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IN ONE SCENARIO, THE DEVELOPMENT OF A DEFECT IN THE
ATTACHMENT OF THE ROD

This article discusses the issue of the origin of a rod fastening defect. At the beginning of operation,
the rod is rigidly fixed at the edges. During operation, over time, certain defects may appear at
the ends of the rod. We need to find out what defects may occur? Then it is necessary to trace the
further behavior of the emerging defects at the ends of the rod. This paper discusses the diagnostics
of types of fastening of a structure made of interconnected rods. In this work, the state of fastening
types in individual parts of the structure is determined and a number of results are obtained using
mathematical analysis. Most of them assume how failures begin at the end connections of the
rods, and then the scenario for their further development. Mathematical models are presented to
determine the state of the rod attachments relative to the proposed scenario, and then the state in
which they are in is carefully examined. Defects in fastening objects made from a system of rods
are investigated using identification problems. The difference between this article and other works
is that instead of the shape of the area, the size of the object, or the state of its location, defects
that occur in fasteners are studied. This work is devoted to the search for types of fastening that
provide the required range of vibration frequencies.
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Creprkenb OekiTyiHmeri akayabiH maiia 60bII JaMYybIHBIH CIIeHAPUiii TypaJsibl

Byn makanama cTeprkeHbIEp/IiH, aKaybIHBIH IILIFY TErl TypaJibl Mdcesie KAapacThIPbLIaabl. 2Ky-
MBICTBIH, OACHIH/Ia CTEPKEHDb YINITAPBIH/IA KATaH OeKiTisiei. YaKkbIT oTe Kejie CTePKEHb YIITTaAPbIHIA
Gesrini 6ip akay/aap maiiga 00Jybl MyMKiH. Bisre Kanmail akaynap maiija 60ybl MyMKIH €KeHiH
aapikTay Kepek?! ComaH KeifiH CTepXKeHb YINTapbIHIA Maiiia OOJAaThIH aKayJIap/blH OJaH oOpi
opekeTi Typasbl aiTblaanbl. Ocbl KyMmbIcTa €3apa OallyIAHBICKAH CTEPXKEHBIEPICH KYpaJFaH
KOHCTPYKIUSHBIH O€KiTy TypJepiHe IMArHOCTHKA »Kacay KapacTBhIPBLIFaH. DyJ KyMbICTa
KOHCTPYKIIUSHBIH, YKeKe OeJImeKkTepinge 6eKkiTy TypJiepiHiH akyasbl aHBIKTAJIIbI KoHE OipKaTrap
HOTHXKEJIED MaTeMaTUKAJIBIK >KOJIMEH TaJiliay apKbLibl ajbiarad. OJap/biH Kebi crep:KeHbIepIiH,
meTTiK OekiTy/epiHge akay Kaail Oacrajiajpl KoHEe OJ[aH KeliH ojiap apbl Kapail Kaxmait
CIIEHAPUMEH JTAMUTHIHBI YCHIHBLIFAH. Y CHIHBIIFAH CIleHapuure OailjIaHbICTBI CTEPXKEHBHIH, MIETTIK
OekiTyiHiH KyHiH aHbIKTayra MAaTEeMATHKAJIBIK, MOJEIbIECD KOPCETLITeH »KoHe OJaH KeWiH oJap
KaHJiall Kyiige 6osiaTbiHbl MYKUSIT 3epTTesred. CTepKeHbJep »KyiieciHeH KypacThIPbLIFaH 00beK-
Tijepain GekiTyiHjeri akaysiapbiH uiaeHTH(UKAIUsIay ecenTepi OoiibiHima 3eprresinred. Ocer
MaKaJaHbIH 0aCKa YKYMBICTAP/IAaH e3rele iiri — 06Jibic (hopMachl, OOLEKT KOJIeMi HEMece OPHAJIACY
JKaFJaibIHBIH OPHBIHA OeKiTysrepie maiifa OoJaThiH akayaap 3eprreneni. by xKymbicta Tepbesic
JKALTNiHIE KAYKeTTi JUATa30HbIH KAMTAMACKI3 €TeTiH OEeKITY TYypJIepiH i3/1ey KapacThIPhLIAJIbL.

Tyiiin ce3aep: Ditnep-Bepuyiuu tenjeyi, crep:kenb, akay, Teiliop dbopmysacsl.
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O6 ogHOM CIIEHAPUU 3aPOXKJEHUsI PA3BUTHUs NAedeKTa KperJieHne CTeP>KHS

B mammoit crathe obCy»KIaeTcss BOIPOC 3apOoXKIaeHns jedeKkTa KpEeIIeHUs CTEep:KHdA. BHavase
SKCIUIyaTallil CTEPXKEHDb II0 KpasiM YKeCTKO 3aKpelieH. B mporecce SKCILUTyaTaluu ¢ TeIeHueM
BPEMEHH MOI'YT IOsIBJIATBCS T€ WJIM WHBIE JIePEeKThl Ha KOHIAX CTep:KHsi. HaJlo BBISICHUTH KaKue
JedeKThl MOI'YT BO3HUKAThH?! 3aTeM HAJ0 IPOCJEIUTh JaJibHeillee OBeJIeHre BO3HUKAIOIIETO
JeeKTOB Ha KOHIAX CTEpPXKHs. B jaHHO# pabore paccMaTpuBaeTcsl JUATHOCTUKA BUIOB Kpel-
JIeHUsl KOHCTPYKITMH W3 COEJIMHEHHBIX MeXKy coboit crepxkHeit. B mammoit pabore ompemeseHo
COCTOSTHUE TUIIOB KPEIJIEHUsI B OTJEJbHBIX YACTAX KOHCTPYKIIMA U METOJIOM MATEMATHIECKOTO
aHaJIM3a MOJyJeH PsiJi Pe3yIbTaTOB. BOJBIIMHCTBO M3 HUX IIPEJIIOJIATAIOT, KAK HAYUHAIOTCS
pa3pylleHns B KOHIIEBBIX COEJUHEHMSIX CTEPXKHEl, a 3aTeM CIIEHAPUI UX JTAJIbHENIIEro Pa3BUTHS.
[IpencraBiienbl MaTeMaTUdecKue MOIENHM JJIsi ONpEJesIeHns COCTOsIHUsI KPEIJIEHUs] CTEPXKHSI
OTHOCHTEJILHO ITIPEJJIOZKEHHOTO CIIEHAPHs, & 3aTeM TINATEJbHO M3y9YeHO, B KAKOM COCTOSHUU OHU
naxonarcs. JdedekTor Kperierns: 00beKTOB, H3TOTOBJIEHHBIX U3 CHCTEMbI CTEPXKHEN, NCCIIeYIOTCS
mo 3ajadaM ujeHTuduKamymn. OTaudne JTaHHON CTATbU OT APYIUX paboT COCTOUT B TOM, UTO
BMecTO (OpMBI 00J1aCTH, pasMepa OObEKTa WM COCTOSHHUH €ro PACIIOJIOXKEHUs] H3YUar0TCs
JedeKThl, BO3HUKAONNE B KpeljieHnax. Jlamuas pabora MOCBSIIEHA MMOUCKY THUIIOB KPEIJICHUS,
00€eCITeINBAIONTNX HEOOXOINMBI JUAIA30H 9acTOT BUOPAIIAM.

KumroueBbie cisioBa: Ypasraenue Ditjepa-bBepryiun, crepxkenn, nedekr, popmysta Teitropa.

1 Introduction

Acoustic diagnostics is the determination of the technical condition of equipment in working
order based on the parameters of vibration processes. Acoustic diagnostic methods are widely
used to determine the strength of various materials and the location of incipient, incipient
and developing cracks. The acoustic diagnostic method is used to determine the technical
condition of a structure in various environments. Acoustic diagnostic methods make it possible
to study the structure itself as a whole without dismantling it. This work is devoted to the
search for types of fastening that provide the required range of vibration frequencies. Such
problems relate to the problems of mathematical acoustics outlined above. Even in this case,
it is necessary to identify parameters that describe the state of fixation by natural frequency.
More precisely, the diagnostics of the states of the edge fastenings of the rods based on the
frequencies of transverse vibrations is considered.

Transverse oscillations of the rod are described by the Euler-Bernoulli equation [1], which
is written in the form

0? O*w O*w

relative to the transverse deflection w(x,t).

Here are E, J, A, p standard physical characteristics of the material from which the rod is
made. At the beginning, we consider that both ends of the rod are rigidly fixed. This means
that relations
ow(0,t)

Ox

=0, w(l,t) =0, Mzo

w(0,t) =0, e
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are fulfilled. In this case, the length of the rod is chosen equal to [. Over time, defects may
appear along the rod. We believe that, first of all, defects can arise at one of the ends of the
rod.

A comparative analysis of literary [1-3] sources indicates that it is easier to bend a rod
than to stretch it or rotate it around the axis of the rod. The mathematically specified
phenomenon is characterized by the asymptotic behavior of wy(z,t), ws(x,t) transverse and
ws(x,t) longitudinal deviations in the form of

% (é1-wi(z) + & wa(z)) + % -3 (w3(z) —m %wl(fﬂ) - 772%?112(95)) + %(77152 —1€7) (2)
Here €3 direction is along the rod, and €7, €5 directions are perpendicular to the rod axis [3].
In expression 2 there is also wy(z,t), which characterizes the torsion around the axis of the
rod. Parameter A is also involved here, which characterizes the diameter of the cross section
of the rod. Taking into account the above-mentioned effect, given by expression 2 , we can
now proceed to the study of physical phenomena occurring near the fixed end of the rod.

2 Methods and materials

2.1 The scenario of the occurrence and development of defects at the point of
attachment of the rod

In this point, one of the possible variants of occurrence at the end points of the rod attachment
is attached. The scenario consists of four stages of emergence and development of a defect at
one end of a rod. The defect at the point of attachment of the rod undergoes the following
stages. At the beginning, the end of the rod is rigidly fixed, then during the operation
of the rod, the conditions of rigid fixation of the rod are weakened due to the bending
moment. The next stage is characterized by the fact that the actions of transverse forces
cause "backlash"at the point of attachment. Each stage of the defect corresponds to its own
individual frequency of transverse oscillations of the rod. The indicated natural oscillations of
the rod can be measured by acoustic means. Thus, based on the measured natural frequencies
of the transverse oscillations of the rod, the stage of the defect in the end fixings of the rod
can be determined.

Now consider the neighborhood of rod z = 0. That is, z is between 0 and h. Then the
Taylor formula [4]

ow(0,t)  10%w(0,t) ,
ox +2 0x? v

w(z, t) =w(0,t) +

ow(x,t)  Ow(0,t)  0*w(0,t) 133w(0,t)
or  Ox + Ox? x+2 o5
we use for the rigidly fixed edge x = 0, and we get
w(h,t) ~ %—823”58”5) h?

ow(ht) . 9%w(0,t) 1 03w(0,t) 1.3
ox 7 922 h+ el

27 ox
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We know that torque is equal to the theory of elasticity

0%w(0,t
Y]

and is equal to the transverse force

Pw(0,t)

Q(0) = BJ— 5

Therefore, from equation 3 the relations are fulfilled

w(h,t) ~ ;é‘jM(O)

ow(h,t) 3
5~ = M(0) + 555Q(0)

for moment and transverse force [5].

Now we can predict how a defect will appear at edge x = 0 of the rod and according to
what scenario it will develop.

Let there be at the beginning a rigid fastening of the edge z = 0 of the rod

w(0,t) =0, Ow(0.1)

o ~0. (4)

=0

During operation (after some time) conditions

ow(0, 1)

ox

0?w(0, h)

w(0,t) =0, o (5)

= @1
=0

are carried out taking into account relation 4. Since h — is small, the following hierarchy

0?w(0,1) S B2 Pw(0,t) W Pw(0,t)

h
0x? 2 Oz2 > 2 Ox3

w(0,t)  h3 FPw(0,t)
ox2 ' 2 923

will be executed. Therefore, we will first consider h%, and %82
small quantities. That is, it can be considered zero.

are very

Here a; is the parameter. In this case, fastening 4 is transferred to condition 5 . This is

where edge defect x = 0 begins to appear. In this case, it shows that the value of h%
and h3 % is very small. Therefore, condition 5 is satisfied. The mechanical meaning of

this condition 5 is to take into account the influence of angular momentum M (0) on the
value of the angle of inclination %. Therefore, instead of condition 4, condition 5 should
be taken into account. If previously there was a rigid mount, now it is necessary to take into
account the influence of torque. If you have observed such a situation, then you can continue
to use the rod. Due to the impact of torque, the rigid mount was changed to the mount

under condition 4, but we continue to operate. At this stage [6], there is no need to stop
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using the rods, even though the angle of inclination appears. That is, it does not require repair.

But one thing should be noted: the natural frequencies of horizontal oscillations according
to conditions 4 change when the natural frequencies are conditions 5. If we continue to use
the rods without repair, then we will call the transition from state 4 to state 5 a level 1 defect
and assume that this defect does not yet require repair. So, let us assume that conditions
5 are satisfied at edge x = 0. From the asymptotic relations 2, the boundary conditions 5
change to the following conditions:

2w
w(0,t) = 0428T(2’t) (©)
w 2’LU
o0 = o, 2500

here 0 < ap < . In this case, we consider that a level 2 defect has occurred on edge x = 0
in which case the repair time will be reduced. Therefore, the risk is even higher than the
previous level. Previously, the degree of destruction varied under the influence of torque.
Now we need to take into account the action of the transverse force Q(0). If we take these
points into account [7], the rod goes through 4 stages during operation.

3 Conclusion

At stage 1 there will be a rigid fastening. At this moment, the equation of the rod is described
by equation

At this stage the rod is in a horizontal position. After the 15 stage, after rigid fastening, it
moves on to bending. At this moment the equation of the rod will be

w(0) = 0 Ow(0) _ N 9?w(0)

ox Yor?

At this stage, the rod deviates from the horizontal position and acquires an inclined angle.

At this stage there is no need for repairs. Here the rigid fastening is maintained. Here the
edge binding remains as rigid as before. Bending occurs only along the rod. That is, the rod
retains its original fastening.

After the 2" stage, edge = 0 is weakened. At this stage, you can continue using the
rod. We must remember that repairs must be made there in the future. That is, the edges
of the rod change from a rigid attachment to a slightly looser edge. Therefore, as the ends
of the rod are weakened from the rigid fastenings, play occurs. The resulting play does not
completely release the rod. When there is play in the rigid fasteners, a hole appears. The
equation of the rod for backlash has the form [6]

9?w(0)  ow(0) 0?w(0)

or? ' Ox o 0x2

; a> [
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At this time we must remember the work ahead. After the 3™ stage it moves from bend

to fracture. The rod at this time is described by the equation [6]

9w (0) ow(0 Pw(0)  Pw(0
w(0) =5 83:(2)’ a;):‘“ 8x(2)+ axg)’ > >

At this time, a transverse force acts on the rod. As a result, the rod will break.

That is, we see here that at the end there is a transverse force. This shear force will cause

the rod to break. Then from these stages we draw the following conclusions: First of all, the
rod bends under the influence of a torque, under the influence of which its edges become
loose, and the rod breaks under the action of a transverse force. At this time, it is necessary
to urgently repair the rod. All this follows from the Taylor formula of the form of the equation
of state of the rods.
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