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ON THE PROCESS OF TWO IMMISCIBLE LIQUIDS SEPARATED BY A
CONTACT SURFACE WITHOUT SURFACE TENSION

The processes of immiscible liquids in porous media are one of the current topics in the modern
world, where advanced technologies are used to obtain the most comprehensive information about
the geological and geophysical properties of reservoirs. The process of separating two immiscible
liquids at a contact surface without surface tension describes the phenomenon when two different
types of liquids are in direct contact with each other without the formation of an interface boundary
or surface tension between them. This phenomenon can be observed when certain conditions
are met, and it is important in various scientific and engineering fields. It is well-known that
all hydrodynamic processes are described by mathematical tools and models, and solving such
problems allows for obtaining numerical solutions for practical applications in the future. The
authors of the article present the problem statement of two immiscible liquids separated by
a contact surface without surface tension. For the adequacy of this problem, the presence and
singularity of a classical solution have been proven, which depend on the location of the unfixed
boundary. The solution demonstrates the existence of a continuous boundary that divides the
region into sections containing by two different liquids, where the initial density distribution is a
smooth function.

Key words: mathematical modeling, porous media, filtration, immiscible liquids, Darcy’s law.
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BerTik kepinyi »koK Tyiticiniren 6erimen GeJiiHreH eki apaJsiacaiiTelH CYUBIKTAp Yepici TypaJibl

KeyekTi opramapmarsl apamacmaliThiH CYHBIKTHIKTAPIBIH MIPOIECTEPl KA3ipri 3aMaHFLI DJIeMIeri
©3eKTi TaKbIPBIITAPIbIH 6ipi O0JBIT TaObLIAIbI, MYHIA KaOATTapbIH MeOJOTUSIIBIK, YKOHE reodu-
3UKAJIBIK KACHETTEPl TypaJjibl €H TOJIBIK, AKIapaTThl ajly MYMKIHIIr 6ap O3bIK TEXHOJIOTHSIAD
KOJTaHbLIaIbl. BeTTik Kepinyci3 kaHacy OeTiMeH apaJiaciaidThiH €Ki CYHBIKTBIKTHIH OOJIiHYy mpo-
meci exi TYpJl CYMBIKTBIK, TYPJIEPIHIH OJapIbIH, apachHIAFBl IIEKAPAJIbIK, [eKapa HemMece OeTTiK
Kepity maiima Oonmait 6ip-OGipimen Tikesme#t kaHacy KyOBLIBICHIH cHmaTTaiiabl. By KyObLIBICTHI
Genrinmi Oip MmapTTap OpPBIHIAJIFAH Karmaiiza Oafikayra O60Jabl KOHE OPTYPJl FBIIBIMHU KOHE
WHXKEHEPJIK cajagap/ia MaHbI3/Ibl. DBapiblK THIPOJIMHAMUKAJBIK ITPOIECTED MATEeMATUKAJIBIK,
amnmaparTtap MeH MOJIEJIbIEPMEH CHUMATTAJATHIHBI OeJrii, JereHMeH MYHIAil ecernTep/ii MIerry
OoJtaIakTa MPAKTUKAJILIK, KOJIIAHY VIIH CAHIBIK IIENNM aJyra MyMKIiHIIK OGepemi. Ochl Maka-
JIAHBIH aBTOPJaphl OETTIK Kepimyci3 kamnacy OerTiMen OejiHreH €Ki apajacHaliThIH CYHBIKTHIK,
MoceJieciniy, ecebiHiH, KOWBLIBIMBI YChIHAMAIbI. By ecenTiH KONBIIBIMBIHBIH, JTYPBICTHIFBI YIITiH
€pKiH IlIeKapaHbIH [TO3UINACHIHA TOYes i KJIACCUKAJIBIK IMenliMHiH 6ap 0oJsiybl MeH Oipereiisiri
monenmenrer. [lemriM aiiMaxThl €Ki TYpPJIi CYHBIKTBIKTAP aJIBII YKaTKaH OeJiKTepre OeJIeTiH Teric
GeTTiH Oap eKeHiH mpsesaeiial, MyHIa GACTAIKBl THIFBI3IBIKTHIH TapaJiybl Teric pyHKIus OOIbIT
TaOBLIAIBI.

Tyitin ce3aep: MaTeMATHKAJBIK, MOJIEIbJIEY, KEYeKTI opTa, Cy3rijey, apajacuailTblH CYHBIKTHI-
kTap, lapcu 3aHb
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O nponecce ByX HECMEIINBAOINNXC YKUJIKOCTEl!l pa3iesieHHbIe ITIOBEPXHOCTHI0 KOHTAKTa 6e3
IIOBEPXHOCTHOI'O HaTA>XKEeHUA

IIporecchr HeECMENTUBAIOIINXCS XKHUJIKOCTEH B IIOPUCTHIX CPEJIaX SABJISIOTCS OJHUM aKTyaJbHBIX T€M
COBPEMEHHON MUpe, Tjie IMPUMEHSIETCsS IIePeIOBble TEXHOJIOIHI MMEIne BO3MOXKHOCTHU, YTOOBI
[OJIy YU T HamboJiee MOIHYI0 HHMOPMAIMIO reosoro-reodusntdeckre cBoiicTBa miactoB. IIporecc
pasesieHns BYX HECMENTUBAIOIINXCS KUIKOCTEH C MMOBEPXHOCTHIO KOHTAKTA 0€3 IMOBEPXHOCTHOTO
HATS2KEHUsI OIUCHIBAET SBJIEHUE, KOIJAa JBa PA3INYHBIX THIIA KUIKOCTEH HAXOMATCHA B HMPSIMOM
KOHTaKTe Jpyr C JApyroM 0e3 obpa3oBanus WHTEpMEHCHON TpPaAHUIBI WX TTOBEPXHOCTHOTO
HATS2KEHUsI MEXKJY HHUMH. DTO SIBJIEHHE MOXKeT HaDJII0IaThbCsl, €CJIA OIIPEeJe/IEHHbIE YCJIOBUS
V/IOBJIETBOPSIFOTCs, W OHO BAaXKHO B Pa3/IMYHBIX HAYYHBIX U WHXKEHEPHBIX ObjacTax. Bcemu
M3BECTHO, YTO BCE THMIPOJIMHAMUYECKIE ITPOIECCHl OMUCHIBAIOTCSH MATEMATHIECKUMHU AIapaTaMy
U MOJIEJIsIMU, & PEIleHre TaKUX 33724 JaeT BO3MOXKHOCTDH IOJIYIATH B JIAJIbHEHIIIEM YHCJIEHHOE
pelrenue Jijist IPAKTUIECKUX TPUMEHeHnil. ABTOpaMy HACTOSIIIEH CTATHU IPUBOJUTHCS TOCTAHOB-
Ka 3aJ1a91 JIBYX HECMEIUBAIOIINXCS YKUJIKOCTEH, KOTOPbIe Pa3Jie/IeHHbIE IOBEPXHOCTHIO KOHTAKTA
0e3 MOBEPXHOCTHOI'O HATsKeHUsi. J[J1si aleKBaTHOCTU JAHHON 3aJlauu JOKa3aHa CylIeCTBOBaHHUE U
€INHCTBEHHOCTU KJIACCUIECKOT'O PEIIeHNs, KOTOPas 3aBUCUT OT IOJIOXKEHUsT CBOOOTHOM TDAaHUITH.
B pemenun mokaspiBaeTcs CyIeCTBOBAHWE TJIAJKON ITOBEPXHOCTH, DPa3e/sdmomieil 00JacTb Ha
YacTU 3aHATbIE JIBYMsSI DA3IUYHBIMU JKUJIKOCTSIMU, TJe HAYAJIHHOE PACIPE/eSeHNe IIJIOTHOCTH
SIBJISIETCS TJIaIKOM (DYHKITHEH.

KirouyeBbie ciioBa: MareMaTHIecKoe MOJIE/IMPOBAHKE, [TIOPUCTasl CPelia, (PUILTPAIMS, HECMEIITH-
BaIOIIMeECs YKUJIKOCTH, 3aK0H lapcu.

1 Introduction

Existence theorems for a generalized solution of the Navier-Stokes system concerning
inhomogeneous incompressible fluids can be located in various academic references, including
those referenced as [1]- [5]. These works offer valuable insights into the problem at hand.
However, it’s important to note that while these references provide descriptions of solutions,
they often do so without a comprehensive examination of the dataset. Furthermore, a notable
limitation is that they do not consider the crucial aspect of density continuity in their
analysis. In the quest to fully understand the dynamics of inhomogeneous incompressible
fluids and the behavior of the Navier-Stokes system, it becomes evident that a more
detailed investigation, which encompasses the continuous nature of density, is necessary. This
continuity of density is a fundamental factor that can significantly influence the solutions and
outcomes of the system. Consequently, future research endeavors should aim to bridge this
gap by incorporating considerations for the continuity of density, as it is a crucial aspect in
achieving a comprehensive understanding of these complex fluid dynamics.

In [6], the process of multi-fluid flow is considered, where a proof of weak solutions for the
Navier-Stokes equation in the time domain is provided. In this problem, classical immiscibility
conditions are imposed at the boundaries.

In [7], the process of flow of inhomogeneous viscous, incompressible liquids is considered,
where the physical meaning of this problem is described by partial differential equations.
For solving this problem, the authors state that there is no need for the existence of global
solutions of this model to have initial density conditions with a positive lower bound.
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In [8], the filtration of two immiscible viscous liquids with different densities is considered,
formulating a problem with a free boundary, where the movement is characterized by the
equations of Stokes. The authors provide proofs of the existence and uniqueness of classical
solutions to the Stokes equation with homogeneous Dirichlet boundary conditions.

The matter of viscoelastic filtration in the microscopic domain within the context of
the Muskat problem was discussed in detail in reference [9], utilizing suitable averaging
techniques. The solvability of this mathematical model is proven, where the process of
immiscible, incompressible two-fluid flow is derived from homogenization theory in the limit
of dimensionless pore size.

2 The aim and objectives of the study

Examine the motion of two non-mixing viscous fluids characterized by distinct densities
constants in a capillary Q@ = {x € R? : =1 < x; < 1,—h < 25 < h}. The motion is driven by
external pressure and gravity forces. The moving interface, which naturally appears, separates
subdomains Q*(¢) and Q (¢)filled with different liquids.

To be more precise, it is necessary to resolve the task of determining velocity u = (uq, ug) €
R2, pressure p € R, and density p € R by solving the system of equations pertaining to
velocity and pressure

prAu — Vp + gpe = 0, (1)

V-u=0, (2)

where p represents the fluid’s viscosity, e is a specified unit vector, and g is the acceleration
due to gravity force. Additionally, there’s a density transport equation.

d 0

dp B
d - ol tu-Vp=0, (3)

)=
The parameter t is introduced into the velocity equation, making the initial condition
unnecessary.

The boundary conditions applied to the lateral surfaces S° = {x € R? : -1 < z; <
1,29 = +h} of the boundary S = 0N are expressed in the

u(x,t) = 0. (4)

The boundary conditions at «input» S~ = {x € R? : 7 = —1,—h < 3 < h} C S and
«output» boundaries ST = {x € R?*: 1z =1,—h < z9 < h} C S are as follows:

P(u,p)-n=—p'n, x € SF. (5)
Here P(u, p) = 2uD(u)—pl, D(u) = 3(Vu+(Vu)"),, where Irepresents the identity tensor.,

p°(x) is a known linear function, and n = (1, 0) represents the unit normal vector pointing
towards to S*
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3 Materials and methods

At the initial time ¢t = 0, the density is a piecewise-constant function assumed to be equal to
two positive numbers describing different flow phases:

_ _ p+7 X € Q+(O)7 + - +
p&ﬂ%—m@%—{f7erjm’p-—mmmp > pt > 0. (6)

Then, initial conditions for density are equivalent to the surface I'(0) = Ty, which separates
two subdomains Q*(0) initially occupied by different fluids. For simplicity, assume T’y = {x €
R?:2,=0,—h < xy < h}.

The problem is reduced to finding u, p and density p(x,t) from equations 1 — 3 satisfying
initial and boundary conditions. Note that this problem is nonlinear due to the term u- Vp
in equation 3.

To simplify our reasoning, we will proceed to homogeneous boundary conditions by
introducing a new p — p — p°(x):

pAu — Vp = f = Vp°’ — gpe, (7)

(u,p) -n=0,x¢€ S* (8)

Below, it will be demonstrated that the dynamics depicted by the previously mentioned
equations maintain the presence of two distinct subdomains Q*(t), each housing one of the
fluids, and these are consistently divided by an unchanging free boundary I'(¢) throughout
any given timeframe ¢ > 0. Consequently, the problem under investigation is analogous to
the task of determining values for u, p and the shifting boundary I'(¢).

4 Results

A theorem establishing the existence and singularity of a classical solution.

Let Q™) = {xeQ: -1+ % <r <1-—- %}, m > 0. The key findings are presented in
the subsequent theorem.

Theorem. The problem 2-4, 6-8 has a unique solution on the interval [0, T") for some T" >
0, and the solution satisfies the subsequent characteristics: a) For any positive m € N,qg > 2
nA=1- %, the velocity u satisfies the following relations

u € Lo (0, T; W2(QU)) N Lo (0, T; C) 0 €0, T CH).

b) Free boundary I'(t) is a sufface to the class C1* for any ¢ € [0, T) and normal velocity at
every location xalong the free boundary V,,(x,t), the magnitude of the normal n direction is
consistently limited,

sup |Vu(x,t)] < 0.
te(0,T)
x€I'(t)

¢) The density p has bounded variation,

p € Loo(0,T; BV(QU™)) 0 BV Q™).
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Here Qpr = Q x (0,7).

The existence time T of the classical solution depends on the position of free boundary
['(t). Specifically, let §%(¢) be the distance between I'(¢) and the boundaries S* and 6(¢) =
min(0~(t),07(t)). Then 6(¢t) > 0 for all 0 < ¢ < T and §(¢t) — 0 for t — T

Entire this work, commonly accepted notations for functional spaces and norms are used
[10]. And where W24(Q) is the Sobolev space of functions with derivatives summable with
degree q, C** represents the space of functions, the k' derivatives of which conform the
Holder condition with degree A.

5 Discussion of results

Proof of Theorem. Firstly, we will show that, given the initial density distribution as a
smooth function py € C*°(2), the problem of determining u has at least one classical solution.
This conclusion is derived from the application of the Schauder fixed-point theorem.

Next, a class of functions with specific regularity properties is specified, and compactness
principles are used to show the convergence of smooth solutions to the solution of the original
problem with piecewise-constant density py. The existence of a smooth surface separating the
domain into regions occupied by two different fluids is proven.

In this work we fix the number ¢ > 2, an integer m, and the initial density distribution
Pk € C=(Q), e > 0. Specifically we assume p{(x) = p~ for —1 < z; < —¢, p{(x) = p* for
e<a <1, and p~ < piP(x) < pt.

For simplicity of the above entry, we omit the index ¢.

The class of functions M consists of continuous functions

p € C(r)
satisfying the condition

p- < plx.t) < pt 9)
Next, we establish the linear operators as follows, where the initial operator converts the fixed
density into its corresponding velocity field: M 5+ v = U[p] € Lo (0, T; W4(Q™)).

The second one describes the movement of density under the influence of the «frozen»

velocity field:

Loo (0, T; W?4(Q™)) 5U = p = Rlpo, v] € Loo(Q1).

The operator U transfers p to the solution of the following problem

AV —Vp=Ff=Vp’ —gpe,xc Q0<t<T, (10)
V.v=0,xeQ,0<t<T, (11)
v(x,t) =0,x€S°0<t<T, (12)

(v,p) n=0,xe ST 0<t<T. (13)
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The operator p = R|[pg, v], contingent upon the initial density po, converts the velocity v into
the solution for the Cauchy problem:

%+v-Vp:0,X€Q,O<t<T, (14)
p(X,O) = pO(X)vx € (. (15)

In this problem we will limit ourselves to a time interval 7),, meeting the subsequent
requirements:

1
px,t)=p , for—1<z <—-1+—0<t<T,,
m

1
p(x,t) =pt, forl — — <2 <1,0<t < T, (16)
m

where p € M and € > 0 are occur in a way that

1
p(x,t) #p~, for =1 <a < =1+ —,t>T,,
m

or
1

p(x,t) #pt1—— <z, <1,t>T, (17)
m

for p(x,t) = R[pf, v], v =Ulp| and for any p € M and € > 0.
It is obvious that

Ty < Topi1Vim > 0. (18)

When dealing with a smooth initial density distribution represented by pg, solving for u and
p from equations 2 to 4, 6 to 8 involves identifying a fixed point within the composition of
two linear operators. This composite operator, denoted as F' = R o U, is defined as:

M 5 p e F5) = (Ro U7 Rlpo, Up]] € M.

The Schauder fixed-point theorem’s prerequisites are met for the operator I’ within the
interval (0,7,,), where T, > Ty and Ty > 0, and these conditions remain unaffected by the
values of m, p € M and «.

Everywhere below C' is a positive constant that does not depend on m and ¢, K is a
positive constant independent ofz.

For each p € M, the linear problem 11 — 14 has a unique solution

V € Loo(0, T; WHA(Q)) N Leo (0, T; W24(QM)),

P € Loo(0,T; Ly(2)) N Loo (0, T; WH(QM)),

For any given ¢ € (1,00) and for every possible value of the parameter ¢t € [0,7] the
following estimates hold for the solution

IOy + VOl < C[F0|| < c (19)

Lo ()

f@)‘

(20)

¢ " Ol waa oy < K
IO s + VO ooy < K[,
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6 Conclusion

To summarize, it can be affirmed that in this particular problem, there exists a unique classical
solution, and its characteristics vary in accordance with the location of the free boundary,
has been successfully demonstrated. In this case, during the solution process, the presence of
a continuous surface was established, dividing the region into two parts filled with different
liquids, and the initial density distribution remains a smooth function.
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