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INTEGRATING MULTIPERIODIC FUNCTIONS ALONG THE PERIODIC
CHARACTERISTICS OF THE DIAGONAL DIFFERENTIATION

OPERATOR
In this paper, trajectory of time changing along a helical line is represented by parametric equations
in Cartesian coordinates of Euclidean space. On the basis of a cycloidal sweep of a cylindrical
surface onto a plane, analytical form of a helix is determined. On its basis, integral surface is
determined, which is called the periodic characteristic of the diagonal differentiation operator and
its connection with its linear characteristic is established. a) elements of new approach related
to the periodic characteristic of diagonal differentiation operator are proposed, b) method for
reducing integral along the periodic characteristic to an integral with linear characteristic, c)
conditions establishing structure of the integral as sum of linear and multiperiodic functions. Some
consequences of these results and recommendations of an algorithmic nature for further expansion
of research in this direction are given.
Key words: differentiation operator, periodic characteristic, vector field, infinite cylindrical
surface, multiperiodicity, autonomous systems.
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Көппериодты функцияларды диагонал бойынша дифференциалдау операторының
периодты характеристикалары бойында интегралдау

Жұмыста бұрандалы сызық бойымен өзгеретiн уақыт траекториясы Евклид кеңiстiгiнiң де-
карттық координаттарындағы параметрлiк теңдеулермен ұсынылған. Әрi қарай, цилиндр-
лiк беттiң жазықтықтағы циклоидты жазбасы негiзiнде бұрандалы сызықтың аналитика-
лық түрi анықталған. Оның негiзiнде диагонал бойынша дифференциалдау операторының
периодты характеристикасы деп аталатын интегралдық бет анықталды және оның сызы-
қтық характеристикасымен байланысы орнатылды. а) диагонал бойынша дифференциалдау
операторының периодты характеристикамен байланысты жаңа тәсiлдiң элементтерi, б) пе-
риодты характеристика бойымен интегралды сызықтық характеристикалы интегралға дейiн
келтiру әдiсi және в) сызықты және көппериодты функцияның қосындысы түрiндегi инте-
гралдың құрылымын орнататын шарттар ұсынылған. Әрi қарай, осы нәтижелердiң кейбiр
салдарлары және осы бағыттағы зерттеулердi одан әрi кеңейту бойынша алгоритмдiк си-
паттағы ұсыныстар келтiрiлген.
Түйiн сөздер: дифференциалдау операторы, периодты характеристика, векторлық өрiс,
шексiз цилиндрлiк бет, көппериодтылық, автономды жүйелер.
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В работе траектория времени, изменяющиеся по винтовой линии представлена параметриче-
скими уравнениями в декартовых координатах евклидового пространства. Далее, на основе
циклоидальной развертки цилиндрической поверхности на плоскость определен аналити-
ческий вид винтовой линии. На ее основе определена интегральная поверхность, которая
названа периодической характеристикой оператора дифференцирования по диагонали и
установлена её связь с его линейной характеристикой. Предложены а) элементы нового
подхода, связанного с периодической характеристикой оператора дифференцирования по
диагонали, б) метод сведения интеграла вдоль периодической характеристики к интегралу
с линейной характеристикой и в) условия, устанавливающие структуру интеграла в виде
суммы линейной и многопериодической функции. Далее, приведены некоторые следствия
этих результатов и рекомендации алгоритмического характера по дальнейшему расширению
исследований такого направления.

Ключевые слова: оператор дифференцирования, периодическая характеристика, вектор-
ное поле, бесконечная цилиндрическая поверхность, многопериодичность, автономные систе-
мы.

1 Introduction

The main objective of this study was to reduce the integration of multiperiodic functions
along the non-periodic characteristics of the operator D to the integration of their along
δ-characteristics, that is, along the diagonal of the space of independent variables and to
establish the structure of the integral of multiperiodic functions. To solve these issues, the
necessary information was provided about the periodic β-characteristics of the operator D
and about their scans on the plane. The connection between β and δ characteristics has
been established. On this basis, the solution of the main problem, which is important in
the theory of multi-frequency oscillations, is given. These questions are studied in detail
in the two-dimensional case of time variables, and then their ideas are extended to the
multidimensional case. Next, the related a) differentiation operators in the directions of a
constant vector are given, b) the vector form of such operators, the components of which are
operators with constant vector fields, and c) operators that are compositions of two operators
of the form a). Methods for constructing the β-characteristics of these operators are indicated
and algorithms for integrating multiperiodic functions along the β-characteristics are given.

Along with the concept of the periodic characteristic of the differentiation operator D,
the only novelty of the study is the result on establishing the structure of the integral of
a multiperiodic function, which has an application to solving the problem of integrals of
quasi-periodic functions. These innovations have become a reality thanks to some methods
of work [1–20].

2 Information about periodic characteristics and their scans

2.1. Obviously, if the variable τ changes on the numeric axis R, then the values τ + jθ for
j 6= 0, θ = const > 0 and τ are two different points of the numeric axis (Figure 1):

τ + jθ 6= τ, τ ∈ R, j 6= 0, θ = const > 0.
Now consider the variable t, which changes on the circle S centered at the origin of the

plane xOy with radius r and length 2πr = θ (Figure 2).
The peculiarity of the points t of the circle S is that two analytical representations: t and

t+ kθ, k ∈ Z, the same point corresponds to the circle. Therefore, the geometric identity of
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two points t and t0 on a circle (Figure 3) is represented as

t = t0 + kθ ⇔ t = t0, t ∈ S, t0 ∈ S. (1)

2.2. Next, consider the characteristic equation

dt

dτ
= 1 (2)

of the diagonal differentiation operator of the form D:

D =
∂

∂τ
+
∂

∂t
, (3)

acting on a plane R2 with Cartesian coordinates (τ, t).
The characteristic of operator (3) originating from the origin defined by equation (2) is

the main diagonal
t = τ

coordinate systems, and other characteristics parallel to it are straight:

t = t0 + τ − τ 0 ≡ δ(τ, τ 0, t0), (τ 0, t0) ∈ R×R = R2. (4)

As can be seen from (4), equation (2) has no periodic period θ solutions, and therefore
operator (3) on R2 does not have periodic characteristics.

2.3. Now we associate equation (2) with the circle S, assuming that τ is a time variable,
that is, it remains as a parameter, and the variable t, respectively, with τ changes along the
circle S, as the solution of the equation under consideration.

This reasoning is justified by the fact that the vector field v(t) ≡ 1, given by equation
(2), has a periodicity of t with an arbitrarily selected period θ = const > 0. So we have every
right to consider equation (2) given at (τ, t) ∈ R× S.

Then, according to (1), the solution t = β(τ, τ 0, t0) of equation (2) with the starting point
(τ 0, t0) ∈ R× S is periodic:

β(τ + θ, τ 0, t0) = β(τ, τ 0, t0) = t, τ ∈ R, (τ 0, t0) ∈ R× S (5)

and t = β (τ, τ 0, t0) ∈ S.

3θ2θθ0-θ-2θ

ττ°
R

Figure 1: Time of straightline flow
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Figure 2: Time of the periodic change

t=θ
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τ3θ2θθ0-θ-2θ

Figure 3: A cycloidal sweep of helical lines

Lemma 1 Characteristic (5) of operator (3) defined at τ ∈ R, τ 0 ∈ R and t0 ∈ S with the
domain of change S has the properties of θ periodicity in τ and τ 0, linearity in t0 and groups
as a one-parameter family of motions with parameter σ = τ − τ 0 defined by equation (2).

2.4. To get information about the solution t = β(τ, 0, 0) ≡ β∗(τ) by breaking the circle
S at the point O′, we position its sweep on a straight line t = −τ and subject it to a vertical
τ -shift.

Then all the arcs on the circle S on the sweep turn into segments, and when combining
the plane xOy with the plane τOt from the graph θ-periodic function t = β∗(τ) is represented
by the formula

t = θ
{
θ−1τ

}
≡ s∗(τ), τ ∈ R, (6)

where {τ} is the fractional part of the number τ . The graph of this function is shown in
figure 3. Note that the sweep function (6) is the projection of the circular helix (Figure 4
on the plane τOt, where O(0, 0, 0) = O, O′(0, 0, r) = O

′ , P ′(0, t, σ) = P
′ , P (τ, t, σ) = P ,

ψ = tanϕ, [0, ψ] ⊂ Ot = R, ϕ = ∠OO
′
P
′ .
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Figure 4: The projection of the circular helix on the plane τOt

Obviously, the function t = s∗(τ) tolerates discontinuities at points τ = kθ, k ∈ Z and
in addition to the continuity of the function t = β(τ) on the circle, it represents all other
properties concerning the lengths of arcs, periodicity and smoothness between neighboring
discontinuity points, and

ds∗(τ)

dτ
= 1−

∑
k∈Z

δ(τ − kθ), ds∗(kθ − 0)

dτ
=
ds∗(kθ + 0)

dτ
= 1, k ∈ Z, (7)

where δ(τ) is the Dirac delta function. Therefore, from the property (7), additions of the
form are suggested

ds∗(kθ)

dτ
= 1, k ∈ Z. (8)

Thus, combining (7) and (8), we have a continuous derivative

ds∗(τ)

dτ
= 1, τ ∈ R (9)

of the sweep t = s∗(τ) of θ-periodic characteristic t = β∗(τ) of the operator D with a range
of values S and a definition area R.

Obviously,

t = t0 + s∗(τ − τ 0) ≡ s(τ, τ 0, t0) (10)

there is a sweep of the solution (5) of equation (2) on the plane τOt.
By virtue of (9), the solution of the general form (10) satisfies equation (2). Due to

the autonomy of (2), the solution (10) as a mapping R into itself has the properties of a
one-parameter group a) identity, b) inversion and c) compositionality:

a) s(τ 0, τ 0, t0) = t0,
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b) s(τ 0, τ, t) = t0, (11)

c) s(σ, τ 0, s(τ 0, τ, t)) = s(σ, τ, t).

Note that functions (4) and (5) also have properties a)-b). Thus, the following lemma is
proved.

Lemma 2 The sweep (10) of the θ-periodic characteristic (5) satisfies equation (2) and has
the properties of θ-periodicity in τ , τ 0, linearity in t0 and the properties of group a)-b).

In accordance with lemma 2, it can be shown that a helix originating from a point (τ̃ =
0, t = 0, σ = r) in Euclidean space (τ̃ , x, y) has a parametric equation τ̃ = rτ , x = rβ∗(τ),

y = r + rβ∗
(
τ − θ

4

)
where ϕ = τ is taken into account.

2.5. Thus, along with the natural rectilinear time t = τ , time t = β∗(τ) was introduced,
where β∗(τ) changes θ-rotationally and has the property of continuity on the circle S, but it is
discontinuous on a flat sweep in the form of a function t = s∗(τ), where β∗(τ) = β(τ, 0, 0). The
transition from t = β∗(τ) to t = s∗(τ) makes it possible to measure quantities on a manifold
M = S, for example, associated with the integral of a function f(τ, t) along β-characteristics
a given on R2 or on a part of G ⊂ R2. In this regard, it is necessary to consider the difference
between σ(τ) rectilinear time τ and rotational time s∗(τ):

σ∗(τ) = τ − s∗(τ), τ ∈ R. (12)

Obviously, for τ ∈ [kθ, (k + 1)θ], k ∈ Z we have

σ(τ) =

{
kθ, kθ ≤ τ < (k + 1)θ, k ∈ Z,
(k + 1)θ, τ = (k + 1)θ, k ∈ Z.

Hence, σ(τ) is a discontinuous θ-step function with derivative
dσ(τ)

dτ
= θ

∑
k∈Z

δ(τ − kθ), dσ(kθ+)

dτ
=
dσ(kθ − 0)

dτ
= 0.

Adding the values
σ(kθ)

dτ
= 0, k ∈ Z by virtue of the last derivative we have

dσ∗(τ)

dτ
= 0, τ ∈ R.

By analogy with the relations (10), we introduce the function

σ(τ, τ 0, t0) = t0 + σ∗(τ − τ 0) = t, (13)

moreover, by virtue of (12) it has the properties of group a)-b) and the difference of functions
(4) and (13) is determined by

δ(τ, τ 0, t0)− β(τ, τ 0, t0) = δ(τ, τ 0, t0)− s(τ, τ 0, t0) = σ(τ − τ 0) = −σ(τ 0 − τ). (14)

Since the function δ(ξ, τ, t) with respect to the argument t has the property of linearity
then from (14) it follows

β(ξ, τ, t) = δ(ξ, τ, t) + σ(τ − ξ) ≡ δ(ξ, τ, t+ σ(τ − ξ)), ξ ∈ R. (15)

Lemma 3 Linear δ-characteristics (4) and θ-periodic β-characteristics (5) of operator (3)
are related by relation (15).
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3 Integrals of multiperiodic functions along periodic characteristics

3.1. Further, we note that along with θ-rotational time, we consider ω-rotational time t at
ω < θ. It can be viewed along a circle S0 by matching the points of a small circle S0 to the
points of an arc of a circle S of length 2πθ > 2πω. In the case θk = ωk0, then t along S makes
a periodic movement of the period p = k0θ = kω, (k0, k) ∈ Z×Z. If there are no such integers
k0, k, then t performs a rotational movement, but non-periodic. Such a circumstance does not
violate the (θ, ω)-periodicity of the composition of functions f(ξ, η) and η = β(ξ, τ, t) by (τ, t),
since f(ξ, η) is ω-periodic by η, and β(ξ, τ, t) has the property β(ξ, τ, t + ω) = β(ξ, τ, t) + ω
according to lemma 1.

Thus, we have

f(ξ, β(ξ, τ + θ, t+ ω)) = f(ξ, β(ξ, τ, t) + ω) = f(ξ, β(ξ, τ, t)), (16)

where it is taken into account that β(ξ, τ + θ, t) = β(ξ, τ, t).
Also note that such a composition is θ-periodic and by ξ:

f(ξ + θ, β(ξ + θ, τ, t)) = f(ξ, β(ξ, τ, t)), ξ ∈ R, (τ, t) ∈ R× S. (17)

3.2. According to the Cauchy characteristic method, the equation

Dx = f(τ, t), f(τ + θ, t+ ω) = f(τ, t) ∈ C(0,1)
τ,t (R×R) (18)

with operator (3) is equivalent to a system of characteristic equations
dt

dτ
= 1

dx

dτ
= f(τ, t),

(19)

where the first equation (2) does not depend on the second equation of the system (19).
Therefore, based on expediency, the first equation can be considered on any variety. In this
case, we consider it on the direct product of a straight line (Figure 1) and a circle (Figure
2), which in three-dimensional Euclidean space represents an infinite cylindrical surface with
generators parallel to the axis Oτ . On this manifold, as we have shown above, equation (2)has
the first integral: β(ξ, τ, t)-characteristic. Then the second equation along this first integral
has the form of the equation

dx

dξ
= f(ξ, β(ξ, τ, t)), (20)

which is defined when ξ ∈ I ⊂ R, (τ, t) ∈ R × S = Ц is a cylindrical surface, I is a gap
enclosed by the points τ 0 and τ of the axis R, and the right part, according to (16) and (17),
has the properties of θ-periodicity by ξ and (θ, ω)-periodicity by (τ, t).

Thus, the problem of (θ, ω)-periodic solutions for equation (18) were reduced to the
definition of θ–periodic solutions of the integral equation

x(τ, t) = u(β(τ 0, τ, t)) +

∫ τ

τ0
f(ξ, β(ξ, τ, t))dξ, (τ, t) ∈ R× S, (21)



Zh. Sartabanov et al. 59

which is derived from equation (20) taking into account the initial condition

x|τ=τ0 = u(t), u(t+ ω) = u(t) ∈ C(1)
t (R) (22)

for equation (18).
As noted above, the calculation of the integral can be carried out according to lemma

3, using the transition from β–characteristics to their sweeps, and under integrals to
δ–characteristics.

Then the solution of the problem of the integral of a multiperiodic continuously
differentiable functions along periodic characteristics is represented as

x(τ, t) = u(s(τ 0, τ, t)) +

∫ τ

τ0
f(ξ, δ(ξ, τ, t+ σ))dξ, (23)

where τ 0 ∈ R, (τ, t) ∈ R × R, σ = σ(τ − ξ) and in the process of integration σ behaves as a
parameter.

Thus, the following theorem is proved.

Theorem 1 Multiperiodicity of the solution of the problem (18), (22) on integrals smooth
(θ, ω)–periodic functions are uniquely solved by the integral equation (21) along β-periodic
characteristics, and the representation of its solution in Euclidean space is determined by the
ratio (23) along δ-characteristics.

Regarding the proof of theorem 1, we note that all its statements are justified by lemmas
1, 2, as well as by the relations (19)-(23). The uniqueness of the solution follows from the
equivalence of the problem with the system (19) with the corresponding initial conditions.

3.3. It is possible to determine the structure of the integral of a multiperiodic function
along a periodic characteristic.

Theorem 2 If f(τ, t) is a continuously differentiable multiperiodic function of periods (θ, ω):

f(τ + θ, t+ ω) = f(τ, t) ∈ C(0,1)
τ,t (R×R), (24)

then its integral along θ–periodic β–characteristics has the following structure:∫ τ

0

f(ξ, β(ξ, τ, t))dξ = τ · c(τ, t) + ϕ(τ, t), (25)

where c(τ, t) is a constant along β–characteristics, a smooth function:

c(τ + θ, t+ ω) = c(τ, t) ∈ C(1,1)
τ,t (R×R), Dc(τ, t) = 0. (26)

and ϕ(τ, t) is a multiperiodic of periods (θ, ω) a function with the smoothness property:

ϕ(τ + θ, t+ ω) = ϕ(τ, t) ∈ C(1,1)
τ,t (R×R). (27)
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Proof. Let’s put

c(τ, t) =
1

θ

∫ θ

0

f(ξ, β(ξ, τ, t))dξ. (28)

By virtue of the condition (24) and the smoothness of β(ξ, τ, t) we have continuity over ξ
and smoothness by (τ, t) of the composition of the function f(ξ, η) and η = β(ξ, τ, t) of the
form of a subintegral function f = (ξ, β(ξ, τ, t)). This implies the smoothness of c(τ, t) by
(τ, t). From the linearity of β(ξ, τ, t) with respect to t, the multiperiodicity of f by (τ, t) and
θ–periodicity β(τ, t) by τ we have (θ, ω) –periodicity of the function c(τ, t).

Since Dβ(ξ, τ, t) = 0, we have

Dc(τ, t) =
1

θ

∫ θ

0

∂f(ξ, β)

∂β
·Dβ(ξ, τ, t)dξ = 0.

Thus, it is proved that the function (28) satisfies the condition (26).
Next, let’s put

ϕ(τ, t) =

∫ τ

0

f(ξ, β(ξ, τ, t))dξ − τ

θ

∫ θ

0

f(ξ, β(ξ, τ, t))dξ. (29)

The periodicity of ϕ(τ, t) by t with the period ω follows from the property β(ξ, τ, t+ω) =
β(ξ, τ, t) + ω and conditions (24). Now let’s check θ-periodicity by τ directly:

ϕ(τ + θ, t) =

∫ τ+θ

0

f(ξ, β(ξ, τ + θ, t))dξ − τ + θ

θ

∫ θ

0

f(ξ, β(ξ, τ + θ, t))dξ =

=

∫ θ

0

f(ξ, β(ξ, τ, t))dξ+

∫ τ+θ

θ

f(ξ, β(ξ, τ, t))dξ−τ
θ

∫ θ

0

f(ξ, β(ξ, τ, t))dξ−
∫ θ

0

f(ξ, β(ξ, τ, t))dξ =

=

∫ θ

0

f(ξ + θ, β(ξ + θ, τ, t))dξ − τ

θ

∫ θ

0

f(ξ, β(ξ, τ, t))dξ = ϕ(τ, t).

Since β(ξ + θ, τ, t) = β(ξ, τ + θ, t) = β(ξ, τ, t) and f(ξ, η) satisfies the condition (24).
Thus, the function (29) satisfies the requirement (27). Smoothness follows from the fact

that τ is the upper limit of the integral and integral functions are continuously differentiable
due to the smoothness of f and β.

From (28) and (29) follows the identity (25). Theorem 2 is proved.
By putting t = τ , from (25) one can obtain the structure of the integral of the quasi-

periodic function f(t, τ) = ϕ(τ), generated by the multiperiodic function (24).

4 Periodic characteristics and integration of a function along them in the
multidimensional case

Now consider the differentiation operator D in the multidimensional case, which has the form

D =
∂

∂τ
+

m∑
j=1

∂

∂tj
=

∂

∂τ
+

〈
e,
∂

∂t

〉
, (30)
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where e = (1, . . . , 1) is m–vector,
∂

∂t
=

(
∂

∂t1
, . . . ,

∂

∂tm

)
is vector operator, τ ∈ R, t =

(t1, . . . , tm) ∈ R× . . .×R = Rm.
The operator (30) corresponds to the characteristic equation

dt

dτ
= e, (31)

which is a direct product of m equations

dtj
dτ

= 1, j = 1,m, (32)

which, with a fixed j, were studied in points 1.1-1.5.
Consequently, the periodic characteristics of equation (31) are determined by the vector

function

β(τ, τ 0, t0) =
(
β(τ, τ 0, t01), ..., β(τ, τ 0, t0m)

)
, (33)

which is a direct product of the characteristics of the systems of equations (32), where t0 =
(t01, . . . , t

0
m) and the vector notation β is left unchanged, as in the scalar case.

According to (5) the characteristic (33) θ-periodic with respect to τ and τ 0, linear with
respect to t0, and τ ∈ R, τ 0 ∈ R, t0 ∈ Sm.

The system (32), therefore, the equation (30) is autonomous, and η = β (τ, τ 0, t0), as a
family of transformations with the parameter σ = τ − τ 0 has the properties of a) identity, b)
reversibility, and c) group. These properties are represented as

a)β(τ 0, τ 0, t0) = t, b)t0 = β(τ 0, τ, t), c)β(σ, τ 0, β(τ 0, τ, t)) = β(σ, τ, t), (34)

β(τ + θ, τ 0, t0) = β(τ, τ 0 + θ, t0) = β(τ, τ 0, t0), β(τ, τ 0, t0 + ω) = β(τ, τ 0, t0) + ω, (35)

where ω = (ω1, . . . , ωm) is const, τ ∈ R, τ 0 ∈ R,σ ∈ R, t0 ∈ Sm,ω ∈ Sm;

dβ(τ, τ 0, t0n)

dτ
= e, Dβ(τ 0, τ, t) = 0. (36)

Similarly, based on (6)-(11) we have a net of s(τ, τ 0, t0) periodic characteristics β(τ, τ 0, t0)
in Euclidean space with m-dimensional Cartesian coordinates, having properties similar to
(34)-(36):

a)s(τ 0, τ 0, t0) = t0, b)s(τ 0, τ, t) = t0, c)s(σ, τ 0, s(τ 0, τ, t)) = s(σ, τ, t), (37)

s(τ 0 + θ, τ, t) = s(τ 0, τ + θ, t) = s(τ 0, τ, t), s(τ 0, τ, t+ ω) = s(τ 0, τ, t) + ω, (38)

ds(τ, τ 0, t0)

dτ
= e, Ds(τ 0, τ, t) = 0, τ 0 ∈ R, τ ∈ R, t ∈ Rm. (39)

About the properties of the characteristics of δ(τ, τ 0, t0) = t0 + τ − τ 0 of the operator
(30), defined in Euclidean space can be found from the work [1–3]. They also have properties
similar to (34) and (36). The relationship between these characteristics is established by the
relations

β(ξ, τ, t) = δ(ξ, τ, t+ σ(τ − ξ)), (40)
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where the vector function σ(τ) is determined by the relation

σ(τ) = e(τ − s∗(τ)), es∗(τ) = s(τ, 0, 0). (41)

Thus, we come to a theorem generalizing lemmas 1, 2, 3.

Theorem 3 The characteristic η = β(ξ, τ, t) with the parameter ξ ∈ R, defined at (τ, t) ∈
R× Sm has the properties of the group (34), periodicity (35) and the characteristics of (36)
for the operator (30), and its sweep in Euclidean space ζ = s(ξ, τ, t), ξ ∈ R, (τ, t) ∈ R×Rm,
related to it by the relations (40) and (41) also has properties (37)-(39), similar to the property
of the characteristic.

Further, in order to generalize theorems 1, 2 to the multidimensional case, we consider a
vector equation of the form

Dx = f(τ, t),

f(τ + θ, t+ ω) = f(τ, t) ∈ C(0,e)
τ,t (R×Rm),

x = (x1, ..., xn), f = (f1, ..., fn), τ ∈ R, t = (t1, ..., tm) ∈ R× ...×R = Rm

(42)

with the operator (30). It is obvious that the vector equation (42) consists of a direct product
of scalar equations (18). Therefore, it is possible to formulate the following two theorems
without proof.

For certainty, we put to be specific, we set

x|τ=τ0 = u(t),

u(t+ ω) = u(t) ∈ Ce
t (R

m).
(43)

Theorem 4 Solution of the problem (42)-(43) in the space of multiperiodic functions of
periods (θ, ω) is equivalent to the vector integral equation

x(τ, t) = u(β(τ 0, τ, t)) +

∫ τ

τ0
f(ξ, β(ξ, τ, t))dξ, (τ, t) ∈ R× Sm,

which on the Euclidean net R × Rm = Rm+1 of the cylindrical space R × Sm is represented
by equation

x(τ, t) = u(s(τ 0, τ, t)) +

∫ t

τ0
f(ξ, δ(ξ, τ, t+ σ))dξ,

where τ 0 ∈ R, σ = σ(τ − ξ).

Since the vector function f(τ, t), the expressions (42), the expressions (24)-(29) acquire a
vector form. Therefore, in the following formulation, for brevity, we use the same notation.

Theorem 5 Under the condition (24) for the vector function f(τ, t), its integral (25) is
represented using the vector functions (28) and (29), which respectively have the properties
(26) and (27).

Theorem 5, which defines the structure of the integral of a multiperiodic vector function, is
essential in the theories of multiparticle oscillations.
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5 Integrals of multiperiodic functions along periodic characteristics of some other
differentiation linear operators over vector fields

5.1. The linear operator of differentiation D n the directions of the vector field v(τ, t) is an
operator of the form

D =
∂

∂τ
+

〈
v(τ, t),

∂

∂t

〉
, (44)

where τ ∈ R, t = (t1, . . . , tm) ∈ R× . . .×R = Rm,
∂

∂t
=

(
∂

∂t1
, . . . ,

∂

∂tm

)
is vector operator,

v(τ, t) = (v1(τ, t), . . . , vm(τ, t)) is vector-function of variables (τ, t) ∈ G ⊂ Rm+1, 〈 , 〉 is the
sign of the scalar product.

When a system defined with the operator D does not depend on (τ, t), then it is called
autonomous. Therefore, in this case v is a constant vector: v = c = (c1, . . . , cm), where
cj 6= 0, j = 1,m are constant coordinates. Then the differentiation operator D has the form

D =
∂

∂t
+

〈
c,
∂

∂t

〉
. (45)

If each equation of the system is given by the same differentiation operator (44), then it
is said that the system has the same main part or a system with one differentiation operator
by (τ, t) in the directions of the vector field

dt

dτ
= v(τ, t). (46)

In particular, the vector field (46) can be given by the constant vector ν = c. Then we
have a vector field

dt

dτ
= c,

corresponding to the operator (46).
Each equation of a system consisting of two or more equations can have its differentiation

operator of the form (44) or (46). For example, if we restrict ourselves to constant vector
fields and the cases m = 1, n = 2, then we have two operators D1 and D2 with two variables
τ ∈ R and t ∈ R of the form

D1 =
∂

∂t
+ ν1

∂

∂t
,

D2 =
∂

∂τ
+ ν2

∂

∂τ

(47)

with constants ν1 and ν2.
Of particular interest is the second-order operator D2

1,2, which is a composition of two
linear operators (47) of the form

D2
1,2 = D1D2.

Now let’s define the periodic characteristics of these operators.
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5.2. The case of systems with a one differentiation operator in the direction of a constant
vector. In this case, we are dealing with the operator (45). The operator of autonomous
systems also applies to this case. In particular, the operator (45) can have the form (30),
where c = e. Then θ-periodic by τ characteristic of the structure of the form

t = β(τ, τ 0, t0) ≡ t0 + β∗(τ − τ 0), β∗(τ + θ) = β∗(τ) (48)

corresponds to this operator in accordance with 1, where (τ 0, t0) ∈ R× S, (τ, t) ∈ R× S.
Now, in order to build a θ-periodic by τ characteristic, we use the relation (48). To do

this, the operator (45) by linear replacement

t̃j = c−1j tj; tj = cj t̃j, j = 1,m (49)

is reduced to the form of the operator (30):

Dc =
∂

∂τ
+

m∑
j=1

cj
∂

∂tj
=

∂

∂τ
+

m∑
j=1

cj
∂

∂t̃j
· ∂t̃j
∂tj

=
∂

∂τ
+

m∑
j=1

cj
∂

∂t̃j
· c−1j =

∂

∂τ
+

m∑
j=1

cj
∂

∂t̃j
= De.

According to (48), the operator De has a θ-periodic characteristic

t̃j = t̃0j + β∗(τ − τ 0), j = 1,m

which, according to (49), we represent as

c−1j = c−1j t0j + β∗(τ − τ 0), j = 1,m

or as

tj = t0j + cjβ
∗(τ − τ 0), j = 1,m, (50)

we have a characteristic system of the operator Dc.
Therefore, in the vector form (50) we write in the form

t = t0 + cβ∗(τ − τ 0), β∗(τ + θ) = β∗(τ). (51)

Thus, (51) is a characteristic of the operator (45), periodic with respect to τ and τ 0 of
the period θ, and with respect to t0 is linear.

And so, next statement is proved.

Statement 1 The operator (45) has a characteristic of the form t = t0 + cβ∗(τ − τ 0) ≡
β̃(τ, τ 0, t0), which has the properties

β(τ + θ, τ 0, t) = β(τ, τ 0 + θ, t) = β(τ, τ 0, t0), β(τ, τ 0, t0 + ω) = β(τ, τ 0, t0) + ω, (52)

as well as the properties of the group, as a one-parameter family of transformations of a)
identity, b) reversibility and c) compositionality.
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Note that the properties (52) are a consequence of the property (51), and the properties
a)-b) are known from lemma 1.

5.3. The case of systems with two differentiation operators in the directions of constant
vectors. Operators of the form (47) belong to this case. According to statement 1, these
operators have θ-periodic characteristics of the form

t = t0 + ν1β
∗(τ, τ 0) ≡ β1(τ, τ

0, t0), t = t0 + ν2β
∗(τ, τ 0) ≡ β2(τ, τ

0, t0). (53)

From statement 1 and the relations (53) we get statement 2:

Statement 2 Operator D = (D1, D2) has θ- periodic by τ and τ 0 characteristics of the form
t̄ = (β1(τ, τ

0, t0), β2(τ, τ
0, t0)), defined by the relations (53), having the properties of linearity

in t0 and groups a)-b).

5.4. The case of the canonical second-order differentiation operator. First, we give an
explanation regarding the name of this case It is well known that the canonical hyperbolic
equation

∂2z

∂τ 2
= a2

∂2z

∂t2
, a = const > 0

with the time variable τ and the spatial variable t Euler by linear substitution

β1 = τ + at, β2 = τ − at

led to another canonical form of the equation of this type:

∂2z

∂β1∂β2
= 0.

And immediately obtained the general integral

z = f(β1) + ϕ(β2) ≡ f(τ + at) + ϕ(τ − at).

It is obvious that there is a certain interest of applied scientists about multiperiodic
solutions of equation

∂2z

∂β1∂β2
+ c1

∂z

∂β1
+ c2

∂z

∂β2
+ c3z = f(τ, t), f(τ + θ, t+ ω) = f(τ, t)

with constants or (θ, ω)-periodic by (τ, t) by the coefficients c1, c2 and c3. The integration of
this equation in the homogeneous case was handled by Laplace and we propose the cascade
method.

The study of such a problem, combining a classical question with a modern problem
of the theory of oscillations, on the basis of periodic characteristics is important in the
development of the theory of multiperiodic systems. The existence of periodic characteristics
of this operator is proved by statement 2.

5.5. Integration of multiperiodic functions along the periodic characteristics of the
corresponding differentiation operators. It is carried out in accordance with the methodology
used in the proofs of lemma 3 and theorem 1. To implement this technique, 1) it is necessary
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to determine the δ-characteristic of the operator in Euclidean space, 2) it is necessary to
establish a connection between the δ-characteristic and the β-characteristic in accordance
with 3, and then 3) prove analogs of theorems 1, 2. The described algorithm for integrating
many periodic functions is used to create the foundations of the theory of multiperiodic
systems with corresponding differentiation operators in the directions of vector fields.

Each differentiation operator along the characteristics passes to an ordinary differentiation
operator (finding the full derivative), and the corresponding system becomes a system of
ordinary differential equations. Consequently, multiperiodic solutions based on characteristics
are converted into quasi-periodic solutions of a system of ordinary differential equations. Thus,
we have applications of the developed theory to the study of many particular oscillations in
physical and technical systems.
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