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ON THE BOUNDEDNESS OF A GENERALIZED
FRACTIONAL-MAXIMAL OPERATOR IN LORENTZ SPACES

In this paper considers a generalized fractional-maximal operator, a special case of which is the
classical fractional-maximal function. Conditions for the function ®, which defines a generalized
fractional-maximal function, and for the weight functions w and v, which determine the weighted
Lorentz spaces A,(v) and Ay(w) (1 < p < g < 00) under which the generalized maximal-fractional
operator is bounded from one Lorentz space A, (v) to another Lorentz space A, (w) are obtained. For
the classical fractional maximal operator and the classical maximal Hardy-Littlewood function such
results were previously known. When proving the main result, we make essential use of an estimate
for a nonincreasing rearrangement of a generalized fractional-maximal operator. In addition, we
introduce a supremal operator for which conditions of boundedness in weighted Lebesgue spaces
are obtained. This result is also essentially used in the proof of the main theorem.

Key words: fractional-maximal function, non-increasing rearrangement, generalized fractional-
maximal operator, weighted Lorentz spaces, supremal operator.
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2KasmbLianraH GeJIIeKTi-MaKCUMAaJIAbl oliepaTopabiH, JIopeHI KeHicTikTepiHaeri mmeHearesmiri

ZKywmbicTa KaJMbLIaHFAH OOJITEKTIi-MaKCUMAJIIBI  OEepaTop KapacTBIPBLIAIbI, OHBIH Iepbec
JKargaibl KJIACCHKAJDBIK OOJIMEKTi-MaKCUMAJIIbl (PYHKIUS OOJBII TaObLIaIbl. 2KaJnblIaHraH
GoJIIIeK Ti-MaKCHMAJIBl QYHKITUAHDI aHBIKTAUTEIH © dyHnkunscs! yiin xoue A,(v) xoHe Ag(w)
(1 < p < g < o0) canmaxTbl JIOpeHI| KeHICTIKTEDIH aHBIKTAWTBHIH W YKOHE U CAJIMAKThl (DyHK-
IUsIApEl YIIH >KaJNbIIaHraH GeJIeKTi-MakcuMasnsl omeparop 6ip Jlopennm A, (v) Kenicriri-
men Gacka Jlopenn Ag(w) kemicririme memesren GOJIyBIHBIH IIAPTTAPBL abIHraH. KIacCHKAIBIK
OOJIIIIEK Ti-MaKCUMAJIIBI OTIEPATOP KOHE KJIACCUKAJIBIK, Xapan-JIuTiByn MakcuMasasl pyHKIHs-
ChI VIMiH MYHJa# HoTmKeaep OypbiH Oenrimi 6oman. Herisri moTmkeni mpsenney Kesimme »KaJ-
TIBLTAHFAH OOJIIIEKTi-MaKCUMAJIJIBI OIIePATOP/IBIH OCIENTIH aIMaCTHIPYBIHBIH, Oaraiaybl MAHBI3IbI
Typae naitnananbuiaasl. CoHbIMeH Karap, 6i3 esmemai Jleber KeHicTiKTepiHe IeHeJreH K map-
TTapbl AJBIHFAH CYIPEMAJIIbI OMEPATOPIbI eHri3eMi3. Byl HOTH2Ke HeTi3ri TeopeMaHbl JRJIeJIeyIe

Jie KOJITAHBLIAJIBI.
Tyitin ce3nep: OeuIeK Ti-MaKCUMAJI bl (DYHKITNS, OCIEeHTIH aJMaCTBIPY, KAJIbLIAHFAH

OeJIIeK Ti-MaKCUMAJIJIbl OIIepaTop, CaJIMaKThl JIopeHI] KeicTikTepi, MaKCUMAJIJIbI OIIEpaTOP.
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B pabote paccmaTpuBaeTcst 0600IIEHHBIH TPOOHO-MAKCUMAJIBHBIN OITEPaTOP, YACTHBIM CJIyIaeM KO-
TOPOTO SIBJISIETCST KJIACCUYECKas JIPOOHO-MakcuMasibHas gyHKIiwms. [loaydensr ycioBust Ha (hyHK-
o P, onpesessroniyo 0600IEeHHYI0 JPOOHO-MAKCUMAJIBHYIO (DYHKIIUIO, U Ha BECOBblE (DyHK-
MK W U ¥ OIpeJesIoNye BecoBble mpocTpancTsa Jloperma A,(v) u Ay(w) (1 < p < ¢ < 0),
[IPU KOTOPBIX OOODIIMEHHBIN JTPOOHO-MAKCUMAJIBHBIN OIEpaTop sIBJSETCs] OPPAHUYIEHHBIM U3 OJIHO-
ro npocrpancrsa Jloperna A,(v) B mpyroe npocrpancrso Jloperna Ag(w). Jis xiaccuaeckoro
JIPOOHO-MAKCHUMAJIBHOIO OIIepaTopa U KJIACCUIECKON MaKCUMaJIbHOW GyHKIuu Xapau-J/luTrisysa
Takue pe3yJibTaThl paHee ObLIN U3BeCTHHL. [Ipu moKa3are/ibcTBE OCHOBHOTO PE3yJIbTaTa CyIeCTBEH-
HO HUCIOJIB3YETCS OIEHKa HEBO3PACTAIONIEH MEePEeCTAHOBKU OGOOIIEHHOTO JIPOOHO-MAKCUMAIHLHOTO
oneparopa. Kpome Toro, B paccMoTpeHre BBOJUTCs CYIIPEMAJIBHBIN omepaTop, JJis KOTOPOro Io-
JIy9IeHbl YCJIOBHsI OTPAHUYEHHOCTH B BECOBBIX IPOCTpaHCTBax Jlebera. DTOT pe3yiabTarT Tak Ke

CYIIECTBEHHO UCIIOJIb3YETCsI IIPU JOKA3aTEIbCTBE OCHOBHOM TEOPEMBI.
KuroueBsbie ciioBa: JpoOHO-MaKCUMaJIbHAS (DYHKIIHA, HEOB3PACTAIONIAs IEPECTAHOBKA, 0000ITCH-

HBII JIPOOHO-MaKCUMAJIbHBINA OMEPATOP, BECOBbIE ITpocTpaHcTBa JlopeHna, cynpeMasbHbI omepa-
TOP.

1 Introduction

The classical Hardy-Littlewood maximal operator M := M, for f € L} (R") is defined by

(M) =sup Bl [ 1wl
B(z,r)

where B(z,r) is open ball from R™ with the center on the point z € R" and radius r > 0.
The classical fractional maximal operator for « € [0,n) is defined at f € L} (R") by

(M f)(x) =sup L

r>0 reTe

/ FWldy, (0<a<n),

B(z,r)

when a = 0 we get My = M.
Definition 1. Let ® : (0,00) — (0,00). The generalized fractional maximal function
Mg f is defined for the function f € L] (R™) by

loc

(Mo f)(@) =supa(r) [ |fwldy
B(z,r)

The generalized fractional-maximal function in this form was defined in [1-2]. In the case
O(r) =r*", a € (0;n) we obtain the classical fractional maximal function M, f.

The boundedness of the classical maximal operator and the classical fractional maximal
operator in the Lebesgue spaces L,(R") (1 < p < 00) are well known [3-6].

The boundedness of the Hardy-Littlewood maximal operator M in the classical Lorentz
Space A,(v) was considered in [7], the boundedness of the classical fractional-maximal
operator in Lorentz spaces was considered in [§].

Note that various variants of the generalized fractional-maximal function were previously
considered in [9-15]. For such variants of a generalized fractional-maximal function, the
questions of boundedness in Lorentz spaces were considered in [8], [11]. In this article, for
a generalized fractional-maximal function Mg f, we obtain boundedness conditions from the
Lorentz space A,(v) to another Lorentz space A (w).
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2 Preliminaries

Let Ly = Lo(R") be the set of all Lebesgue measurable functions f : R* — C; Ly = Lo(R")
be the set of functions f € Ly, for which the non-increasing rearrangement of the f* is
not identical to infinity. Non-increasing rearrangement f* for the function f defined by the
equality:

JH(6) = inf{y € [0500) : As(y) <1}, € Ry = (0500),
where

A(y) = pn{r € R [f(2)] >y}, y€(0,00)

is the Lebesgue distribution function.

We denote by Lg (0, 00) the set of all nonnegative measurable functions on (0, 00), and by
L (0,00; 1) the set of all nonincreasing functions from L{ (0, 00). The symbol x(4p) stands
for the characteristic function of an interval (a,b) C (0,00). We use the letter C for a
positive constant, independent of appropriate parameters and not necessarily the same at
each occurrence.

The function f**(¢) is defined by the following equality:

L
[ @t)=- [ fr(r)dr, t e Ry.
t !

It is known that 0 < f* |; f*(t+0) = f*(¢t), t € Ry; f* is equally measurable with |f|,
ie.

miteR: f5(t) >y} = po{z € R": [f(2)] >y},
here 4 - is the Lebesgue measure (in R™ or on R, respectively, see [5]).
A function @ : (0;00) — (0;00) is said to be quasi-increasing (quasi-decreasing), if for
some C' > 0
B(t;) < CB(t2) (P(t2) < CP(ty))

holds whenever 0 < t; <ty < 00.

Definition 2 ([1]). Let n € N and R € (0;00]. A function ® : (0; R) — R belongs to
the class B, (R) if the following conditions hold:

(1) ® is non-increasing and continuous on (0; R);

(2) there exists C' > 0 such that

T

/cp(p)p”ldp < COrm, e (0,R). (1)

0

For example,
®(p) = p* " € By(o0) (0 < a < n);
N a=0, <0,
O(p) = po‘_"<ln—> €B,(R),f ReR;yand {0O<a<n, 0<B<R,
a=mn, >0.
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For ® € B,(R) the following estimate also holds
/@(p)pn_ldp >n~t@(r)r", r € (0, R).
0

Therefore

r

/ B(p)p" ldp = B(r)", v € (0, R),

®eB,(R)={0<D|; o(r)r". 1, r€ (0,R)}. (2)

It follows from (2) that for any « € [1;00) there exists 5 = f(a, ¢, n) € [1;00) (where ¢ is the
constant from (1)) such that

®(p)
d(r)

Note the well-known equivalence result of N.K. Bari and S.B. Stechkin [16]:

{W‘E (0;R);a < 2 Sa} =<

r

<p.

(1) & 3y € (0;n) such that ®(r)r?quasi — increasing on (0; R).

3 Main results

For the classical Hardy-Littlewood maximal operator M := M, the rearrangement inequality
Crf™(t) < (Mf)*(t) < Cof™(t), te€(0,00),

holds (|5], Chapter 3, Th 3.8).

Let given p € (1,00) and non-negative measurable function v on (0,00), the classical
weighted Lorentz space AP(v) is the set of all measurable functions f on R"™ such that the
quantity

=

[ fllare) = (/(f*(t))pv(t)dt)

is finite [5].
Let a function u be non-negative and measurable on R and let weighted Lebesque spaces
L, .(R) be the space of all functions f measurable on R for which

15y = ([ 150 attrat)” < o
0

The following theorem is the main result of this paper.

Theorem 1. Let & € B,(¢), 1 < p < g < oo, and let w,v be non-negative and
measurable functions on (0,00). Then the generalized fractional maximal operator Mg is
bounded from AP(v) into A%(w) if and only if there exists a positive constant C' such that

T T

r(q><r)i)(/w(t)dt)3 < c(/v(t)dt)’l’ (3)

0 0
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and
1
7

<7tq(v/n1)w(t)dt>é<](t1/tv(y)dy)—p’>p <C

r 0

hold for all r € (0, 00).

Theorem 1 for the classical fractional maximal operator was proved in [8].

The following results are used in the proof of Theorem 1.

The Theorem 2 gives an estimate for a non-increasing rearrangement of a generalized
fractional-maximal function.

Theorem 2.[1] Let ® € B,,(c0). Then there exist a positive constant C, depending on n
such that

(Mg [)(t) < C sup s®(s") [ (s), 1€ (0,00), (4)
t<s<oo

for every f € L}, (R").

Inequality (4) is sharp in the sense that for every ¢ € L (0, 00;]) there exists a function
f € LTR" such that f* = ¢ a.e. on (0,00) and

(Mof)'(t) = C sup s®(s"/")f**(s), t € (0,00)
t<s<o0
where C' is a positive constant which depends only on n.

For the case of the class of fractional maximal functions M, a similar theorem was proved
in [8].

Theorem 3. [7| Suppose that w(x) and u(z) are nonnegative measurable functions on
(0,00). If 1 < p < g < 00, then the Hardy-Littlewood maximal operator M is bounded from
AP(v)A to A(w), for all non-negative and non-increasing functions f, if and only if both of
the following conditions hold:

</Tw(x)dx>; < A(]U(I)dw);,for all r > 0;
<7)xqw(x)dx>;(/r S /x“(y)df‘/)_p/v(x)dx);' < B, for all r > 0.

We begin by proving a weighted norm inequality for the operator Rg defined at ¢ €
L (0,00;4) by 1
(Rop)(t) = sup 7(77)p(7).

t<T<00

Lemma 1. Let n € N, 1 < p < ¢ < o0, and let w,v be non-negative and measurable
x

functions on (0,00) with v satisfying [v(t)dt < oo for every @ € (0,00). Then there is a
0
positive constant C' such that the inequality

IRoel, s < Clelr, e, 5)

holds for every ¢ € L (0,00; ) if and only if (3) holds for all r € (0, 00).



8 On the boundedness of a generalized fractional-maximal ...

Proof of Lemma 4.
Necessity. It is clear that ReX (0, (7) = ®(r)r'/"x o (t) for any r € (0,00), t € (0, 00).
The necessity of (3) follows by testing (5) on ¢ = X(0,1)-
By using monotonicity of T(I)(T%) 1 for the left-hand side of inequality (5) we have:

(e 9] o0

( / [(Rw)(t)}qw(t)dt); = ( / [ sup T@(Ti)X(o,r)(t)}qw(t)dt); -

t<T<o0
0

T

_ </ [tggrf@(ri)]qw(t)dt); :rq>(ri)(/rw(t)dt)3.

For the right-hand side of (5), we get:

Iolliguizr = ([ xontoear) = ( [oar)”

that is (3) is satisfied.
Sufficiency. Let (3) be satisfied and let w # 0 on a set of positive measure. Then (3)
entails [ v(t)dt = oo. Consequently, there is an increasing sequence {ry}rez in (0,00) such

0
that

Tk
v(t)dt =28, ke Z. (6)

0

It clearly suffices to verify (5) for continuous ¢ having compact support in [0, c0) and ¢ # 0.
For such ¢, the set A C Z given by

A={keZ: (Rep)(rr-1) > (Rap)(re)}
is not empty. Take k € A and define
. {o if (Ra)(t) = (Ra@)(rin), 1 € (0.750)

min{r; : (Rey)(r;) = (Rop)(rr—1)}, otherwise.

Then we obtain
(Rop)(t) = (Ro@)(re—1), k€A, t€ [z, 1h-1).

Moreover, by the definition of A, the supremum appearing in the definition of (Re¢)(rr_1)
is attained in [rg_1, 7). Therefore for every k € A and ¢ € [z, ry), we have

(Rop)(t) < (Ra)(re) = sup  70(7)p(r) < re(@(re) »)p(r ). (7)

Te—1<T<Tk



A.N. Abek et al.

Thus by (7) we get

(Zk%w@rmm@;(g;/z%¢ dgés
< (%ZAm@wé)wm_l) / w<t>dlt)‘11 <
< U re_1) v E.
(!KRM»@rwwm);<:4w@<g;wwan/}wmo“ﬁé<
< ¢”C<g;§];f@W@MOWv;<

o0
1

< 41/pc( / gop(t)v(t)dt)?

0
Lemma 1 s proved.
Proof of Theorem 1. We need to prove that

1Mo )| a0y < Cllfllare)

By Theorem 2 and Lemma 1 we give

(Mo f)llaa@w) = (7[(Mq>f)*(t)]qw(t)dt); <

IN
Q

= C
Here based on Theorem 3 we have:

e Dl < ([ 0 o0)” = 11
0

Theorem 1 is proved.



10

On the boundedness of a generalized fractional-maximal ...

4 Conclusion

In this paper, we considered the generalized fractional-maximal operator. For such operator,
necessary and sufficient conditions of boundedness from one weighted Lorentz space to
another weighted Lorentz space are obtained. The found conditions are imposed on the
weight functions that define the Lorentz spaces and on the function that defines the
generalized fractional-maximal operator.
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