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A MAXIMUM PRINCIPLE FOR TIME-FRACTIONAL DIFFUSION
EQUATION WITH MEMORY

One of the most beneficial techniques for studying partial differential equations of the
parabolic and elliptic types is the use of the maximum and minimum principles. They enable
the acquisition of specific solution attributes without the need for knowledge of the solutions’
explicit representations. Despite the fact that the maximum principle for fractional differential
equations has been studied since the 1970s, a particular interest in this field of study has just
lately arisen.

In the present study, a maximum principle for the one-dimensional time fractional
diffusion equation with memory is formulated and established. The proof of the maximal
principle is based on a maximum principle for the Caputo fractional derivative. The initial
boundary value problem for the time-fractional diffusion equation with memory has at most
one classical solution, and the maximum principle is then used to show that this solution is
continuous depends on the initial and boundary conditions.

Key words: time-fractional diffusion equation, fractional derivative, maximum principle,
initial-boundary value problem.
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Kanapr 6ap yakbIT GoiibiHIIA GeJmneK perti auddy3usa TeHaeyi YIIIiH MaKCUMYM KAaFUIAChl

[TapaboJia/IbiK KoHe JUTUITUKAIBIK, TUITEPIH, illiHaApa TYBIH/IBLIAPBIHIAFEl TeHEYIeP/Ii
3epTTEY/IiH eH TaiiIaibl 9JICTepiHiy, Oipl MAKCUMYyM MEH MUHUMYM KaruJIaJIapblH KOJIJIaHy.
OJrap mrermimaep/iid, HAKTHI KOPiHicTepiH OlLTy/1i KasKeT eTIecTeH MIeNiMHIH HAKThl aTpudyT-
TapblH ajyra MYMKIiHJIIK Oepeji. Besmek auddepennualiibiK TeHIeyaep YIIH MaKCUMYyM
kKarugachl 1970 Kbuimapaan O0epi 3epTTetin Kejle KaTKaHbIHA KapaMacTaH, OyJl 3epTTey ca-
JIACBIHA €PEKIIe KbI3bIFYIIBLIbIK, KAKbIH/Ia Maiia 006

Byt zeprrey kajibiMen yakbiT OoiibiHIa OeJrek nudy3usHbIK, 6ip esrmeMI TeHaeyi
VIIIH MaKCUMyM KaruJaChIH TYKbIPBIMIANIBI 2KoHe Oesriieiiai. Makcumym KaruachbIHbIH
Joseni cofikecinme KaryToHbBIH OOJIIIEeK TYBIHIBICH VIITIH MAKCUMYM KaFuIachblHa HETi3Je -
reH. KoJijlanba peTiHjie MaKCUMyM KaruIachl OOJIMEeK yakbIT »KaJbIMeH quddy3us Tenieyi
yIria OacTankbI-IIETTIK ecenTi, Oip raHa K/IaCCUKAJBIK, IIeriMi 6ap eKeHiH KepceTy VIIiH
nairaIanbLIa bl XKOHEe OYJI MIeNTM OacTalKbl 2KOHE IeKaPaJIbIK, IIapTTapra Y3/IKCi3 Toyesi
0oIaIbI.

Tyiiia ce3aep: yakbIT OolibiHIIa O6JieK peTTi auddy3us TeHaeyi, 0e/IeK PeTTi TYbIH/IbI,
MaKCAMYM KayHIachl, DACTAIKBI-TIIETTIK €Cell.
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IIpuniun MmakcuMyMa [Jisi ypaBHeHUs: ApobHOU auddy3un 1o BpeMeHn C HaMsThIO

OHuM u3 HamboJIee TOJIE3HBIX METOJIOB U3YUeHNs] YPABHEHUN B 9aCTHBIX ITPOU3BOIHBIX
1apaboOIMIECKOro U SJITUITHICCKOTO TUIIOB SIBJI€TC UCIOIb30BaAHIE ITPUHIIUIIOB MAKCUMYyMa,
u MuHEMYyMa. OHU TTO3BOJISIIOT Oy YaTh KOHKPETHBIE ATPUOYTHI PellieHus 0e3 He0OXOIUMOCTHI
3HAHUs SIBHBIX IIPeJICTaB/ieHuil perennit. HecMoTpst Ha TO, YTO NPUHIMIT MAKCUMyMa JIJIst
JipobHO- T depeHnuaIbHbIX ypaBHeHuil n3ydaercs ¢ 1970-x To10B, 0coOblil mHTEpeC K 9TOi
00J1aCTH UCCIIEeIOBAHUN BOBHUK COBCEM HEIABHO.

B stom ucciaenopanuu chopMysIMpPOBaH W YCTAHOBJIEH HPUHIMI MAKCUMyMa JIJI OHO-
MEpHOIro ypaBHeHUus JpobHOI anddys3un BO BpeMeHH ¢ HaMsaThio. JloKazaTeabcTBO TPUH-
IUIa MAKCUMyMa OCHOBAHO Ha IIPUHIIUAIIE MaKCHUMyMa Jiid JpobHOi mpousBoaHoit KamyTo,
COOTBETCTBEHHO. B KavdecTBe MPUIOKEHUsI MTPUHIIAI MaKCUMyMa, UCIIOJIb3YeTCs JIjId JIEMOH-
CTPAIUK TOT'O, ITO CYIIECTBYET He D0JIee OJTHOrO KJIACCHIECKOI'0 PelleHrs HadaIbHO-KPaeBoil
3aJ1a4u Ui ypaBHeHus Juddy3un ¢ apobHO BpeMEHHON MaMAThIO, U 9TO pellleHne Helpe-
PBIBHO 3aBUCUT OT HAYAJbHBIX M 'PAHUYHBIX YCJIOBHII.

KimroueBbie ciioBa: ypashenue JpoOHoi guddy3un 1Mo BpeMeHu, JIpodHOE TPOU3BOIHOE,
NPUHITAIT MAKCUMYMa, HadaJIbHO-KpaeBas 3a/1ada.

Introduction and statement of problem

The maximum-minimum principles are among the best techniques for studying partial
differential equations of the parabolic and elliptic types. They allow one to obtain certain
properties of solutions without resorting to information about their explicit representations.
Although the maximal principle for fractional differential equations has been researched since
the 1970s (see [1-4]), special interest in research in this area has appeared relatively recently.

In [5] Luchko obtained a maximal principle for df, the Caputo fractional derivative of the
form:

e let g € C1((0, 7)) N ([0, 7)) attains its maximum (minimum) over [0,7] at ¢ty € (0,7
and 0 < a < 1, then d§,9(t0) > 0 (J5,9(t0) < 0).

He established a maximal using Caputo, the fundamentals of the fractional diffusion equation
time derivative on a bounded domain based on the aforementioned findings. The maximum
principle for time-fractional diffusion equations was demonstrated using these results (see
[6,7,9-14].

We consider the following time-fractional diffusion equation with memory

opu(T, t) = 882 ot(z,t) + F(z,t) in (0,a) x (0,77, (1)

supplemented with the initial and boundary conditions

{ u(z,0) = ¢(x) on [0,al, 2)
w(0,t) = ¥1(t),u(a,t) = a(t) for 0 <t < T,
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since @ and T are real numbers that are positive, the functions F, ¢, ¢; and v, are
continuous in a way that ¢(0) = 11(0) and ¢(a) = 12(0). Here, Iéj' . is the Riemann-Liouville
fractional integral of order 5 > 0, defined as (see [15, P. 69])

t

Ioﬁ‘tu(x,t) = ﬁ / (t — )" tu(z,s)ds, te(0,T],

and the operator 93, is the left Caputo fractional derivative with a € (0, 1), given by (see [15,

P. 92]) "

t
.0 1 0 O
Du(z,t) = [é|t au(:v,t) = Tl / (t—s) 554 (x,s)ds.

0

The purpose of this article is to study the maximum principle of linear fractional diffusion
equation (1).

If « — 1, 8 — 0 then eq. (1) corresponds to the well-known heat equation. The sub-
diffusion equation is the equation of the type (1) with fractional derivatives with respect to
the time variable [17]|. The slow diffusion is described by this equation.

Below we present some well-known properties of fractional operators

Lemma 1 [15, Lemma 2.21] If 0 < u < 1 for v(t) € C[0,T], then
a&t[I&tU@)] = (1),

holds true.

Lemma 2 [16, Proposition 2.3] Let v(t) € C([0,T)). If a + 8 < 1, then

9 01y ()] = Ogu(t).

oe ol
Lemma 3 [8/ (a) Let v(t) € C'([0,T)) attains its mazimum at ty € (0,T),

to @

jev(to) = T—a)

[v(t0) — v(0)] = 0,
forall0 < a < 1.
(b) Let v(t) € C*([0,T)) attain its minimum at ty € (0,7T),

—Q

P(to) < g’ vltn) — v(0)] <O,

forall0 < a < 1.
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1 Main results

The main results of this article are presented in this section.

The existence of u;(z,t) is implied by the solutions to problems (1) and (2). Therefore, if
t > 0, then 881 , occurs for any 0 < a < 1. This means that a solution u(z,t) of the problem
(1) and (2) in the region [0, a] x [0, 7] is a (classical) solution in C'([0,a] x [0, T])NC*'((0, a) x
(0,7Y).

Theorem 1 Let o+ 8 < 1. If u(z,t) satisfies (1),
u(z,0) = ¢(x) 2 0, z € [0,d],

u(0,t) =0 =wu(a,t), t €[0,7),

and
F(z,t) >0, (z,t) € (0,a) x (0,7,

then
u(z,t) >0 for (x,t) € (0,a) x (0,7T].

Let us define the function
v(z,t) = u(x,t) + et
where € > 0 and o < 7.
From (2), we obtain v(0,t) = v(a,t) = et” > 0 for t > 0, and v(x,0) = ¢(x) for z € [0, a.
Since

el (y+1)
['(y—a+1)

v (,t) = Igjulz,t) + O let’] = O u(x,t) + e

and

15 w(x,t) = IP u(a, t) + 15 [et] = IP u(x,t) +

ot ot ot 0|t T (’Y + o+ 1) )
it follows that
0? 5 0? 5
@Imtv(x, t) = @IO‘tUQT, t)

Consequently, the function v(z,t) satisfies the equation

. 0? L' (y+1)
Bl ) = s ot ) + Pl )+ 520

= 2 7% in (0,a) x (0,77,

with the initial-boundary conditions
v(@,0) = 6(z) = € [0,d]

v(a,t) =v(0,t) =€t” >0, t>0.
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Assume that there is some point (z,t) € [0,a] x [0, 7] such that v(z,t) < 0. Since
v(z,t) >0 for (z,t) € {0,a} x [0,T7U[0,a] x 0,

there is a point (zg, ) € (0,a) x (0,7T) such that v(xg, to) is the negative minimum of v(z, t)
over (0,a) x (0,7). In view of Lemma 3 (b), we have

tfa

68]{0(330, to) S F(lo——oz)

[v(xg,to) — v(z0,0)] < O.

Let us define w(z,t) = IO| 0(z,t). From Lemma 1 we conclude that

83tw(a:,t) X

o[t

[Lgv(a, )] = vz t).
Using v(z,t) is bounded in [0, a] x [0, 7], we obtain

t

1 -1
w(z,t) = Iy (z, )—m/(t—s)’g v (x,s)ds —0ast— 0.

0

Noting a + 8 < 1 from Lemma 2, we have

Aol t) = 0115 0l )] = Bl ).

of¢ of¢
At this point, we obtain for w(x,t) the next initial and boundary conditions

el (14 7) P+
rg+~+1)

w(z,t) = ]g‘t v(x,t) = ]O‘tu(x t) + >0as t— 0"

and

L (1 +y)tPt
v(0,t) = IO|t v(a,t) = [(ﬁtt - (5"‘1"‘1)

Hence the function w(z,t) satisfies the problem

[ﬁ

otV >0 for ¢t > 0.

05w, t) = (e, t) + F(z,t) + T2 i (0,a) x (0,7,

w(z,0) > 0 on [0,a],
w(0,t) > 0,w(a,t) >0 for 0 <t <T.

From Lemma 3 (b), we have w(zo,tg) < 0. Due to w(z,t) > 0 on the boundary, there exists
(x1,t1) € (0,a) x (0, T] such that w(zy,t1) is the negative minimum of w(z, t) in [0, a] x [0, T].
From Lemma (2) (b), it is evident that

o Y
80|;f5w(q:1,t1)] ST (1 1_ a) [M(Il, t1> — W(Il, O)] <0
82
Since w(zy, 1) is a local minimum, it yields that — Eye w(zy,t1) >0

Therefore at the point (z1,t;), we obtain
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0? el (1+~)t]
772% w(zy, ty) + F(2,t) + T —a)

This contradiction demonstrates that v(x,t) > 0 on [0, a] x [0, 7], and it follows that u(z,t) >
—et” on [0,a] x [0, 7] for any € > 0. Because of given € is arbitrary, then w(z,tf) > 0 on
[0, a] x [0, 7], which concludes the proof.

The outcome is comparable for the negativity of the solution u(x,t) by considering ¢(z) <
0 and F(z,t) <0.

> 0.

0 > (90; (ZEhtl)

Theorem 2 Suppose that a + 8 < 1. If u(z,t) satisfies (1),
u(z,0) = ¢(x) <0, z €10,a],

u(0,t) =0 =wu(a,t), t €[0,7)

and
F(z,t) <0, (z,t) € 0,a] x (0,77,

then
u(z,t) <0, (z,t) €[0,a] x [0,T].

The results in Theorems 1 and 2 can be extended to obtain the next two theorems.
Theorem 3 Let o+ 3 < 1. Suppose u(x,t) satisfies (1),
u(x,0) = ¢(x), z € [0, al,

u(0,t) = g1(t), u(a,t) = go(t), t € [0,T),

where g1(t) and go(t) are given real numbers. If

F(z,t) >0, (z,t) € [0,a] x [0,T7,

then
u(z,t) > %ir]l{gl,gg,qb(x)} for (z,t) € ]0,a] x [0,T].
Let
M = I[Iolial]l{glagQ7 ¢(‘r)}
and

u(z,t) = u(z,t) — M.

Then, @(0,t) =gy — M >0, u(a,t) =go— M >0 for t € [0,7], and u(x,0) = ¢p(x) — M >0
for x € [0, a], Since

2 2

0 0
ot = Iju, pe 2_fwu(x t) = 522 Igtu(x,t),

then u(x,t) is satisfies (1), respectively. Hence, it emerges from a argument similar to the
proof of Theorem 2 that
u(z,t) >0 on [0,a] x [0,T].
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Consequently,
u(z.t) = min(gr, 92, 0(a) for (z.) € [0,] x [0,7).

The proof is completed.
Using u(z,t) = —u(x,t), a similar proof to that of Theorem 3 gives the next conclusion.

Theorem 4 Let o+ 3 < 1. Suppose that u(x,t) satisfies (1),
u(z,0) = ¢(x),x € [0,al,

U(O,t) = glvu(a>t> = g2,

where g1 and gy are given real numbers. If
Fla,1) <0, (2,1) € [0,0] x 0,7,

then
u(z,t) < r[%%{(gl,gg,qﬁ(x)) for (x,t) € ]0,a] x [0,T].

The heat equations weak maximum principle is similar to Theorems 3 and 4.
The fractional variant is backed by the weak maximum principle a solution’s uniqueness,
as in the classical case.

Theorem 5 Let o+ 3 < 1. The problem (1)-(2) has at most one solution.

Suppose that uy(z,t) and uy(x,t) two solutions of (1)-(2). Hence,

2

s (2,1) — o, 1) = I8 (2,1) — us(, 1),

with zero initial and zero boundary conditions for ui(x,t) — us(x,t).
In view of Theorems 4 and 5, we have

uy(z,t) — ug(z,t) =0 on [0,a] x [0,T],

which completes the proof. A solution u(x,t) of (1)-(2) depends constantly on the initial data
¢(z), according to the Theorems 4 and 5.

Theorem 6 Assume that o + 3 < 1. Let u(z,t) and u(z,t) are the solutions of the problem
(1)-(2) with the initial condition ¢(x) and ¢(x), respectively. If

l’{éi?ﬂdﬁ(ﬂf) —o(x)} <,

then
lu(z,t) —u(z, t)| <e.
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The function

v(z,t) = u(x,t) — u(x,t)

satisfies the problem

2

N 0
bV (T, ) = @Iétv(x,t),

with the initial data

v(@,0) = ¢(z) — o()

and zero boundary conditions. Then, in view of Theorems 4 and 5

o, 0] < max{|o(z) - ()]}

the desired result follows.

Conclusion

A maximum principle is formulated and established in this paper for the one-dimensional time
fractional diffusion equation with memory. A maximum principle for the Caputo fractional
derivative serves as the foundation for the proof of the maximal principle. There is only
one classical solution to the initial-boundary value problem for the time-fractional diffusion
equation with memory, and the maximum principle is then used to demonstrate that this
solution is continuous and depends on the initial and boundary conditions.
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