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CONDITIONS FOR THE EXISTENCE OF AN "ISOLATED"SOLUTION OF
A BOUNDARY VALUE PROBLEM FOR A SEMILINEAR LOADED
HYPERBOLIC EQUATION

Boundary value problems for hyperbolic equations are an important area of mathematical physics
and science in nature. They arise in various physical and engineering contexts and have a wide
range of applications, including wave propagation in elastic media, electromagnetic waves, as
well as problems related to fluid and gas motion. In this article, we will focus on one of the
significant subclasses of hyperbolic equations, namely, semi-linear loaded hyperbolic equations, and
examine the conditions for the existence of isolated solutions to boundary value problems for such
equations.Semi-linear loaded hyperbolic equations are equations in which nonlinear terms depend
on the solutions themselves. This makes their study more complex and mathematically intriguing.
Our task is to find conditions under which such equations have isolated solutions, meaning solutions
that exist in a bounded region of space and time and remain bounded themselves.Studying the
conditions for the existence of isolated solutions for semi-linear loaded hyperbolic equations is of
significant importance both in theory and practical applications. In this article, we will explore
various approaches and methods used to analyze.

Key words: isolated solution, boundary value problem, loaded hyperbolic equation, semilinear
hyperbolic equation, semi-periodic boundary value problem.
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YciioBus cyniecTBoBaHUsI "'M30JIMPOBAHHOrO " pelieHns KpaeBoil 3a1a9u JiJist
MOJTyJIMHENHOTO HArpy>KEHHOTO TUNepO0JIMYeCcKOro ypaBHEHUS

Kpaesbie 3ama4qn 1j1st ruepOOIMIecKuX yPaBHEHUN SBIIAIOTCS BaXKHOU OOJIACTHIO MaTeMaTHde-
ckoif dbusnkn u Hayku o npupoge. OHU BO3HUKAIOT B PA3JIMYHBIX (DU3NIECKUX W WHIKEHEPHBIX
KOHTEKCTaX W UMEIOT IIUPOKUIl CIIEKTDP IMPUJIOYKEHU, BK/II0Yasl PACIPOCTPAHEHNE BOJIH B YIIPYIUX
cpenax, JeKTPOMAarHUTHBIE BOJIHBI, a TaKXKe B 33/la4aX, CBA3AHHBIX C JIBUKEHUEM YKUJIKOCTU U
raza. B manHO#l cTarhe MBI COCpPeOTaYNM BHUMAHME HA OJHON M3 BaXKHBIX ITOJKJIACCOB TUIIEPOO-
JINYECKUX YPaBHEHUN, & UMEHHO HOJIyJIMHENHBIX HAPY?KEHHDBIX TMIIEPOOJINIECKIX YPABHEHUSX, U
PaCcCMOTPUM YCJIOBUSA CYIIECTBOBaHUS U30/IMPOBAHHBIX PEIIeHNH KPaeBbIX 3a/a4 JJId TaKUX ypaB-
nenwnit. [losyuneiinbie HArpYKEeHHDbIE TUTIEPOONTECKNE YPABHEHUS TIPEJICTABISIOT COOOM ypaBHe-
HUsI, B KOTOPBIX HEeJIMHENHbIe YJIeHbI 3aBUCIT OT CAaMUX PelIeHuil. ITo JesiaeT ux ulydenue dojee
CJIO?KHBIM W MHTEPECHBIM ¢ MaTeMaTHIeCKON Touku 3pennd. Hamra 3ajada — HaiiTu ycaoBus, mpu
KOTOPBIX TaKHe ypaBHEHUS UMEIOT M30JIMPOBAHHbIE DEIIeHNs, TO €CTh PelleHusd, CyIeCTBYIONNe B
OTPaHUYEHHO! 00JIACTH IPOCTPAHCTBA U BPEMEHH 1 CAMU OCTAIOIINECS OI'PaHnYeHHbIMU. V3yyenue
YCJIOBUI CYIIECTBOBAHUS M30JMPOBAHHBIX PEIIEHUl JIJIs IIOJIYJINHENHBIX HAIPyKEeHHBIX IUIepbo-
JIMTYECKUX YPABHEHUI MMeeT 3HAYNTeIbHOE 3HAUYEHNE KaK C TOYKHU 3PEHUs TEOPUH, TaK U C TOYKU
3peHns TPAKTUIEeCKNX MPUIOKeHuit. B 3Toit crarhe MBI PACCMOTPUM PA3JIMIHBbIE TOJIXOJIBI U Me-
TOJIbI, UCIIOJIb3yeMble JIJIS aHAJIN3a TaKUX 3a/1ad.

KuroueBbie ciioBa: M30IMPOBAHHOE DEIEHNE, KPaeBas 3a/ava, HAPY2KEHHOe TUIIePOOInIecKoe
ypaBHEHUe, [OJIyJINHEeIHOe TUIIePO0INYIEcKoe ypaBHeHNe, IOJIYIIePUoInYecKas KpaeBas 3a/1a4a.

1 Introduction

In many instances, hyperbolic equations prove to be complex and challenging to comprehend,
especially when considering loaded cases where external factors or boundary conditions
affect the system. It is crucial to understand that loaded hyperbolic equations have a
broad spectrum of applications, from weather forecasting to aerodynamic system design,
and their comprehension plays a critical role in solving complex engineering and scientific
challenges.Loaded points are points in space or on the boundary of the domain in which
a hyperbolic equation is considered, subject to the influence of external factors such as
sources or flows. These points can have a significant impact on the dynamics of the
system and the formulation of the solution to the hyperbolic equation. It is important
to understand that loaded points can arise in both natural and engineering and scientific
contexts, and their consideration is a key aspect when modeling and analyzing complex
physical phenomena.Several ways in which loaded points affect the solution of hyperbolic
equations.Sources and Sinks: Loaded points can represent sources or sinks that introduce
or remove mass, energy, or other physical quantities from the system. This can alter the
local distribution of parameters and, consequently, the dynamics of the system.Systems with
External Influences: In real systems, such as aerodynamic systems or electromagnetic waves,
loaded points can represent external objects or actions that affect the field of variables within
the system. Modeling and Analysis: Including loaded points in mathematical models allows
for a more accurate representation of real conditions and influences, which can be important
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for more precise forecasting and analysis. In [1], issues related to loaded equations and
their applications are investigated.The computational method for solving boundary value
problems for loaded integro-differential equations and the correct solvability of boundary
value problems for loaded differential equations were studied in works [2],[3]. Various problems
for loaded differential equations and methods for finding their solutions are considered in [4-9].

1.1 Problem statement

In the domain Q = [0,w] x [0, T] we considered semi-periodic boundary value problem for a
semi-linear loaded hyperbolic equations:

0*u Ou(z,t) Ou(z,t) du(z,t)

il Gl rat S G R IR CUTICD e )
uw,0) = u@,T),  we 0w @)
u(O0.0) = 0t),  te[0.T] 3)

where f : Q x R?> — R, continuous on 2, 1(t)— continuously differentiable on [0, 7] and
satisfying the condition ¢(0) = ¢(T") functions.

Function u(z,t) € C(Q), having partial derivatives 8uéx,t) e C(Q), W € C(Q),
X x
t o Pulz,t _
Gugl; ) € C(Q), % € C(Q), is called a classical solution of problem (1)-(3), if it

satisfies equation (1) for all (z,t) € Q and the boundary conditions (2)-(3).
We take the function u®(z,t) € C’itI(Q) having a continuous mixed derivative of the
second order, a number p > 0 and construct set

Gu®,p) = {(z.t,uw,v): (2,1) €Q Ju—uO(2,1)] < pJw—u” (2,)] < p},
S, p) = {ulw,t) € Ci ()« u—u® (@, )l < p}.

Through  VO(f, Li(x,t), Lo(w,t))  defining  totality (u(®)(z,t),p), under which
the function f(z,t,u,w) in G(u®,p) has uniformly continuous partial derivatives
fulz, t,u,w), fu(z,t,u,w) and execute the inequalities: |f,(z,t, u,w)| < Li(x,t),
| fw(x, t,u,w)| < Ly(x,t), where L;(z,t), inequalities to € function, i = 1, 2.

Suppose, that the function f into the set G(u®,p) has uniformly continuous partial
derivatives with respect to u, w.

Definition 1. The solution u*(x,t) tasks (1)-(2) called "isolated if exists continuous on
[0,w] function po(x) > 0, for which function f in G(u*,po) = {(x,t,u,w,v) : (z,t) € Q,
ou*(z,

t
lu —u*(x,t)| < po(x), |lw— —)| < po(x)} has uniformly continuous partial derivatives

fus f and linear field periodic boundary value problem

0*u ou ou . ou*(z,t)\ Ou(x,t)
5o~ A0 A | (2.t (@,1), - ) et
+fu (x tur(z,t), M)u(l’, )+ fla,t), (z,t) € Q, (4)
U(O,t) = 1/)(t)7 te [OaT] (5)
w(z,0) =u(x,T), z,x9€ [0,w] (6)

for any f € C(Q), ¢ € C([0,T1]) has one solution.
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1.2 Linearized problem

We introduce the concept of a linearizer of the operator E at the point & € D(FE), generalizing
the derivative of Freshet [10, P. 637| to unbounded nonsmooth operators [11, P. 638|.

Definition 2. The linear operator C : X — Y is called the linearizer of the operator
E:X =Y at the point # € D(E), if D(E) C D(C) and existing number € > 0, 6 > 0, such
that

1E(z) — E(%) = Clx = 2)lly <ellz —2x,

for all & € D(E), satisfying the inequality ||z — Z||x < d, where D(E), D(C)— domains
operator E and C, X — Banach Space, Y — linear normalized space.

Consider the boundary value problem (1)-(2) with the condition on the characteristic

u(0,t) =0, tel0,T]. (7)
Let X— be the space of functions from C;:tl (Q), satisfying the boundary conditions
(2), (3), Y - the space of continuous functions (z,#) on € functions with norm
g N 2
(2, D)lls = max|f(z,0)], H= 5= F(u) = —A(z,)us(2,t) — Ao(,1) us(2,1)|
Q Oxot

flz,t,u(z,t),us(x,t)). then the boundary value problem (1), (2), (7) is equivalent to the
operator equation

r=x0

A(u) = Hu+ F(u) =0, ue X, (8)

H : X — Y linear unbounded operator, a F'(u) has a derivative of Freshet in S(u(?, p), then
linear operator H + F'(u) will be a linearizer of the operator A at the point @ € S(u®, p).
We introduce the notation

- . . . . 0
L= fu(z, t,u(x,t), 0z, t)) + fw(x,t,u(x,t),ut(a:,t))a. 9)
The linear operator L maps X in Y and

ZA—JU = fu(l';tyﬁ(a:?t)?ﬁt(x?t))u(x?t)+fw(x’t"&(x’t)’at(%’t))aug?t)

Let’s demonstrate the boundedness of the operator L and compute its norm

| Lully < m@x{ Fulw, a(z, 1), 42, 1)) - u(,t) + fola, b, iz, b), (@, b)) - ut(x,t)‘} <
Q

IN

ou(z,t) ‘}

< mac { |, £, )l )| e, )]+ | fules e, 0) i, 0)] -] =5
Q

< max {erfu(e, 8)] + ezlud(z, 8)] } < ellullx,

when ¢ = ¢; + ¢9, ¢; = max |f,(x,t, Uz, t), Uz, t))|, c2 = max | fy(z, ¢, 0(x,t), U (z,1))|
0 0

Let’s show that F'(u) has a derivative of Frechet , i.e. for any ¢ > 0 there exists J. > 0
and inequality )
[ (u) = F(@) = L(u = a)[ly < elu—alx (9)
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holds for all u, & € S(u®, p), as soon as |ju — 4| < 6.
Using the formula of ﬁmte differences of Lagrange, we have

IF(u) — F(@) — L(u— @) ||y =

= max | — A(z, t)u,(z,t) — Ao(,t) us(z,t)]
(z,t)eQ

oy T A@ )z (2, t) + Ao(2,8) e (2, 8)] oy, —

—f(z, t,u(z, t), w(z,t) + f(z,t,a(z, t), 4(z, t)—
—{fulz, t, 4z, t), Gz, ) (u(z, t) — a(z, 1)) + folz,t,a(z,t), Q1) (ulz, t) — (b))} <

< (a+ ag)max (Jiu(z,1) = (@, )] | (@, D]y, = (2,0, \)+

< max / H{ fulz, t,a(z, t) + O(u(z, t) — a(z, b)), u(z, t))—
—fulw, t, a2, t), (2, ) }|dO+

+ max / H{ fw(z, t,a(z,t), w4 (2, t) + O(u(w, t) — (2, 1)) —
(x,t)EQ

—fw(z, t,u(x, t), u,(x, t))}|do,

where o« = max |A(z,t)|, ap = max |A(zo,1)].
(x,t)eQ (w,t)EQ

Due to the uniform continuity in G(u(?), p) partial derivatives f,, f,, for any £ > 0 there
exists a number ¢, > 0 such that, the inequalities |u—u| < d., |u;— | < 0. lead to inequalities

|fu($atauawav) - fu(x7taﬁ7 ’LZJ)| < 27

|l by, w,0) — fuolw, by, 10)| < g

Since from the inequality ||u — u|| < d. it follows, that max |u(z,t) — G(z,t)| < I,
Q
max |uy(z,t) — U(z,t)| < J., then form the uniform continuity in the G(u®, p) functions
)

fu, fw and from the inequalities

O max |(u(z,t) — u(z,t)] < de, Omax |(u(x,t) — Uy(z,t)] < e, Omax |u(x,t) — ay(x,t)| < 6.
Q 0 Q

the validity of the estimates follows

max/o H{ fulz, t,a(z, t) + 0(u(z, t) — a(z, b)), u(z, t) — fulz, t,a(z, t), @ (z, 1)) }dO < %,

HlaX/O |{fw(l'7t,1l($,t),ﬂt($,t) + Q(Ut(xat) - th(l’,t))) - fw(l'7t,ﬁ(l’,t),ﬂt(l‘,t))HdQ < %7

From here, it follows that inequality (9).To establish the invertibility of the linearizer
H+Ly(u)+ F'(u) and estimate ||[H + Ly (u) + F (u)] || 1(v.x), consider the operator equation

[H+ Li(u)+ F(@)u=f, feY, ueX.



S.S. Kabdrakhova 35

This problem is equivalent to the linear boundary value problem

0*u ou ou - ou ~

pI T A(x,t)% + Ao(,t) ol + b(m,t)a +é(x, )u + flo,t), u(x,t) € X (10)
w(z,0) =u(z,T), x € [0,w], (11)
4(0,¢) =0, t € [0,7] (12)

where B(x,t) = fu(x, t,u(x,t), u(x,t)), é(xﬁlt) = fulz,t,u(x,t), u(x,t)).
Suppose, that problem (10)-(12) for any f has a unique solution u(z,t) € C’;i(ﬁ) and for
the estimate is valid

[z, ) < Al1f (@),
where v — const, not depending on f Then, hence reversibility follows linearizer H + Ly (u) +

F'(4) and the estimate
IH + Li(w) + F ()] lzx) < -

The boundary value problem (10)-(12) is called correctly solvable, if for any f(z,t) it has
a unique classical solution u(z,t) and valid inequality

[l < K[| f1ls, (13)

where K'— a number independent of f(x,t),( K— constant of correct solvability of problem
(10)-(12).

If problem (10)-(12) is correctly solvable with constant +, then the linearizer H + Ly (u) +
F(u;) + F'(u) is invertible and grade

I + Ly (u) + F'(@)] " v <7, (14)

where L(Y, X)— the space of linear bounded operators A : Y — X with induced norm.

We introduce new unknown functions v(z,t) = auéxx, t), w(zx, t) = 8u(;t’ t>, and we must
take into account that v(zg,t) = % , and problem (1)-(3) is reduced to the following
equivalent problem: o

% = Az, t)v(z, t) + Aoz, t)v(zo, t) + f(x,t,u(z,t), w(z,t)), (15)
v(z,0) =v(z,T), z€l0,w], (16)
uast) = wlt) + [ ol 0de, wie,) = 00) + [ e e (17)

A triple of functions {u(z,t),w(x,t),v(z,t)} continuous on € is called a solution to
problem (15)-(17), if the function v(x,t) € C(Q) is continuous on € derivative with respect
to t and satisfies the family periodic boundary value problems (15),(17), where the functions
ov(x,t)

ot

u(z,t), w(x,t) are related to v(x,t), by functional relations (6).
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2 Materials and methods

2.1 Correct solvability of the linearized problem

Problems (1)-(3) and (15)-(17) are equivalent in that sense, that if the triple function
{u(z,t),w(x,t),v(z,t)} is solution of problem (15)-(17), then the function u(x,t) is problem
solution (1)-(3) and, conversely, if the triple {u*(z,t), w*(z,t),v*(x,t)}— problem solution
(15)-(17), then u*(z,t) will be a solution to the problem (1)-(3). The following statement
takes place, establishing the correct solvability of the linear problem (10)-(12).

Lemma 1. Let the functions a(z,t),b(z,t),é(x,t) continuous on Q and

‘fOdetdt‘>51>0,

fo [ a(xg, ) + do(zo, )]dT‘ > dp > 0,080,081 — const for all x € [0,w]. Then the linear

boundary value problem (10)-(12) s correctly solvable with constant v = 3 max(1,w), where
. GaT X 651 N (1 N 661 > <1 N 660 ) 6(a+ao)T -1 eozT -1
= 1 e —1 edo — 1 o+ ap o

e(a-{—ao)T -1 (e(a—l—ao)T . 660

edo — 1

Yo = =+ 1)7 T2 = (Oé + aO)(l +mG$(71,72)),d = made(m,t)],

o+ (x,t)€D

~v3 = max(y1, V2) [1 + max(71,72)( max_|b(z, )] + max |é(z,t)])x
(z,t)eQ (z,t)EQ

X /Ow exp </: max(fyl,fyg)(max |b(s, )] + max (s,t)|)ds>d§]

t€[0,7] te[0,T ]|

Proof. Consider the boundary problem (10)-(12). Let’s introduce new unknown functions

o(z,t) = %, w(z,t) = % and problem (10)-(12) reduce to the following equivalent
problem
Jv —
T = Az, )0 + Ag(m0, )0(x0, t) + (x, t, W(x, 1), Uz, 1)), (x,t) €, (18)
¥z, 0) =5z, T), z € [0,u], (19)

Ao, 1) = / "B e, ant) = / “Be e, (20)

Where ®(xz, ¢, @(z, t), u(x, t)) = b(z, )@ (z, t)
For fixed u(z,t), w(x, t) from problem (18
problems for ordinary differential equations

+ &, )i, 1) + f(x,1).
), (19

) we obtain a family of periodic boundary

(

g: Az, )0 + Ag(xo,t)0(w0,t) + P(2,1), (2,t) € Q, (21)

3(2,0) = 3(x,T), z€[0,w], (22)

with continuous on € function ®(x,1).
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Consider the problem

W = [A(xo,t) + Ao (zo, t)}@(xo, t) + D(xo,t), (xo,t) € Q, (23)
0(x0,0) =v(x0,T), 0 € [0,w]. (24)

The second condition of this theorem ensures the fulfillment of condition 1 of Theorem 1
from [1, P.6], then problem (23)-(24) has a solution and it can be written explicitly. Also,
under the conditions of the lemma, problem (21),(22) has a unique solution. Substituting the
found solution of problem (23),(24) into the right side of equation (21), we find the solution
of problem (21),(22).

=P (fot A(%TMT) T )
1—exp (f, Ale, 7)ar) /0 Bl ) ex / Az, m)dm ) dr+

+ /Ot O(w, 7) exp (/TtA(:v,Tl)dTl>dT—l—

exp (fgt A(:I:,T)dT) T t
+1 — exp <foT Az, T)d7> /0 Aol 7) exp </T Ale, Tl)dﬁ) *

v(x,t) =

X

X{ exp (foT [A(zo, 1) + Ao(on?Tl)]dTl)
1 —exp <f0T [A(xg,ﬁ) + Ap(zo, T1)]d71>

X /OT (0, T) eXp (/TT [A(z0, 1) + Ao (0, Tl)})dT1>dT+

+ /OT O (x, 1) exp (/T [A(zo,72) + A()(ImTQ)}dTQ) d71d7}+

T1

¢ ¢ exp (fOT [A(.CE(), ) + Ao(xo,ﬁ)]dﬁ>
+/0 Ag(z,T) exp </T A(!E,ﬁ)dTl) { | — exp <f0T (Ao ) + Ao(%,ﬁ)}ch) X

X /OT O (z, ) exp </TT [A(zo, 1) + Ao (o, Tl)})d7'1>d7'+

+/0Tq)(x0,7'1) exp (/T [A(zo,72) + Ao(xg,Tg)]drg)dﬁdT}, t€[0,7] (25)

T1

and the estimate is fair for it

vz, t)] <
e [0(x,t)| <

< eoT . o1 N (1 N el > (1 N edo ) €(a+ao)T -1 y
- 1 e — 1 edo — 1 o+ ap
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el — 1

X

Ozt (. t 2
- maﬂggﬁ (z, )nggf%l (z0,1)]), (26)

where v = max |A(z,t)|, ap = max |Ag(z,1)],
(z,t)EQ (z,t)EQ

D T . 01 N (1 N edt ) (1 N edo ) e(oz-i-ao)T -1 el _ 1
m= 1 0 e — 1 edo — 1 a+ ag o

Hence follows

< d d . 2
e [0(z, )] < 1 max(max |(z,1)], max [®(zo,t)]) (27)

And for v(zo,t) the following estimate holds

e(onrao)T -1 <€(a+a0)T )

e
max [0(zo,t)] < pr— + 1> <% tlerf(;a%(] |D (0, 1)].

t€[0,T] o+

Then, by Theorem 1 from [6], problem (18)-(20) correctly resolved. Let u(x,t) be its the
only solution. From differential equation (21) and estimate (27) it follows, that

t
max [0y (2, )] <

§(max A(x,t)] + max |A(xo, )max(max v(x,t)|, max |[v(xg,t >—|—max O(x,t
(M)EQ| (w,1)] e |A(z0,1)] te[m\( )| te[m\ (o, 1)) teml (z,t)] <

< Dzt o t) Ol 1) <
< (a + ag) max (%t%| (2. 1)].70 max [®(z0. 1)]) + max 9z )] <
< (0r+ o) (1 maz (10, 1) ) max. |2z )] = 7o max [ (1) (28)

From the assumption, that the functions u(z, ), w(z,t) belong to the space C(Q)
obtain the membership of the function ®(x,t) = b(x, )W (x, ) + &(x, t)u(z, t) + f(x,t)
space C'(2). Using relation (20) and inequalities (27), (28) we establish

1 < ( bz, t T, 1)d
mas 7. 0] < 2 (o . 0)] | e . 0+

t€[0,T)]

+ max [¢(z, )] / max [0(&,t)|dE + maX |f(x, t)\)

t€[0,T

tre%x%( [v (2, )| < 72< H%Oa% b(z, 1) |/ max [0 (&, 8)|dE+

+ max |é(z, t) |/ max [0(&,t)|dE + maX |f(£E t)|>

te[0,T)

max(max 0(z, )], n%ax [T (z,1)]) < max(ﬂyl,yg)(rrfax b(,t)| + H%&X}l é(x, t)]) x
€lo,T te[0,T

3, fz,b)]. 2
max fél??] [0(€, 1)1, ) Inax (&, 8)])dg +maX(%,’Vz)tr§3;§} |f (@, 1) (29)
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Applying the Gronwall-Bellman lemma to inequality (29), we obtain

¢ H) < flz,t
maX(tg%%lv(x )I,rr%%lvt(x )|)_maX(71,72)tgg>T<]|f(% )|+

—i—max(fyl,fyg)(max b(, )| + max |¢(x, t)] / max (71, Y2) max 1F(£,1)]x
t€[0,7] te0,T

X exp (max(%,vg)/ (max |b(s, 1) + max} |é(s,t)|)ds)d§,
3

t€[0,T] t€[0,T

whence it follows

max( max_[3(z, )], max_[5(x,t)[) < 73 max |f(,t)], (30)
(z,t)eQ (z,t)€Q (z,t)€Q
Where )
v3 = max(7y1,Y2) [1 + max(vy1,72)( max |b(z,t)| + max |é(x,t)])x
(z,t)eQ (z,t)eQ
></ exp (/ max (71,72 )( max_|b(s, t)| + maxi|é(s,t)|)ds>d§].
0 3 (z,t)eQ (z,t)EQ
Then

max([[ulls, [0lls, lwlls) < max{ys|| s, vswl[ flls} < vsmax(L, w)l[flls =/ 5.

Lemma 1 is proved.

2.2 Necessary and sufficient conditions for the existence of an "isolated" solution
semiperiodic boundary value problem for a nonlinear loaded hyperbolic equation

The following theorem establishes necessary and sufficient conditions for the existence of an
"isolated" solution semiperiodic boundary value problem for a nonlinear loaded hyperbolic
equation with a mixed derivative.

Theorem 1.  Problem (1), (2), (7) has an "isolated" solution if and only if,
When there exists a pair (u%(z,t),p) € VO(f, Li(x,t), Lo(z,t)), under which for any
(95 t,iu,w) € G(uY, p) the inequality

’fo xtdt’>(51>0
b) ‘ fo (o, T) + Ao(zg, T) dT’ > 09 > 0,00, 01 — const and the relation holds

¢) 7 max |ul (z,t) — A(z, thu, — Ag(x, )y (x0, 1) — f(x,,u® (2, 1), ul” (x,))] < p,
(z,t)eQ

where 5 = Fymax(1,w), 55 = max(fi, %) |1+ max(31, %) (L1 + Lz) x

x/ exp (/ max(71,72)(max Li(s,t) + max Lo(s, t))ds)df] Yo =144+ - Ly,
0 ¢ te[0,T] t€[0,T]

_ €L0T -1 66 X €L0T
Nn=—=
0

7 T + 1), Lo(z,t) = max (A(:L‘O,T), A(xo, T) + Ao(xo, 7')),
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L; = max L;(x,t), i =0,1,2.
Q

Proof. Necessity. Let u*(z,)-be an "isolated" solution of the boundary value problem
(1), (2), (7). Then there exists a number pg, for which the function f(x,¢,u,w) in G(u*, po)
has uniformly continuous partial derivatives with respect to u,w and a linear semi-periodic
boundary value problem

0*u ou ou ou ~
=a"(z,t)— olx,t) — b*(z,t)— *(x,t t 30
Orot a (.T, )815 +CLO(Q3, ) or _— + (37, )(915 +c (',1;7 )'LL—|— f(xv )7 ( )
u<I7 0) = U((L’,T), S [O,W], (31>
u(0,t) =0, te[0,T] (32)
it is correctly solvable. This implies, in particular, the existence continuous on  functions
Li(z,t),i = 1,2, under which the inequalities |f,(x, ¢, u*(x,t),u;(x,t))| < Li(z,t),
| fo(z, t,u*(z, 1), uf (x,t))| < Li(x,t). Boundary problem
0 _
a: a* (z,t)v + aj(z, )v(zo,t) + Flx, 1), (z,20,1) € Q (33)
v(z,0) =v(z,T). x€[0,w] (34)

In Theorem 2 of [12] it was proved, that the problem (33), (34) is correctly solvable if and
only if, when | fOTA(x,T)dT| # 0 and ‘ fOT [A(zo,7) + Ao(xo,T)]dT‘ # 0 for all z, zg € [0, w].
Since the function a*(x,t) = A(x,t),al(x,t) = Ag(xo,t) are continuous on €, then a(r) =

fo *(z,t)dt, ap(z ‘fo [A(zo, ) + Ao (o, )]d’/" are continuous functions on [0, w]. This

implies, that there exists 6* > 0,07 > 0 for which the inequalities ‘ fo (x,t) dt‘ > 0,

fo [a* (o, T) + aj(zo, )}dT‘ > 47 for all z,x € [0,w].
In the force of uniform continuity in G(u*, pg) functions f,(z,t, u,w), fu(z,t, u,w) for

€= o exists pf € (0, po) such that, the inequalities
lu —u™(x,t)| < pl, lw—uj(z,t)| < p:, entail the fulfillment of the relations

[fule, b u,w) = fule, b u* (2, 1), up (2, 1))] <

t),up(z,t))] <
Pz

ﬁ?

*

|fw(w t Uu w) _fw(x t Uu ﬁa

“(z,
Due to the choice of ¢ = ‘5—T

[ fule, tu,w)| < [ ful, b u,w) = fulz, ™ (2, 1), ug (2, 1)) [+

il (2,0, w§(2.0)] < o

[, s )| < | fu(, 8w, w) = fu(, tu™ (2, 0), ug (2, 6)) [+

+ Li(z,1),

*

o
* * <
ot (,0), . 0)] < o

+ Li(z,t)

and (u*(z,t), pl) € V(z, o, t, o7t Li(z,t), 5+ Li(x,t)).
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T
5*
Moreover, for any (z,t) € G(u*,p*) the inequalities ’/ a*(x,t)dt’ 2—,

’ / (2o, T) + ag(xo, T) dT‘ > — and conditions a) and b) theorem is satisfied for
5* * . * .
=5 51 = 51 When found § = 5 Ly(z,t) = s+ Li(x,t), Lo(z,t) = ot Li(z,t),

using Lemma 1 we calculate
~  ~ ~ SO [0
¥ =Y max(1l,w), 73 = max(71,72) [1 + max(71,72) <T + L+ L2> x

X /Owexp (/: max(%,%)(ij + max Li(s,t) + II%(?X]L 5(s, )>ds>d§},

t€[0,T
oF eLOT -1 66 X €L0T
o7 th) T . Ve—1 "
Thus, when choosing as (u(%)(z,t), p) pairs (u*(x,t), p) all conditions are met theorems, and

including the condition

€)Y max |u N2, t) — Az, t)ug — Ag(z, t)ug(zo, ) — f(x,t,u(o)(x,t),uio)(x,t))| =0<p".
(z,t)eQ
Sufficiency. Under the conditions of the theorem, we show the existence of an

"isolated" solution to the boundary value problem (1), (2), (7). Since (u(z,t),p) €
V(f, Li(z,t), La(x,t)), then the function f(x,t u,w,v) has uniformly continuous partial
derivatives with respect to u,w,v and the inequalities

%=1+7(57

| fw(z, t,u,w)| < Ly(x,t), |fulz,t,u,w)| < Lo(x,t)

for all (z,t,u,w) € G(u®, p). Hence, it follows that the operator F(u) in (11) has
a uniformly continuous Frechet derivative B S(ul®, p). If a(z,t) € Su®,p), then
(2, t, 0(x, ), G (2, 1), ig(z, 1) € G®,p) for all (z,t) € Q and functions b(z,t) =
fulz, t, i, t), @y, 1)), é(x,t) = folz,t,a(z,t),d4(z,t)) and a(z,t) = A(z,t), ap(z,t) =
Ao(x,t) are continuous on Q. Hence, by Lemma 1, the boundary value problem (10)-(12) is
correctly solvable with the constant v and the estimate (14). From the condition c¢) theorem
we have 7HHu + F(u9)| zrv.x) < p. According to Theorem 3 from [11] operator equation
(11) in S(u(?, p) has solution. Due to the equlvalence of the boundary value problem (1), (2),
(14) and equation (11) it follows, that in S(u(®, p) exists u*(x,t)— solution to the boundary
value problem (1), (2), (7). Let us show that this solution is "isolated" in the sense of the
definition. For this, consider linear boundary value problem (10)-(12) with coefficients a*(z, t),
ai(z,t), b*(x,t), ¢*(z,t). Since u*(x,t) € S(u?,p), then (z,t,u*(x,t),u}(z,t)) € Gu,p)
(z,t) € Q and then, by Lemma 1 the linear boundary value problem (10)-(12) with coefficients
a*(x,t),b*(z,t), c*(x,t) has he only classical solution and estimate is valid (14), i.e. is correctly
resolvable. By definition 2, the function u*(x,t) is an "isolated " solution to the problem (10)-
(12). Theorem 1 is proved.

3 Conclusion

In conclusion, we introduced the concept of an isolated solution and presented an approach
for finding an isolated solution for a nonlinear loaded boundary value problem. To achieve
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this goal, we successfully reduced the nonlinear boundary value problem to a linear one, and
then linearized the operator equation describing our problem using the Frechet derivative.

This approach allowed us to formulate the necessary and sufficient conditions for the

existence of an isolated solution for the second-order nonlinear loaded hyperbolic equation in
terms of the original data. Our findings are of significant importance for understanding and
solving complex problems related to isolated solutions and boundary value problems in the
context of hyperbolic equations.
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