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ON ONE-DIMENSIONAL HELMHOLTZ EQUATION

The study of time-periodic solutions of the multidimensional wave equation on the entire 3D space
is an important field of research in applied mathematics. It is known that this study leads to the
Sommerfeld radiation condition at infinity. The radiation condition states that for a solution to a
one-dimensional wave equation, such as the Helmholtz equation or the wave equation, to represent
an outgoing wave at infinity. The Helmholtz equation in 1D, which models the propagation
of electromagnetic waves in systems effectively reduced to one dimension, is equivalent to the
time-independent Schrodinger equation. The one-dimensional Helmholtz potential is widely used
in various areas of physics and engineering, such as electromagnetics, acoustics, and quantum
mechanics. The Sommerfeld problem in the one-dimensional case requires special investigation,
and the radiation conditions in the one-dimensional case differ from those in the multidimensional
case. These differences are related to the peculiarities of the fundamental solutions. In this paper,
we constructed the fundamental solution of the one-dimensional Helmholtz equation. Then, we
found the boundary conditions for the one-dimensional Helmholtz potential. Finally, the equivalent
conditions with Sommerfeld radiation conditions were found for the one-dimensional Helmholtz
equation.

Key words: Fundamental solution, one-dimensional Sommerfeld problem, one-dimensional
Helmholtz equation.
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Byxkin yim esmremii KeHICTIKTE KOIOJIIEM Il TOJKBIH TEHIEY/IH YaKbIT OONBIHINA IEPUOATHI IIie-
MIMIEPiH 3epTTey KOIIaHOAIbl MaTeMAaTHKAIAFhl MAHBI3IbI 3ePTTEY CaJaChl OOJIBINT TaOBLIAIbI.
Byt 3eprrey 3oMmmepdennTin mekcizikTe coyieseHy ecebdine keserini 6eri. Coyireseny map-
TeI [ eTbMTOJIBI] TeH/Ieyl HeMece TOJKBIH TeHJEYl CUAKTHI Oip eJmeM i TOJKBIH TEH/IEYiH IIerTy
YIIiH 6acTanKbl TOJKBIHJIBI MEKCI3iKTeri Oefinesneyin cunarraiiapl. Bip emmemre TuiMai KenTipisi-
reH Kyiiesiepieri 3JIeKTPOMarHUTTIK TOJIKBIHIAPIBIH TapaJIyblH MOeIbAeiiTiH Oip esmemai enmbm-
TOJIBIT TEHJIEY1 yaKbITKa Toyesicis Ipequnrep TereyiMen SKBUBAJIEHTTI. ['€JIbMTOIbIT MOTEHTTHATBI
TOJIKBIH OTKI3TIIMITEPAET] 9JIEKTPOMArHUTTIK TOJKBIHIAD, aKyCTUKAJIBIK, TOJKBIH OTKI3rimTepieri
JBIOBIC TOJIKBIHIAPHI KOHE KBAHTTBHIK, MEXAHWKA CHAKTHI TOJKBIHIAP/IBIH Tapasly ecernTepimmeri
Heri3ri yreiM 60stbin Tabbuta sl Bip esmemii xarmaiiga 3ommepdernb ecebi apHaiibl 3epTTEy/Ii
KazKeT eTejli, aj1 Oip eJImeM Il JKafaaiiia coyJIeieHy MapThl KOIT OJIIIeMI XKaF1aii1aH e3reneeHe .
Byn afibipmambuibikTap ipresii menriMaepiis e3rererikrepivMer OaittanbicThl. Byt kymbicTa 613
6ip emmemai [ebMrosbir TeHaeyiniy ipresi mermimin Kypasik. Coman keiiin, 6ip esmemzai [enbm-
rOJIBI IOTEHIUAJIBIHBIH, [IEKAPAJIBIK, MAaPTTAPbIH TalThIK. COHbIMEH Karap, 0ip esmemai [enbm-
roJibll TeH eyl yinia 3oMMepdesib] coyJie/ieHy MAapThIHA SKBUBAJIEHT IIaPT TAOBbLIJIbI.

Tyitin cesmep: Iprem memim, 6ip exmemai 3ommepdenn s ecedi, 6ip emmem i ['elbMroabIy, TeH-
Jeyi.
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Nsyuenne mepuogmdecknx BO BPEMEHHU PEIIEHUWI MHOTOMEDHOTO BOJHOBOI'O yPABHEHHS BO BCEM
TPEXMEPHOM IIPOCTPAHCTBE SABJISIETCS BAXKHOM 00JIACTHIO UCCIACTOBAHUN B MPUKJIAIHON MaTeMaTH-
Ke. VI3BeCTHO, YTO 3TO WCCJIEOBAHWE IIPUBOJMT K YCJIOBUIO M3JydeHust 3omMmepdelibia Ha Hec-
KOHEYHOCTH. yCJIOBI/Ie n3J1ydeHunsd rjiaCuT, 9TO JJId pelleHnusd OJHOMEPHOI'O BO/JIHOBOI'O YpaBHEHUI,
TaKOI'O KaK ypaBHEHUE Feneroan,a 1 BOJIHOBOE€ ypaBHEHHE, HeO6XO,HI/IMO npeacTaB/IdTbh UCXO-
JISITYIO BOJTHY Ha OECKOHEIHOCTH. Y paBHEHHUE | eJIbMIOJIbIa B OTHOMEPHOM IIPOCTPAHCTBE, KOTOPOE
MOJIE/IUPYET PACIPOCTPAHEHNE JJIEKTPOMATHUTHBIX BOJIH B cuCTeMax, 3(p(HEKTUBHO CBEIEHHBIX K
OTHOMY U3MEPEHUIO, SKBUBAIEHTHO He 3aBUCAIIEMy OT Bpemenu ypasHenuio IlIpeaunrepa. IloTen-
nraJI reﬂbl\ﬂ"o.}'[b].[a ABJIAETCHA d)yHLLaI\’IeHTaJ'H)HbIM INOHATHEM B 3a/la9aX PacClIpPpOCTpaHEHNd BOJIH,
TaKHUX KaK 3JICKTPOMaIlr'HUTHBIE BOJIHBI B BOJ/JIHOBO/IaX, 3BYKOBBI€ BOJIHbI B aKyCTUY€CKNX BOJIHOBO-
Jax ¥ KBAHTOBAasi MEXaHUKa. 3ajada 3o0MMepdesbia B OJHOMEPHOM CIydae TpedyeT CIenuaabHOrO
uccjaea0BaHuA, a YCJIOBUA HU3JIYyYECHHA B OOAHOMEPHOM CJIydae OTJIUYIAIOTCA OT yCI[OBl/If/'I B MHOI'O-
MEPHOM CJIydae. DTH Pa3JIndusl CBA3aHbI ¢ 0COOEHHOCTSIMU (DyHIaMEeHTaIbHBIX penternii. B aroit
pabore, MBI TIOCTPOMJIN (PYHIAMEHTAJBHOE DEIleHe OJHOMEPHOIO ypaBHeHus [eabMrosbia. 3a-
TeM, MbI HalllJIX I'PaHUYHBIE YCJIOBUA JIJIsI OJJHOMEPHOT'O ITOTEHIIUAJIA FeJIbl\IFOJIbHa. TaK}Ke, JJIA
OHOMEPHOI'0 ypaBHEHUA FeJH)lVH‘O.HLI_[a HaﬂﬂeHa yciioBud, 3KBUBAJICHTHBIC YCJIOBUAM U3JIyYCHUA
3oMmmepdenpaa .

Kirouessbie ciaoBa: OyHjpaMeHTaIbHOE PEIEHIe, OJIHOMEDPHAs 3a/1ada 30MMepdehIa, OJTHOMED-
Hoe ypaBHeHue ['ebMrosbIia.

1 Introduction

The idea of constructing boundary value problems for differential equations by transferring
boundary conditions started from the work [1|, where the boundary value problem for
an ordinary second-order differential equation was studied. The method of boundary
condition transfer has also been used in [2,3| for solving one-dimensional problems. Further
developments of this technique for systems of ordinary differential equations are presented
in [4] and [5]. In [6], the operator method of transferring boundary conditions from infinity
was first used for the Helmholtz equation in a half-cylinder with ordinary conditions on the
boundary. In the case of a finite right-hand side, it is shown that the condition of boundedness
of the solution at infinity is equivalent to an operator boundary condition on a certain cross-
section of the waveguide. Pseudodifferential boundary conditions ware equivalent to radiation
conditions found on a sphere in [7]|. In [8], boundary conditions for solving the Helmholtz
equation inside a bounded domain with an artificially smooth boundary are proposed. That
is, the author adds some assumptions to the sufficient smoothness of the boundary and proves
the uniform convergence of solutions of the interior problem to the solution of the problem
posed in an unbounded domain with Sommerfeld radiation conditions at infinity as the size
of the domain increases without bound.

In [9], a new formulation of non-local type boundary conditions for the Helmholtz
equation, which are equivalent to the Sommerfeld radiation conditions, is proposed. These
boundary conditions have the property that stationary waves coming from the domain €2 to
0f) pass through 02 without reflection, i.e., they act as transparent boundary conditions.
In [10], the problem of reducing the Sommerfeld problem to a boundary problem in a
finite domain R™, n > 3 is solved in the general case. The Sommerfeld problem in the
one-dimensional case requires special investigation, and the radiation conditions in the one-
dimensional case differ from those in the multidimensional case. These differences are related
to the peculiarities of the fundamental solutions.
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2 Fundamental solution to one-dimensional Helmholtz equation

In this section, we will find the fundamental solution of the one-dimensional Helmholtz
equation.
Let us consider the inhomogeneous Helmholtz equation in 1D

d2

—u(x) + Nu(z) = f(z), 1
ue) + Nu(z) = f(x) (1
where f is a given function with compact support representing a bounded source of energy
in one dimension, and A € C is a constant, called the wavenumber.

Lemma 1 A function

_ sin Az — ¢
1s a fundamental solution of the one-dimensional Helmholtz equation, such that
d2

Ta(r =+ Nea(r - =iz - ¢),

where 0(x—&) is the Dirac delta function, defined as: (§(x—¢&), @) = (&) for any test function
Q.

Proof. First, let us find the second derivative of % Apply the chain rule to the
outermost function, we obtain

d® sinA\z —¢|  d {isin)\]m—ﬂ]

dz? 2\ - dz |dx 2\
_d ). cos Az —=¢| d
dx 2\ (2)
L cos iz ¢ | —f|+1 No—¢l--Do— g
= 5, Cos Az T cos \|x T3l
Asin A |z — | 1 d?
= I () deose - el

The second derivative of |x — | is not defined at = £, as the function has a sharp corner
at that point. However, we can still define its generalized derivative using the theory of
distributions.

To find the generahzed derivative of 7 d> Zz|T — €|, we can start by finding its first derivative
using the sign function: \x &l = 51gn(x €) where sign(z —¢) is the sign function, defined

as:

1 ifx > ¢,
-1 ifrx <&

iz —6) - {

The sign function is not differentiable at x = £, so we need to define its generalized derivative
using the distributional derivative formula:

(Lsian(x —€), o) = ~(sign(z — £), &'(2))
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where ¢ is a smooth test function. Using this formula, we can find the generalized derivative
of %m — ¢ as:
d
Tsign(z — €) = 20(x — ),
for any test function . Then, from (2) it follows
d* sin \ |z — €| Asin A |z — €| 5
LA St A S (e — ) 4 cos A fr — €]0(z — €)

_)\Sin)\2|x—§| (- 6).

Here cos A |z —&|d (x — &) = 6(x — &). Indeed, both cos A |z — |6 (z — &) and d(x — &) are
zero for all (z — &) except = = &, and infinity at = = &.

Therefore,
d? sin M|z — ¢| 5 sin Az —¢| Asin \ |z — €| Asin Az — €|
Ry S s S B A S

which completes the proof.
Corollary 1 A function
_cos Az — ¢

- = 200

satisfies the following equation
2

d
i@ = O+ Nei(e =) =0.

Proof. As in the proof of Lemma 1, we can see that

d_Qcos)\lx—ﬂ — _ACOSA|x_€|(sgn(x—§))2 —sin\ |z — & d(r — &)

dx? 2\ 2
= —W—sinMx—ﬂé(w—f).
Since |z —&|o(z — &) = |z — £|0(Jz — &]) = 0 for all |z — &, it is easily seen that
, sin \ |z —
sin o = 0 - ) = 22 Lo - ot - ) =

and the corollary follows.
Furthermore, we will refer to the integral that follows as a one-dimensional Helmholtz
potential

1
u(w) = [ el = NSO 3)
0
where f is a given function with compact support.

According to Lemma 1, the one-dimensional Helmholtz potential (3) satisfies the following
one-dimensional inhomogeneous Helmholtz equation (1).
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3 Boundary conditions for the one-dimensional Helmholtz potential

Now, we will find the potential boundary condition for the one-dimensional Helmholtz

equation.
Let
1 1 ) )\
u(z) = / s —e s = [ = peyae (@)

0

where f(¢ < it )\2>
Replace (&) with (dfg + )\2> u(§) in (4), we have

Mz — 2
u(z) = / %"if’ (d_§2 n AQ) u(€)de
0

1 1
in Az — d? in Az —
= /%‘iﬂ (d_@u(£)> d£+/\2/wu(£)df'
0 0

Applying integration by parts twice to the first integral in equation (5), we get

sin Az —¢&| d

! d sin \|z —
u(z) = —on & (5) w

U(S)d5 o

0
1 1
d? [sin Az — ¢ sin A|lz — ¢
+/d_§2 (T) u(f)d§+)\2/T (&)d¢.
0 0

Since

d? sin Mz — €| ,sin |z — ¢
d_§2—2>\ HAN—— = =9,

and fol d(z — &u(&)dE = u(x), we can rewrite the equality (6) as follows

Nz — €l d 1 d sin Al — ¢l !

u(w) = w%u(@ - u(g)d—g—sm 5 i +u(@) (7)
Hence

sinAz—¢d | d sin Az — ¢||'

= O]~ =0 (®)
Since

dsin|z—¢|  cosA|lz —¢| - sgn(z —¢)
dé 2\ N 2 ’
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and sin A(1 — x) = sin A cos Az — sin Az cos J, it follows that

sin A |z — ¢ y sinA\|l —z| sinAz ,
S G} = - 0
i <s>0 w2 AT ) "
_ sinAzx , , sin A ,
=~ (cos Au'(1) +'(0)) + 7 cos Azu'(1).
In the same manner we can see that
d sin \ |z — || cos \|x — &| !
— u( >d§T ) u(§)——5—sgu(z — ¢) )
u(l)COS )\(1 —x) N u(0) cos Az
2 (11)
1
u( ) [cos A cos Az + sin Asin Az| + 9 cos A\
A 1
= COS2 °. [u(1) cos A + u(0)] + # sin A sin Az.
Combining (10) with (11) we can rewrite (8) as
in A
0=— 81r21)\x [u/(0) + cos Au'(1) — u(1) - Asin A]
_ cos) _sinA (1) - u(1) cos A + u(0) (12)
cos Az T 5
As sin Az and cos Az are linearly independent in L,(0, 1), from (12) we can conclude that
u'(0) 4 cos Au'(1) — u(1)Asin A = 0, (13)
and
in A\
S”Al (1) + u(1) cos A+ u(0) = 0. (14)

Thus, it follows that:

Theorem 1 The one-dimensional Helmholtz potential

u(x) = /0 e — € ) F(€)de (15)

for any f € Ly(0,1) satisfies the conditions (13) and (14).

Example. For A = 0, the one-dimensional Helmholtz potential coincides with the following
one-dimensional Newton potential

=5 [ - anoe (16)

which satisfies the following conditions [11]
W (0) + /(1) = 0, (17)
W(1) = u(1) + u(0). (18)
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4 Equivalent conditions with one-dimensional Sommerfeld radiation condition

For A € R, by lemma 1 and corollary 2 we may actually assume that

67;/\':’:_5'

—&N) = 19
is a fundamental solution of the one-dimensional Helmholtz equation of the form
u"(z) — Nu(z) = f(x). (20)

A regular solution to the homogeneous equation u”(x) + Au(z) = 0 in an interval (a, b)
can be rewritten as

b

) = [[aito 60 (G0 + Nu(©) ) s, (21)

a

where e1(x — &, \) = eﬁ:;‘, and A € R. By (21), using integration by parts we obtain

u(r) = /b€1(flf -5 (%;MO + AZU(&)) dg

a

- A)j‘éu(&)

b
+/u(§) (j—é? +)\2> e1(x — &, N)d¢,

a

b b

d
- u(f)%gl(x - 57 )\)

a

such as (% + )\2> ei(z =& N) =d(x — &), and fu(g)é(x —§)d¢ = u(x) it follows that

b b

d

d
0= 81(1' - 57)‘)Eu(£) . - U(g)d_ggl(x - 57 >‘) .
replacing e1(z — &, \) by EMQ‘ZA_Q , we can see that
eiNz—¢l g b d eMe—¢l|®
0= el _ 4
o ae . &) 3 i

ciNz—€l b ciMa—¢l b
— Bl _ i\ - _

ei)\|a:—b| . ei/\|a:—a| , . ei)x\x—b| ‘ ei)\|a:—a|
=i W) — gy ta) — ) e = iAula)

ei)\|x7b| " Sulh ei)\|:rfa| , "
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Since ) is real number, the functions e!*~% and e?*l*=%l are bounded and linearly independent
for any z on R, even at infinity. Then we may assume that |z| > |b|, and |z| > |a|. Therefore,
by (22) implies that

' (b) — idu(b) = 0, (23)

u'(a) + idu(a) = 0. (24)

On the other hand, in the one-dimensional case, the solution of the Helmholtz equation
that satisfies the Sommerfeld radiation condition at infinity [12]:

) du

is given by the following form

R il
uw) = [ 5T (25)

where the function f(£) with compact support in [a, b].
Note that we have actually proved that:

Theorem 2 Let f(z) be a function with compact support in [a,b], then there ezists a
unique solution to the Helmholtz equation that satisfies (23)-(24). Moreover, the Sommerfeld
radiation condition and conditions (23)-(24) are equivalent.

5 Conclusion

In conclusion, this paper presented a comprehensive analysis of the one-dimensional
Helmholtz equation. The fundamental solution was successfully constructed. The
determination of boundary conditions for the one-dimensional Helmholtz potential was a
significant contribution, offering a framework for understanding and solving problems within
this specific domain. Furthermore, the paper extended the understanding of the equation by
establishing the equivalent conditions with Sommerfeld radiation conditions, enhancing the
applicability and theoretical foundations of the one-dimensional Helmholtz equation. Overall,
these findings significantly advance our understanding of this fundamental equation and pave
the way for future research in related areas.
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