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PARALLEL IMPLEMENTATION OF MUSKAT-LEVERETT EQUATION
USING CUDA

Capillary pressure plays a crucial role in waterflooding by influencing the displacement of oil by
water in reservoir rocks. It is influenced by factors such as pore size distribution, wettability,
and pore connectivity. Understanding and accounting for capillary pressure in the design and
implementation of waterflooding operations can lead to improved oil recovery from reservoirs. In
this work, to investigate the effects of capillary pressure in the waterflooding process in porous
media, a one-dimensional numer-ical model is proposed, and the execution time of the serial model
is computed. In the serial model, the absolute permeability, water and oil viscosity are considered
as constant. In order to speed up the execu-tion time of the serial model, the high-performance
computing technology CUDA is used, and the re-sults (execution time and speedup) on different
threads are calculated. The results of serial and CUDA parallel models for the effects of capillary
pressure are presented and analyzed.
Key words: HPC, CUDA, waterflooding, Capillary pressure, Saturation.
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CUDA технологиясын пайдаланып Маскет-Леверетт теңдеуiн параллелдi жүзеге асыру

Қабат жыныстарындағы мүнайдың сумен ығысуына әсер ету үшiн капиллярлық қысым
шешушi рөл атқарады. Оұан кеуектер көлемiнiң таралуы, сулану және кеуектердiң қосылуы
сияқты факторлар әсер етедi. Сумен ығыстыру операцияларын жобалау және жүзеге
асыру кезiнде капиллярлық қысымды ойластыру қабаттардан мұнай алуды жақсартуға
әкелуi мүмкiн. Бұл жұмыста, сумен ығыстыру процесiнде кеуектi ортадағы капиллярлық
қысымның әсерiн зерттеу үшiн бiр өлшемдi сандық модель ұсынылады және сериялық
модельдiң орындалу уақыты есептеледi. Сериялық модельде абсолюттi өткiзгiштiк, су және
майдың тұтқырлығы тұрақты мән алады деп қарастырылды. Сериялық модельдiң орындалу
уақытын жылдамдату үшiн CUDA жоғары есептеу технологиясы қолданылады және әртүрлi
ағындар бойынша нәтижелер (орындалу уақыты мен жылдамдығы) алынды. Капиллярлық
қысымның әсерiне байланысты сериялық және CUDA параллель модельдерiнiң нәтижелерi
ұсынылды және талдау жасалынды.

Түйiн сөздер: HPC, CUDA, су тасқыны, капиллярлық қысым, қанықтылық.

Е. Махмут∗, Т.С. Иманкулов, Б.С. Дарибаев
Казахский национальный университет имени аль-Фараби, Казахстан, г. Алматы

∗e-mail: erlanmahimut@gmail.com
Параллельная реализация уравнения Маскета-Леверетта с использованием CUDA

Капиллярное давление играет решающую роль при заводнении, влияя на вытеснение
нефти водой в пористых средах. На него влияют такие факторы, как распределение пор
по размерам, смачиваемость и связность пор. Понимание и учет капиллярного давления
при проектировании и реализации операций заводнения может привести к повышению
нефтеотдачи пластов.
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В данной работе для исследования влияния капиллярного давления в прецессии заводнения
в пористых средах предлагается одномерная численная модель и вычисляется время выпол-
нения последовательной модели. В последовательной модели абсолютная проницаемость,
вязкость воды и нефти считаются постоянными. Для ускорения времени выполнения
последовательной модели используется технология высокопроизводительных вычислений
CUDA, а результаты (время выполнения и ускорение) рассчитываются на разных потоках.
Представлены и проанализированы результаты последовательной и параллельных моделей
CUDA для эффектов капиллярного давления.

Ключевые слова: Высокопроизводительные вычисления, CUDA, заводнение, капиллярное
давление, насыщенность.

1 Introduction

Waterflooding [1] is a widely used method in the field of oil recovery. It involves injecting
water into an oil reservoir to displace and recover additional oil. As mentioned earlier,
the Buckley-Leverett [2] equation is commonly employed to model the two-phase flow of
water and oil in porous media during waterflooding processes. One important aspect of the
Buckley-Leverett equation is that it can exhibit a phenomenon known as shock waves or
discontinuities in the so-lution. These occur when there is a sudden change in the saturation
profile, resulting in sharp interfaces between the fluids. The presence of capillary pressure
can smooth out these interfaces to some extent, but they may still be presence. In the
production of oil engineering, engineers have made simplifying assumptions associated with
the movement of water into the oil phase. However, it is important to acknowledge that
simplifying assumptions are often made regarding the interaction between water and oil
phases during waterflooding. These assumptions may not always reflect the complexities of
real-world situations. In reality, there are functional relationships that exist among saturation,
capillary pressure, and other factors between the oil and water phases. These functional
relationships describe the interplay between saturation and capillary pressure, considering
factors such as the wettability of the reservoir rock, interfacial tension between oil and water,
and the presence of other fluids or contaminants. These relationships capture the effects of
capillarity and multiphase interactions on fluid flow behavior. So, in this work, the Muskat-
Leverett equation is considered.

In the past, various capillary pressure-saturation models have been developed and
correlated from laboratory experiments conducted under equilibrium conditions. These
models aim to describe the relationship between capillary pressure and saturation of the
wetting phase in a porous medium.

Static capillary pressure-saturation relationships, such as the ones referenced in [3], have
been widely used in mathematical studies and numerical simulations of multiphase flow in
porous media. These relationships provide a means to incorporate the effects of capillary
pressure into the governing equations and capture the behavior of fluid displacement.

It’s important to note that while these static capillary pressure-saturation models have
been widely used and provide valuable insights, they are empirical in nature and may have
limitations when applied to real reservoir conditions. Factors such as hysteresis, dynamic
effects, and heterogeneity of the porous medium can influence the capillary pressure-
saturation relationship, and more sophisticated models may be required to capture these
complexities accurately.
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However, recent studies in soil physics have highlighted limitations in using laboratory-
measured capillary pressure as an accurate representation of capillary pressure in cases
involving large velocities or when the fluid content is in motion. These findings have led
to the development of new aspects and theories in two-phase flow, challenging the classical
capillary pressure-saturation relationship and proposing the concept of dynamic capillary
pressure.

The theoretical studies referenced in [4-9] have contributed to the understanding of
dynamic capillary pressure and its implications in two-phase flow modeling. These studies
have proposed different formulations and approaches to describe the dynamic capillary
pressure-saturation relationship, aiming to incorporate the influence of flow rate, fluid motion,
and non-equilibrium conditions.

In recent years, high-performance computing technologies enable faster computations,
improved modeling capabilities, and enhanced understanding of complex phenomena, leading
to more efficient exploration, production, and reservoir management strategies. Especially, the
application of HPC technologies in the oil and gas industry has led to significant advancements
in computational capabilities and modeling accuracy. By leveraging parallel computing and
utilizing technologies like OpenMP, MPI, and CUDA, researchers can perform complex
calculations in a fraction of the time it would take with traditional computing methods. This,
in turn, facilitates better decision-making, optimization of oil and gas production processes,
and improved resource management.

CUDA is a parallel programming model that bridges the gap between CPUs and GPUs.
CUDA enables developers to harness the parallel processing power of GPUs, which offer
higher instruction throughput and memory bandwidth [10-14] compared to CPUs. This
advantage makes GPUs well-suited for accelerating computations in various fields, including
oil reservoir modeling.

In [15], the authors describe the development of a parallel algorithm using CUDA
technology for three-dimensional reservoir modeling. By leveraging the capabilities of CUDA,
the researchers aimed to increase the speedup of their computations and enhance the modeling
capabilities in the oil reservoir field. The parallel algorithm likely utilized the parallel
architecture of GPUs to distribute the computational load across multiple cores, enabling
faster calculations and improved performance.

In [16] authors suggest that it is possible to conduct computations of complex
mathematical models, specifically the three-dimensional Poisson equation, in real-time using
mobile devices. The authors conducted comparative analyses of execution time and likely
demonstrated the feasibility of leveraging the computational power of mobile devices to
perform real-time computations. This work highlights the potential benefits of parallel
computing, specifically CUDA, in the context of computational modeling in the oil and
gas industry. The use of parallel implementations can lead to significant improvements in
execution time, allowing for real-time computations on mobile devices and the ability to
handle larger and more complex problems in reservoir simulation.

In [17], a parallel implementation for a Forward Reservoir Simulation (FRS) is presented.
The authors developed a CUDA based parallel simulator for FRS, which allows for solving
significantly larger problems compared to a serial implementation. The results indicate that
the proposed CUDA based parallel implementation enabled solving a problem 82 times larger
than the serial implementation. This demonstrates the effectiveness of CUDA in achieving
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substantial speedup and scalability in reservoir simulation, thereby enabling a more detailed
and comprehensive analysis of reservoir behavior.

In [18] authors investigated parallel data processing in a hybrid CPU+GPU system,
with a specific focus on utilizing multiple CUDA streams to overlap communication and
computations. The paper analyzed the performance and performance-to-power consumption
ratio of multi-stream data processing on modern multicore CPU+GPU systems. The authors
obtained results that can be used to implement building blocks for data stream frameworks,
particularly emphasizing multi CUDA stream communication optimization. This research
likely contributes to optimizing data processing and achieving efficient utilization of hybrid
CPU+GPU systems.

In order to accelerate the execution time of the serial model, in this work, the High-
performance computing technology CUDA is applied, and the execution time and speedup
of the CUDA parallel model are calculated and analyzed.

2 Mathematical model

The mass conservation equations for water and oil phases in a porous medium reservoir can
be described as follows:

Water Phase: The mass conservation equation for the water phase, also known as the
water saturation equation, represents the conservation of water mass within the reservoir. It
considers the change in water saturation with respect to time and the flow of water through
the porous medium. The equation can be written as:

m
∂Sw

∂t
+ div(−→v w) = 0, (1)

Oil Phase: The mass conservation equation for the oil phase, also known as the oil
saturation equation, represents the conservation of oil mass within the reservoir. Similar
to the water phase equation, it considers the change in oil saturation with respect to time
and the flow of oil through the porous medium. The equation can be written as:

m
∂So

∂t
+ div(−→v o) = 0, (2)

So + Sw = 1. (3)

Capillary pressure: The capillary pressure can be defined as the difference between the
pressure in the wetting phase (e.g., water) and the pressure in the non-wetting phase (e.g.,
oil) at a given location within the reservoir. It can be expressed as:

Po = Po − Pw, (4)

where, m is porosity, So and Sw are oil and water saturation, vw, vo are velocity of water and
oil. Pc is the capillary pressure, Po is the pressure in the oil (non-wetting) phase, and Pw is
the pressure in the water (wetting) phase.
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The Darcy’s law expresses velocities:

−→v i = −k
(
fi(S)

µi

)
∂Pi

∂x
, i = o, w; (5)

where, k is the absolute permeability, µi is the viscosity of oil and water, fi(S) is the relative
permeability expressed by following equations:

fw(Sw) = S2
w , fo(So) = (1− So)

2, (6)

The pressure equation, expressed by equation (1) and (2), is following:

∂

∂x

(
−kfw(S)

µw

− kfo(S)

µo

∂Pw

∂x

)
− ∂

∂x

(
−kfo(S)

µo

∂Pc

∂x

)
= 0, (7)

The initial condition at t=0 is given below:

S
∣∣
t=0

= S0, P
∣∣
t=0

= P0.

The boundary conditions:

S
∣∣
x=0

= Sinj,
∂s

∂x

∣∣∣∣
x=1

= 0, P
∣∣
x=0

= Pinj, P
∣∣
x=1

= Pprod.

To solve the (1)-(7) system of equation, we considered the following assumptions:
– The flow is linear, horizontal and of constant thickness;
– The flow is isothermal, incompressible and obeys Darcy’s law;
– Water and oil are immiscible;
– Gravity effects are negligible;
– The porosity is assumed constant;
– The density of water and oil are negligible.

3 Numerical model

The above mathematical model for oil recovery is nonlinear. To solve the Muskat-Leverett
equation (7) Jacobi method was used.

For pressure (7):

P
(t+1)
w(i) =

M(i+ 1
2
)P

t
w(i+1) +M(i− 1

2
)P

t
w(i−1) −M1(i+ 1

2
)P

t
c(i+1) +M1(i− 1

2
)P

t
c(i−1)

M(i+ 1
2
) +M(i− 1

2
)

(8)

where,

M(i+ 1
2
) =

Mi +M(i+1)

2
;M(i− 1

2
) =

Mi +M(i−1)

2
;M = M1 +M2 ;

M1 = −k
fw(s)

µw

;M2 = −k
f0(s)
µo

;M1(i+ 1
2
) =

M1i +M1(i+1)

2
;M1(i− 1

2
) =

M1i +M1(i−1)

2
.
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For saturation:

S
(t+1)
i = St

i +
∆t

m∆x2

[
K(i+ 1

2
)(P

t
(i+1) − P t

i )−K(i− 1
2
)(P

t
i − P t

(i−1))
]

(9)

where,

K(i+ 1
2
) =

Ki +K(i+1)

2
;K(i− 1

2
) =

Ki +K(i−1)

2
;Ki = −kfw(S)

µw

.

For capillary pressure:

P t
c(i) = a

(
0.072

St
w(i)

)
−
St
w(i)

2
+ 0.391 , (10)

where,

a = 3.5× 10−6.

4 CUDA programming model for Muskat-Leverett equation

In this work, CUDA technology is utilized for parallelization purposes. Figure 1 presents
the process of initialization and calling the kernel. The primary challenge in this step is the
initialization of device variables required for pressure computation. The process involves two
main steps. Firstly, the corresponding variables are defined, specifying their data types and
sizes. This step ensures that the necessary variables are available for computation. Secondly,
memory is allocated on the device (GPU) for these variables. This memory allocation step
reserves the required space on the GPU to store the variables and perform computations.
Following memory allocation, the corresponding data is copied from the host (CPU) to
the device. This data transfer operation enables the GPU to access and process the data
efficiently.

It’s important to note that before the “call kernel” operation, the block number and block
size must be considered. The block number and block size are directly associated with the
number of threads in the kernel. The block size represents the number of threads within a
block, and the block number determines the total number of blocks to be executed. For the
one-dimensional case, the block number and block size are determined by following a specific
process, which is defined by the following process, for one-dimensional case:

dim3 threadsPerBlock (number\_of\_threads ) ;
dim3 numBlocks ( ( threadsPerBlock . x + N − 1) / threadsPerBlock . x ) ;
kerne l<<< numBlocks , threadsPerBlock >>>(parameters ) ;

However, in general, the block size and block number are chosen based on the problem’s
characteristics, GPU architecture, and desired parallelism.

Thirdly, after the initialization and memory allocation steps described earlier, the
"kernel"is called as shown in Figure 2. The kernel is a CUDA function that runs in parallel
on the GPU. It performs the actual computations for the desired algorithm or operation.

The kernel function is designed to be executed by multiple threads in parallel. Each thread
is responsible for performing a specific portion of the computation, typically operating on
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Figure 1: CUDA parallelization

different data elements. The block number and block size determined earlier play a crucial
role in defining the number and organization of threads that will execute the kernel.

Once the “call kernel” function is invoked, the computation of pressure is carried out ac-
cording to the process described in Figure 1. The "call kernel"function includes the following
operations:

(1) Calculation of Global ID: Each thread in the GPU needs to have a unique identifier
to control its independent execution. The global ID is calculated using the equation:

globalid = threadIdx.x + blockIdx.x * blockDim.x + gridIdx.x * (blockDim.x *
gridDim.x).

This formula ensures that each thread is assigned a distinct ID based on its position
with-in the grid of blocks and threads.

(2) Finding the Maximum Value of Pressure: The thread ID is calculated, and shared
memory is defined to facilitate communication between threads within a block. This shared
memory will be used to store intermediate results.

(3) Calculation of New Pressure: The value of pressure in the new time step is calculated
using Equation (9), which likely represents the numerical scheme or algorithm used for the
pressure update.

(4) Subtraction and Saving in Shared Memory: The difference between the new and old
pressure values is computed, and the result is saved in shared memory. This step is performed
to find the maximum value among the pressure differences calculated by the threads within
a block.
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Figure 2: The computation of pressure in CUDA

(5) Calculation of Maximum Value within blocks: A reduction algorithm is employed to
determine the maximum value among the pressure differences within each block. This process
involves iterative reduction steps to combine and compare values until the maximum value
is obtained.

(6) Calculation of Maximum Value among blocks: Using atomic operations, the biggest
maximum value obtained from each block is determined. Atomic operations ensure that
multiple threads can safely access and update a shared variable without conflicts.

(7) Updating the Old Pressure Value: The old pressure value is updated with the newly
calculated pressure value, as part of the iterative process for solving the pressure equation.

(8) Comparison with Computation Accuracy: The received biggest maximum value is
compared with a predefined accuracy threshold. If the maximum value is less than the desired
accuracy, the computation cycle (steps 3 to 7) continues. Otherwise, if the maximum value
exceeds the accuracy threshold, the computation cycle is repeated until the desired accuracy
is achieved.

This process iteratively calculates the pressure values until convergence, where the
maximum change in pressure falls below the specified accuracy. The steps involve parallel
computations by multiple threads within blocks and synchronization using shared memory
to find the maximum values efficiently.
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5 Results

Table 1 presents the input parameters of the CUDA parallel model. These various parameters
affect the behavior and performance of the parallel model.

Table 1: Parameters of the model
Parameters Description Value

k Absolute permeability 0.000001
µw Water viscosity 0.09
µo Oil viscosity 0.3
m Porosity 0.2
Pinj Injected pressure 0.5
Pinit Initial pressure 0.3
Ppord Production of pressure 0.1
Sinj Injected saturation 1.0
Sinit Initial saturation 0.001

Table 2 displays the execution time of the serial model. The table demonstrates how the
execution time of the serial model varies as the number of points is increased. It indicates
that as the number of points increases, the execution time also increases. This observation
suggests that the computational complexity of the problem grows with the number of points,
resulting in longer execution times for larger problem sizes. That is obtained by executing a
serial algorithm in a workstation with an 11the Gen Intel(R) CORE(TM) i9-11900KF.

Table 2: The execution time of the sequential model.
Number of elements Execution time(s)

212 4.2624
213 8.5646
214 16.6913
215 34.9052
216 70.6724
217 140.431
218 287.398
219 590.7
220 1208.34
221 2418.37

The performance evaluation of the parallel algorithms is presented in this section.
Specifically, the focus is on assessing the execution time and speedup achieved by utilizing
CUDA parallelization techniques. In the GPU device, various block sizes were tested,
including 64, 128, 256, 512, and 1024. Among these block sizes, it was observed that a block
size of 1024 yielded the best results in terms of performance when compared to the others.

Based on this observation, the block size of 1024 was chosen as the preferred configuration
for all the tests conducted in this work. This consistent block size allows for fair
and meaningful comparisons of the execution time and speedup across different parallel
algorithms.

Table 3 provides a summary of the results obtained from the CUDA parallel algorithms. It
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includes the execution time for each block size, as well as the corresponding speedup achieved
compared to the serial implementation. These results are obtained by the NVDIA Ge-Force
RTX 2080 Ti.

Tabel 3: The execution time and speedup of the CUDA parallel algorithm.
number
of
elements

Execution
time
(128)

Speedup
(128)

Execution
time
(256)

Speedup
(256)

Execution
time
(512)

Speedup
(512)

Execution
time
(1024)

Speedup
(1024)

212 2.99885 1.42 4.21201 1.0 7.18712 0.59 13.2427 0.3
213 3.72914 2.3 4.59255 1.87 7.50429 1.14 13.7876 0.6
214 6.32544 2.64 5.3485 3.12 7.8867 2.12 13.9358 1.2
215 11.7902 2.96 9.62928 3.63 8.54534 4.1 14.3246 2.4
216 23.323 3.0 17.8835 3.95 15.8657 4.45 14.9749 4.7
217 49.1264 2.86 33.3089 4.2 28.8945 4.86 28.58582 4.9
218 100.428 2.86 65.9505 4.1 55.8267 5.15 55.452 5.2
219 203.329 2.91 128.392 4.6 110.739 5.33 108.783 5.4
220 412.112 2.93 254.881 4.74 215.897 5.6 214.71 5.6
221 818.841 2.95 505.169 4.79 423.209 5.7 413.065 5.86

By analyzing the execution time and speedup values presented in Table 3, the effectiveness
of the CUDA parallel algorithms can be assessed. These results provide insights into the
performance gains achieved through parallel computing and help validate the benefits of
utilizing CUDA technology for accelerating the computations in the oil reservoir simulation
domain.

Figure 3 shows the execution time of serial and CUDA parallel algorithm with a block
size equal to 128.

Figure 3: Computation time of serial and CUDA parallel algorithm

From Figure 3, it is evident that the CUDA parallel algorithm performs equally fast as
the serial model as the number of elements increases.
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Figure 4 visualizes the parallel execution time of the CUDA parallel algorithms on different
block sizes. On the other hand, Figure 6 showcases the speedup achieved by the parallel
algorithms in the computation of the Muskat-Leverett equation.

Figure 4: Computation time of different block sizes of parallel algorithm

Figure 5: Speedup of parallel algorithm

From Figure 4, the CUDA parallel algorithm with the larger block size performs equally
fast as the number of elements increases. Notably, when the block size is set to 1024, it
provides the most optimal results compared to other block sizes. Initially, smaller block sizes
(128, 256) exhibit good speedup when compared to larger block sizes (512, 1024). However,
as the number of elements increases, the larger block sizes progressively yield better and
improved results, shown in Figure 5.
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By referring to Figure 4 and Figure 5, researchers and readers can gain insights into the
efficiency and effectiveness of the CUDA parallel algorithms specifically applied to solving
the Muskat-Leverett equation. These figures provide a visual representation of the parallel
execution time and the resulting speedup, allowing for a comprehensive assessment of the
performance benefits and scalability achieved through parallelization.

6 Conclusions

This work focuses on solving the oil displacement problem using the Muskat-Leverett
equation. The numerical model is solved using the Jacobi method. In this work, the serial
algorithm and a CUDA parallel algorithm are developed. The results obtained from the
parallel algorithms are thoroughly analyzed. The analysis reveals that the execution time
and speedup of the model are influenced by various factors, such as thread divergence, block
size, synchronization, and compile time. These factors play a crucial role in optimizing the
performance of parallel algorithms.

Table 3 presents the findings regarding the impact of these factors on the execution
time or speedup. By examining the table, researchers and readers can gain insights into the
performance characteristics and scalability of the parallel algorithms about the number of
points in the computational domain.

Notably, the results demonstrate that with an increasing number of points, the speedup
achieved by the parallel algorithm improves in comparison to the serial version. This indicates
that the parallel algorithms effectively leverage the computational capabilities of parallel
computing platforms, resulting in enhanced performance and reduced execution time.
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