + vl|Au 50+ = lAu}|50 = I + L. (33)
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t
where T = (u}, Au™), o — / K(t — ) (Au™(s), Au™(t)), o ds + B(u”, £) (w, Au"), o

0
t

I, = (ugL’ Au?)z,fz - /K<t - 8) (Aun(s)v Au?(t))zﬁ ds + q)(un, t) (w, Au?)&(z
0

and ®(u",t) defined by and it can be estimated as follow

t
3 n(2 2 2 n 2
@1 < -5 €O + v [l o) Wl o) + Ko ol g [ 1" ()@ ds| <
kﬂ
0

(34)
3
kg

With the help of Holder, Young inequalities and , we estimate the right hand side of

2 2
€O + v My ol @) + MiEE ]y )]

t
L] < AWy q | 0) g + (@™, )] [w]lyg + / [K(t = s)| |[Au"(s)|l,qds | <
‘ (35)

1% n 2 1
P

t
n 2 2 2 n 2
o [+ 100 O ol + K3 [ 4w (6) 3 ads |
0

t
% n 1 n n n
L] < S Aup(t) |50 + 5= 0y l5q + (@™ 1) |wl5g + K7 [ [|Au"(s)]5qds,  (36)
2 22
0

Plugging , (@) imnto and integrating by s from 0 to t € [0,T], we have

t t
(v + 52) AW 2 + v / JAu" |2 o ds + / JAWI I o ds < (v + 52) [|Aug|2q +
0 0

t t t
1 1 n n n 2
(54 ) | [ ImtEads + el [ 100, ds + K37 [ a1 s
0 0 0

Applying the already obtained estimates for ®(u",t) and uy, we obtain
t t
) 8+ [ (VA0 At 30) ds < Cat C [ 1A (9)3ads,  (38)
0 0

where

t t
11 o n
Cy = (v+) ||Auo||3,ﬂ+(;+;) / a7 (15,0 ds + llwll5.0 / [@(u",5) ds| 5 Cy o=
0 0
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Omitting second term on the right hand side of @ and appling Gronwall’s lemma, result
that

|Au"5 o < Cse“T (39)

Taking the suptemum from both sides of @ by t € [0,T] and using the estimate @ we
obtain

2 2
HuHLOO(O,T;H%(Q)) + ”utHL2(O,T;H?1(Q)) < My = Ms(v, 5, T,C3,Cy) < c0. (40)

The passage to the limit is proved in a similar way as in [1].

7 Conclusion

In the paper, the space of a weak and strong generalized solutions of inverse problem for the
integro-differential Kelvin-Voigt equation is defined. Under suitable conditions on the data
of the problem, the global existence and uniqueness theorems are obtained and proved.
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