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STUDYING DYNAMICS OF A CANTILEVER BAR WITH VARIABLE
BENDING STIFFNESS

In this paper, there are studied the dynamic processes (free and forced oscillations) of isotropic
cantilever plates in the form of an isosceles (wedge-shaped) triangle. In the study, the finite
difference method has been applied using a regular one-dimensional (linear) grid. The finite-
difference equations developed by the authors for point-distributed masses along the length of
the wedge are presented, taking into account the linearly variable bending stiffness. On this basis,
the results of studies in the form of amplitude-frequency characteristics (frequencies, dynamic
forces and deflections) in the resonant and near-resonant regions have been obtained. The content
of theoretical provisions and applied results can be widely used in the scientific and engineering
fields and in the field of mechanics of structures.
Key words:triangular plate, numerical method, grid method, dynamic deflections and forces,
variable bending stiffness, bar analogy, frequency spectrum, amplitude-frequency characteristics.
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АЙНЫМАЛЫ ИIЛУ ҚАТАҢДЫҒЫ БАР КОНСОЛЬДI ӨЗЕКТIҢ ДИНАМИКАСЫН

ЗЕРТТЕУ

Бұл жұмыста изотропты консольдық пластиналардың динамикалық процестерiн (еркiн және
мәжбүрлi тербелiстер) тең қабырғалы (сына тәрiздi) үшбұрыш түрiнде зерттеймiз. Зерт-
теу үшiн кәдiмгi бiр өлшемдi (сызықтық) торды қолдану арқылы ақырлы айырымдар әдiсi
қолданылды. Сызықты-айнымалы иiлу қатаңдығын ескере отырып, сына ұзындығы бойын-
ша нүктелiк-таралған массалар үшiн әзiрлеген соңғы айырмашылық теңдеулерi ұсынылған.
Олардың негiзiнде резонанстық және жақын резонанстық аймақтардағы амплитудалық-
жиiлiк сипаттамалары (жиiлiк, динамикалық күштер және ауытқулар) түрiндегi зертте-
улердiң нәтижелерi алынды. Теориялық ережелер мен қолданбалы нәтижелердiң мазмұны
ғылыми және инженерлiк салаларда және құрылымдар мен конструкциялар механикасы
саласында кеңiнен қолданылады.
Түйiн сөздер: Үшбұрышты пластина, сандық әдiс, тор әдiсi, динамикалық ауытқулар мен
күштер, айнымалы иiлу қатаңдығы, өзектiк ұқсастық, жиiлiк спектрi, амплитудалық-жиiлiк
сипаттамалары.
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В данной работе исследуются динамические процессы (свободные и вынужденные колебания)
изотропных консольных пластин в форме равнобедренного (клиновидного) треугольника.
Для исследования применен метод конечных разностей с использованием регулярной
одномерной (линейной) сетки. Приведены разработанные авторами конечно-разностные
уравнения для точечно-распределенных масс по длине клина с учетом линейно-переменной
изгибной жесткости. На их основе получены результаты исследований в виде амплитудно-
частотных характеристик (частоты, динамические усилия и прогибы) в резонансной и
-около резонансной областях. Содержание теоретических положений и прикладных резуль-
татов найдет широкое применение в научной и инженерной сферах и в области механики
конструкций и сооружений.

Ключевые слова: треугольная пластина, численный метод, метод сеток, динамические
прогибы и усилия, переменная изгибная жесткость, стержневая аналогия, спектр частот,
амплитудно-частотные характеристики.

1 Introduction

Thin triangular plates (two-dimensional mechanical systems) are widely used in various
branches of technology in the form of load-bearing elements of various designs.

The theory of calculations of triangular plates was previously widely studied by scientists
[1-3]. At the same time, the calculation of cantilever triangular plates still creates some
technical problems due to the presence of edges free from fastening, as well as due to the
fact that a zone of zero bending stiffness is formed at the apex of the triangle, which leads
to mathematical uncertainties.

Works [4, 5] study the bending of elastic isotropic isosceles triangular plates with the
following boundary conditions: hinged or rigid edges; they were calculated using the finite
element method with the use of approximating functions. As an example, a calculation is
given for the bending of a plate in the form of a right-angled triangle with hinged support
along the contour.

Studies [6, 7] consider the static calculation of triangular plates with hinged edges by the
Ritz method for bending, give the corresponding formulas for the analytical determining of
the coordinate functions coefficients used to calculate the bending deflections, and perform
the calculation for bending under the action of a concentrated force.

The considered triangular plates of regular and irregular shape with different boundary
conditions are widely used in the form of elements of buildings and structures, machines
and mechanisms. In [8-10], several exact solutions are given for triangular plates with
homogeneous boundary conditions (either hinged support along the entire contour, or rigid
pinching). In other cases, variational methods are used [11, 12], such as the finite difference
method [13], as well as the finite element method [14]. Methods of solving dynamic problems
for triangular plates are presented in the reference manual [15]. In works [16, 17], a method of
solving triangular plates in single trigonometric series is considered only in cases of continuous
support along the contour. Paper [18] outlines the theoretical foundations of an original
engineering method of solving problems of the technical theory of plates: the method of
interpolation by the shape factor. The method is based on the use of isoperimetric properties
and patterns of change in the shape factor of the area under geometric transformations, which
also allows calculating triangular plates. In [19, 20], the possibility of applying the method of
interpolation by the shape factor to the calculation of triangular plates from an orthotropic
material is considered.
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In [21], a geometrically nonlinear problem of bending a cantilever bar is considered; an
analytical solution is applied for the case of the Cosserat-Timoshenko bar (taking into account
bending, shear, and tension rigidities), in contrast to the previously known Kirchhoff models.
The given results can be used in verification tests of various software systems.

In the other works, there are considered the problems of various structures dynamics, such
as plates, bar systems, including the problems of dynamic stability in eccentrically compressed
metal rods under the action of stationary and moving dynamic loads [22, 23], composite bars
[24], bar dynamics in case of longitudinal impact, taking into account the curvature of the
bar and the eccentricity of the load.

2 Theoretical provisions and methods of calculation

Cantilever bars with bending stiffness that varies linearly (in the form of a triangle), the
so-called "wedge-shaped"bars, are widely used in various branches of technology: mechanical
engineering, construction, aircraft shipbuilding, transport, energy, etc. In this regard, their
calculations for strength, stiffness, stability, especially under various dynamic effects, are of
current importance to this day. Here there is considered a cantilever bar with variable bending
stiffness under dynamic load P (t) (Fig. 1a).

image 1: Towards the calculation of the cantilever bar of variable bending stiffness a) - given
pattern; b) - calculation pattern of the finite difference method; c) - linear grid pattern

m2 = m0 =
0, 015625(a2tgα)hγ

g
;m1 =

0, 2344(a2tgα)hγ

g
= 15m0
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EJ0 =

Eah3

12
= 0, 0833ah3

EJ5 =
0+0,75EJ0

12
= 0, 075EJ0

EJ1 =
(0,75+0,25)EJ0

2
= 0, 5EJ0

EJ2 =
(0,25+0)EJ0

2
= 0, 125EJ0

In a particular case, the dynamic load P (x)can be vibrational, i.e. P (t) = P sin θt.
Here: Eis the modulus of elasticity of the material, h is the thickness (rod height); γ is

the volumetric weight of the material; g is acceleration of gravity; P0 is the amplitude value
of the dynamic load, t is time factor, θ is the circular frequency of the disturbing dynamic
force.

The aim of the study is to solve a dynamic problem: to determine the frequency
spectrum and forms of natural (free) oscillations without taking into account deformation,
to identify amplitude-frequency characteristics, to determine the dynamic forces of inertia,
displacements, internal forces, to study resonance phenomena.

The research method is the numerical method of finite differences (FDM) using a regular
"linear"grid [25-27]. To illustrate the main theoretical provisions and applied results, a small
“density” of the grid (n = 2 ) was adopted (Fig. 1b). If it is necessary to increase the accuracy
of the final results obtained, in the future, the researcher can increase the “density” of the
grid and apply the appropriate electronic computer technology.

The initial differential equation of dynamic processes of bars with variable bending
stiffness has the form [28]:

[EJ(x)y′′(x)]
′′
− ω2m(x)y(x) = q(t), (1)

where y = y(x) is the transverse (bending) movement of the beam axis; q(t) is the given
dynamic force (load); ω is the circular frequency of the beam free oscillations; m(x) is the
value-variable mass along the beam length.

The considered system (beam) dynamics will be studied in two stages: 1) free oscillations;
2) forced oscillations.

3 Free oscillations (without taking into account damping)

In this case the right part of equation (1) transforms into zero, since q(t) ≡ 0.
To apply the FDM, there is used a “linear” grid that divides the length of the beam “H”

into two equal parts (n = 2 ), with a grid step λ = 0, 5H.
Then equation (1) for the i -th grid node (Fig. 1c) in finite differences (taking into account

the bar variable bending stiffness) will take the form (for free oscillations):

dkys − 2(dk + di)yk + (dk + 4di + d` − χi)yi − 2(di + d`)y` + d`yt = 0, (2)

where di = Ji/J0, d: =
J:/J0, d` =

J /̀J0, J0 = 0, 083at3 is the linear (initial) value of the
beam inertia moment (at node “5”;

χi = χ0
mi

m0

;χ0 =
m0ω

2

EJ0
λ4 (3)
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is the frequency parameter for free oscillations.
There is obtained finite-difference equation (2) for the analysis nodes of the grid (i =

1, 2) (Fig. 1b), and a result a system of linear algebraic equations (SLAE) of the 2nd order.
By solving it, there are determined the χi and χ0 values. Then, from formula (3) there is
calculated the ωivalue:

ωi =

√
χi

λ2
·
√
EJ0
mi

=
n2√χi
`2

·
√
EJ0
mi

=

√
χ0n

2

`2
·
√
EJ0
m0

. (4)

When writing equation (2), the deflections of the contour nodes of the "linear"grid will
also be "captured nodes (3, 4, 6); their values will be excluded from the boundary conditions
at the ends of the bar (at nodes 5, 2):

y6 = y1; y3 = 2y2 − y1; y4 = 4y2 − 2y1. (5)

Taking into account expressions (5), there is obtained corresponding resolving equations
of the FDM:
а) node 1 (d5 = J5/J0 = 0, 375J0; d1 = J1/J0 = 0, 5; d2 = J2/J0 = 0, 125J0;χ1 = 15χ0);

(0, 375) y1 + (1 + 4 · 0, 5 + 0, 125− 15χ0) y1− 2 (0, 5 + 0, 1250) y2 +0, 125 (2y2 − y1) = 0;

(3, 375− 15χ0) y1 − y2 = 0. (6)

b) node 2 (d1 = 0, 5; d2 = 0, 125; d3 = 0, 0;χ2 = χ0);
−2 (0, 5 + 0, 125) y1 + (0, 5 + 4 · 0, 125 + 0, 0− χ0) y2 − 2 · 0, 125 (2y2 − y1) = 0;

−0, 75y1 + (0, 5− χ0) y2 = 0. (7)

Two equations (6) and (7) are brought into a single SLAE:

{
(3, 375− 15χ0) y1 − y2 = 0;
−0, 75y1 + (0, 5− χ0) y2 = 0.

(8)

According to (8), there is made a characteristic equation to determine the spectrum of
free oscillations frequencies (in the form of the 2nd order determinant):

D =

∣∣∣∣ (3, 375− 15χ0) −1, 0
−0, 75 (0, 5− χ0)

∣∣∣∣ = 0. (9)

By opening determinant (9) there are determined χ0,1; χ0,2 :

χ0,1 = 0, 606; χ0,2 = 0, 119. (10)
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Based on (10) and according to formula (4), there are calculated:

ω1 =
1, 38

`2

√
EJ0
m0

; ω2 =
3, 114

`2

√
EJ0
m0

. (11)

In work [28] there is given the result ω∗1 = 1,58
`2

√
EJ0
m0

(the deflection from the authors’
result makes 12.7%). This error can be reduced by increasing the grid density (by taking
n > 2).

According to (10) and system of equations (8), there are determined the ratios between
the amplitude displacements with the principal forms of the free oscillations:
а) the 1st principal form χ0,1 = 0, 606

−5, 715− ρ21 = 0; ρ21 =
y21
y11

= −5, 715.

5) the 2nd principal form χ0,2 = 0, 119

1, 59− ρ22 = 0; ρ22 =
y22
y12

= 1, 59.

Fig. 2 shows the principal forms of the free oscillations in the form of “standing” waves.

image 2: Principal forms of free oscillations

4 Forced oscillations under the action of the harmonic vibration load

The differential equation of forced oscillations of bars with variable bending stiffness has form
(1), while it is necessary to take (ω = θ) (θ is the circular frequency of forced vibrations (see
[28]). The concentrated load P (t)can be written in terms of the equivalent load q(t) (Fig. 3).

According to Figure 3a,b there are the following:
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image 3: Substitution of load types

Mp
op = P (t) · `

Mp
op = q0`

2/6

}
. (12)

By equating the left and the right parts of (12), there is obtained: P (t)` = q0`
2/6; from

here

q0 =
6P (t)

`
; (13)

while:

P (t) = P0 sin θt, (14)

where 0 is the amplitude of external load.
Equation (1) is written down in the finite differences based on expression (2) with taking

into account that

χ0 =
miθ

2

miEJ0
λ4 :

dkys − 2(dk + di)yk + (dk + 4di + d` − χi)yi − 2(di + d`)y` + d`yt =

(
q0αλ

4

EJ0

)
, (15)

where

χi =
miθ

2λ4

EJ0
; αi =

qi
q0
; χ0 =

m0ω
2λ4

EJ0
; χi = χ0

mi

m0

;
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q0 =
6P

`
; θ = βω1,

here β = 0, 5; 1, 0; 1, 5; 2, 0 is the coefficient for studying the change of amplitude-frequency
characteristics.

θ = β
1, 38

`2

√
EJ0
m0

; χi = γim0β = θ/ω1; γi = mi/m0;

χi =
1, 9044γiβ

2

n4
. (16)

5 Results and discussion

According to Figure 1b: γ1 = 15; γ2 = 1, 0; α1 = 0, 5q0;α2 = 0, 125q0; (n = 2) is the grid
density.

According to (16), with n = 2:

χi = 0, 11903γiβ
2, i = 2. (17)

There are obtained finite-difference equations (15) (taking into account expression (17)
for the analysis nodes of the grid i = 1, 2 (Fig. 1b):

а) node 1 (d5 = 0, 375; d1 = 0, 5; d2 = 0, 125; γ1 = 15; α1 = 0, 5);

0, 375y1+(1+4 ·0, 5+0, 125−1, 78545 ·β2)y1−2(0, 5+0, 125)y2+0, 125(2y2−y1) = 0, 5q0λ
4

or

y1(3, 375− 1, 78545 · β2) + y2(−1, 0) =
0, 5q0λ

4

EJ0
. (18)

b) node 2 (d1 = 0, 5; d2 = 0, 125; d3 = 0, 0; γ1 = 1, 0; α1 = 0, 125)

−2(0, 5 + 0, 125y1) + (0, 5 + 4 · 0, 125 + 0, 0− 0, 11903 · β2)y2−
−2 · 0, 125(0, 5 + 0, 125)y2(2y2 − y1) = 0,125q0λ4

EJ0

y1(−0, 75) + y2(0, 5− 0, 11903 · β2) =
0, 125q0λ

4

EJ0
. (19)

When bringing equations (18), (19) into a single SLAE and accepting λ = /̀2 as a grid
step, there is obtained along the X axis:



O. Khabidolda et al. 85

{
(3, 375− 1, 78545 · β2)y1 − y2 = 0,03125q0λ4

EJ0

−0, 75y1 + (0, 5− 0, 11903β2) = 0,0078125q0λ4

EJ0

(20)

System (20) is solved with the values of (β = 0, 5; 1, 0; 1, 5; 2, 0):
Then there are presented the results of calculations for the option of β = 0, 5.

{
(2, 93y1 − y2 = 0,03125q0λ4

EJ0

−0, 75y1 + 0, 47y2 =
0,0078125q0λ4

EJ0

(21)

θ1 = 0, 5ω1 =
0, 69

`2

√
EJ0
m0

.

а) there are determined displacements from the solution of equation (21):

y1 =
0, 036q0`

4

EJ0
; y2 =

0, 074q0`
4

EJ0
.

b) there are calculated inertia forces according to [29]:

J∗i =
yi
mθ2

, (θ1 = 0, 5ω1). (22)

According to formula (20), there are the following:

J∗1 =
y1m0

1, 5m1(1, 5ω1)2
=

0, 0036

0, 4761 · 15
= 5 · 104q;

J∗2 =
y2m0

m1(0, 5ω1)2
=

0, 0074

0, 4761 · 1
= 155, 43 · 104q, ω1 =

1, 38

`2

√
EJ0
m0

.

There are calculated the ordinates of the dynamic moment curve (Mg) by the finite
difference method (according to [26]):

Mi = EJi
d2x

dxi
=
yk − 2yi + y`

λ2
= EJi. (23)

According to (23):
M2 = 0 (the cantilever end);

M1 = q`2(y2 − 2y1)0, 5 = 2q`2(0, 074− 2 · 0, 036) = (40 · 10−4)q`2;
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image 4: Towards calculating a cantilever triangular bar а) – calculation pattern; b), c) –
deflection curve

(
yi · EJ0ql4

)
and inertia forces

(
J∗i ·104
q

)
; d) – static bending moment curve

(M q0
i · 104(ql2)); e) – dynamic moment curve

(
Md · 10

4

ql2

)

M5 = q`240, 375(2y1) = (0, 108)q`2.

According to Fig. 3: Mmax =M5 = 720 · 10−4q`2 = 720 · 10−4 · 6p0` = 0, 432p0`
Table 1 shows the results of calculating amplitude-frequency characteristics of the

considered structure (Fig. 1a) with changing the β = θ/ω1ratios.
Table 1 – Results of calculations depending on the β parameter changes
β = θi/ω1 θi Dynamic

displacements
Inertia forces Dynamic

moments
y1 y2 J∗1 J∗2 M1 M5

0,5 0,69
`2

√
EJ0
m0

0, 036 q`4

EJ0
0, 074 q`4

EJ0
0, 5 ·
10−4q

155 ·
10−4q

40 ·
10−4q`2

−1080 ·
10−4q`2

1,0 1,38
`2

√
EJ0
m0

−0, 136 q`4

EJ0
−0, 248 q`4

EJ0
−47, 6 ·
10−4q

−1302 ·
10−4q

480 ·
10−4q`2

−4080 ·
10−4q`2

1,5 2,07
`2

√
EJ0
m0

−0, 0106 q`4
D
−0, 0141 q`4

EJ0
−1, 65 ·
10−4q

32, 9 ·
10−4q

700 ·
10−4q`2

−318 ·
10−4q`2

2,0 2,76
`2

√
EJ0
m0

−0, 01407 q`4
D
−0, 0169 q`4

EJ0
−1, 22 ·
10−4q

−22 ·
10−4q

112 ·
10−4q`2

−421 ·
10−4q`2

According to the data of the Table, there are built graphic dependences: yi = f(β), (i =
1, 2) (Fig. 5); Mi = f(β), (i = 1, 5) (Fig. 6).
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image 5: Deflection at the beam nodes dependence on changing disturbing force θi

image 6: Dynamic moment Mi dependence on changing frequency θi

According to the Table, it can be seen that in the case of resonance, dynamic displacements
and bending moments approach their maxima.

Thus, the use of a bar analogy (a cantilever bar of variable bending stiffness allowed
applying the finite difference method based on a linear grid, which greatly simplified studying
a cantilever triangular plate bypassing the problem of free edges and the presence of an acute
angle at the end of the cantilever; at the same time, the results obtained meet the requirements
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engineering precision.

6 Conclusions

1. In this work, dynamic processes (free and forced vibrations) of a cantilever beam with
variable bending stiffness (wedge-shaped cantilever beam) have been studied.

2. As a research method, the finite difference method (FDM) has been selected using a
regular linear grid; this method makes it possible to obtain the necessary results in the
final form (in numerical values of a discrete type).

3. To illustrate the above theoretical provisions and the method of numerical calculation,
a grid with low density has been used (the number of divisions along the length of the
rod has been n = 2); in this case, in order to obtain more accurate results in the future,
a grid with a large density can be used, i.e. n > 2, followed by the use of electronic
computers. The following results have been obtained: the frequency spectrum of natural
vibrations of the beam and their main forms with two conditional concentrated masses
m1m2; dynamic displacements, inertial forces and ordinates of the dynamic diagram of
moments at the frequency of the disturbing force θ1 = 0, 5ω1 (ω1 is the fundamental
tone of natural oscillations).

4. The following research work has been carried out: there have been obtained analytical
and graphical dependences of dynamic displacements, inertial forces, ordinates of the
dynamic diagram of moments depending on the frequency ratios (β = θi/ω1),i =
0, 5; 1, 0; 1, 5; 2, 0); at this, the corresponding resonant characteristics (at β∗ = 1, 0)
have been revealed (Figs. 5, 6). In the course of the study, the following has been
established: a) at θ1 = 0, 5ω1, the ordinates of the dynamic moment diagram (Fig. 4e)
are slightly less than the static diagram (Fig. 4d); b) the graphs Mi = f(βi)yi = f(βi),
(Figs. 5, 6) clearly show resonance phenomena (at β∗ = 1, 0).

5. The theoretical provisions and applied results presented in this paper can be used both
in studies in the field of mechanics of a deformable solid body and in designing new
progressive buildings and structures, machines, elements of aircraft, ships, etc.
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