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SOME LOCAL WELL POSEDNESS RESULTS IN WEIGHTED
SOBOLEV SPACE H'® FOR THE 3-KDV EQUATION

The paper analyses the local well posedness of the initial value problem for the k-generalized
Korteweg-de Vries equation for k = 3 with irregular initial data. k-generalized Korteweg-de
Vries equations serve as a model of magnetoacoustic waves in plasma physics, of the nonlinear
propagation of pulses in optical fibers. The solvability of many dispersive nonlinear equations
has been studied in weighted Sobolev spaces in order to manage the decay at infinity of the
solutions. We aim to extend these researches to the k-generalized KdV with k = 3. For initial data
in classical Sobolev spaces there are many results in the literature for several nonlinear partial
differential equations. However, our main interest is to investigate the situation for initial data in
Sobolev weighted spaces, which is less understood. The low regularity Sobolev results for initial
value problems for this dispersive equation was established in unweighted Sobolev spaces with
s > 1/12 and later further improved for s > %1. The paper improves these results for 3-KdV
equation with initial data from weighted Sobolev spaces.

Key words: Nonlinear equations, dispersive equations, contraction, semigroup, nonlinear
propagation.
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CasmmakTbikK, CobosieB keHicTirinae3-Ka® rengzeyi yurin H 1/3
JKepPrilikTi KNChIHABLIBIK, »Kalijibl Keibip HoTHh>KeJiep

By xxymbicTa 6acTanksl gepekTepi peryaspisl emec k = 3 OoraH Karmaigarsl k->KasblIanraH
Kopreser-ne ®pus rereyi yiriH 6acTamkbl eCEeNnTiH JIOKAJIBIKUCHIHIBLIBIFBIHA TAJIAY YKacaJIa-
nbl. k-xanneuianrad Kopreser-ne ®@pus renzeysiepi miasma pu3nKachbHIAFBI MArHUTOAKYCTUKA-
JIBIK, TOJTKBIH IAP/IbIH, YKOHE COHBIMEH KATap OINTUKAJIBIK, TAJIIBIKTAPIAFbl UMITYJIbCTEPIH ChI3bIKThHI
eMecC TapaJIybIHbIH, MOJIeJi peTine Kpi3MmeT erefi. IlernmmiMaep s, MeKci3IiKTe bIIbIPaybIH KAKChHI-
pak OakpLIay VIMiH, KOIITETeH CHI3BIKTHIK €MeC MUCIIEPCUSIIBIK, TeHIEYIEPIiH, MIeniIiM/IuIr ca-
MakThik, CoboJieB KeHicTirinme seprreseni. bizmig MakcarsiMbi3 k = 3 GosaThiH k-2KaJlIbLIaHFaH
Kopreser-ae @pus TeH ieyi YilliH OChI 3ePTTEYJIEP/I KaJIFacThIPy O0JIBIIT TaObLIa bl O1eduerre Ha-
CTalKbI JepekTepi Kiaccukabik, CoboJieB KeHiCTiTepiH e XKAaTaThiH HIpKATAp CHI3BIKTHI eMeC JIep-
6ec mudepeHnAIIBIK TEHIEYIEP VIIH KonTereH Hotuxkenep 6ap. lerenmen, 6i3iH 6acTbl MyI-
Jemi3 6acTankbl gepekTepi caaMakThik CoboIeB KEeHICTITIHIE KAaTKAH YKaFIaiapl 3epTTey OOIbIIT
TaOBLIAIBI, OYJI Kargail aca TYCIHIKCI3 OOJIBIT TabBbLIaabl. KapacThIPBIIBIT OTBIPFAH JUCIIEPCHST
TeHJIeysIepl YImH 6acTalKbl ecenTepyIiiH ToMeHri peryispiblk, CoboeBTIK HOTHKEIED CaJIMaK-
cor3 Cobostes kewicririme s > 1/12 MoHzmepi yIIiH OpHATBUIFAH YKoHE KeHiHipek s > %1 MOH,IePi
VIIIH e >KakcapThLIraH. bisz Oy HoTuKeJaepdai ajablHFaH 6acTalKbl JepeKkTepi caamMakThiK, Cobo-
JIEB KeHiCTiriH e KaTaThiH k = 3 OoJsrran Karmaiinarsl k-2Kasmbuiaarad Kopreser-mge @pusreneyi
YIIIH KaKCApTAMbI3.

Tvyitin ce3aep: ChI3BIKTHI eMec TEHJIEysep, JUCIEePCUsIIBIK, TeHIeYep, ChIFy, >KapThLIail ToIl,
CBI3BIKTBIK €MeC TapaJly.
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HekoTopble pe3yabTaThl O JIOKAJIBHOU KOPPEKTHOCTHA
B BecoBoM mpocrtpancTse CoGosnesa H'/? gna ypasuenuns 3-Ka®

B nannoii pabore aHaIM3upyeTCs JOKAJIbHAT KOPPEKTHOCTH HAYAIBHON 33/1a9U I HEJIMHEHHO-
ro k-obobrmennoro ypasuennsi Kopresera-je @pusa mjig k = 3 ¢ HeperyaspHbIMA HAIAJTbHBIMU
JaHHbIMU. k-00001IeHHbIe ypaBHeHus: Kopresera-jie @pusa ciryKaT MOJIEJBI0 MarHUTOAKYCTHYe-
CKUX BOJIH B (pU3UKe IJIa3MBbl, a TaKXKe HEJIMHEHHOTO PACIPOCTPAHEHWS] MMIIYJIbCOB B OITHYE-
CKUX BOJIOKHAX. Pa3pernmMocTs MHOTUX JIMCIIEPCUOHHBIX HEJIUHEHHBIX YPABHEHUIT M3yI€HBI B Be-
coBbIX npocrpancTBax CoboJieBa ¢ TeNIbI0 JIYUIIero yIpaBIeHrus] PACcajoM peleHuil Ha GecKo-
HeaHocTu. Harmeit 1e/1bio SIBJISIETCS MPOIOIZKUTD 9TU PACCTIeI0BaHUs it k-0D0OIEHHOT0 ypaB-
menust Kopresera-ie @puza ¢ k£ = 3. B urepaType nMeOTCsI MHOXKECTBO PE3YJILTATOB JIJIsI PsIJia
HEeJINHEIHBIX YPABHEHWII B YACTHBIX ITPOU3BOHBIX C HAYAJIBHBIMU JAHHBIMU B KJIACCUIECKUX IIPO-
crparcTBax CoboseBa. OqHAKO HAIl OCHOBHOII MHTEPEC MPEJCTABISET UCCJIEIOBAHNE CATYAINH C
HaJaJIbHBIMA JJAHHBIME B BeCOBBIX mpocrpaHcTBax CoboJieBa, KOTOPasi OCTA€TCS MEHee MOHSITHOI.
Huzko peryssipasie CobosieBCcKre pe3ysIbTaThl JIJIsi PACCMATPUBAEMBIX HEJIMHENHHBIX JIUCIePCUOH-
HBIX yPaBHEHUII ObLIN yCTAHOBJIEHBI B HEBECOBBIX IIpocTpaHncTBax CobosieBa Jyist 3Havdenuii s > 1/12
¥ TI03/1Hee OBbLIN YJIydIleHbl JIjisd § > %1. B panHoOit cTaThe 3TH pe3ysbTaThl OBLIN YJIyJIIeHbl JJIsT
ypasaenus 3-KaB ¢ HagaibHBIME JTAHHBIME U3 BECOBBIX pocTpaHcTB CoboJiesa.

Kurouessbie ciioBa: Hesmnelinbie ypaBHEHNS, TUCIEPCUOHHBIE YPABHEHNS, C2KATHE, ITOJIYTPYIIIA,
HeJINHENHOe PACIIPOCTPAHEHNE.

1 Introduction

We investigate the Cauchy problem for the k-generalized Korteweg-de Vries equation with
k =3 (or briefly gKdV-3)

U+ Vggz + (V1) =0, 2€R, t >0 (1)

with initial data v(z,0) = vo(z), z € R, from weighted Sobolev spaces H*(R) N L?(|z|*"dz).
Equation serves as a model of magnetoacoustic waves in plasma physics [13|, of the
nonlinear propagation of pulses in optical fibers |18§].

The well-posedness of the initial value problem for the gKdV-3 equation was firstly
established in the work of C. Kenig, G. Ponce and L. Vega [16] in classical Sobolev spaces
with regularity s > 1/12 and later optimally improved by A. Griinrock [10] and T. Tao [23|
for s > —1/6, using Bourgain’s spaces techniques.

Inspired by T. Kato [12], in order for manage the decay of the solutions as x — oo,
the several nonlinear dispersive equations has been investigated in weighted Sobolev spaces
H*(R) N L2(|z]*™dz) ( |3H9,121]). We aim to extend these researches to 3-KdV as we detail
below.

We claim the Banach fixed point theorem to the integral equation version of the initial
value problem , ie.

v(x,t) = W(t)ve(z) — /W(t — 1) (v, T) dT, (2)

where W (t)vy(z) is the solution of the initial value problem for the associated linear partial
differential equation, that introduced in below.
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2 Materials and methods

Our main result is the following theorem.

Theorem 1. Suppose that m € [0,1/6]. For initial value vy from weighted Sobolev space
HY3(R)N L%(|z|*™dx) there exist a unique solution v of the integral equation that belongs
to the weighted Sobolev space v(-,t) € H'3(R) N L?(|z[*"dx), t € (0,T] for T > 0.

We mentioned above the sharp Sobolev results (for s > —1/6). So, it is natural to improve
the regularity s on the weighted Sobolev resuls for 0 < s < 1/3. Indeed, in [6] we considered
the situation for s = 1/12 + ¢, employing a more delicate analysis.

Now we introduce the notations. For a constant ¢ > 0 satisfying inequality a < cb, we
write a S b. And, if a S band b < a, then we write a ~ b.

We denote by

o0

FR)(E) = / exp(—iz€)h(z)dz, €ER

—00

the Fourier transform of h € L*(R) and by

its inverse Fourier transform.
Let (€) := (14 |¢[>)Y/2. The Sobolev space H*(R) can be defined by the norm

o0

N G RGR OGN

—00

where s € R is the order of the Sobolev space. The inclusion H*(R) C H*(R) holds for
s < &, that is,

15

ie S Bl e (3)

In order to treat functions defined in a space-time domain we introduce mixed norm
spaces. Let 1 < p,q < co. We say that h € LP L1 if

oo T
p/q 1/p
Mhﬂyz{/</mu¢Wﬁ> )
—00 0
and h € LLLP if
T oo

sz = { [ ([ o)™ ar}™

0

For p = oo or ¢ = 0o, we have the definition involving the essential supremum.
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The fractional derivative D7 for A € C can be defined as the Fourier multiplier given by
F(DRh)(€) = [E*F(R)(8).
Similarly, the operator (1 4+ D?)* is defined as follows
F((L+D2)*h)(€) = (1 + €)1 F(h)(S).
Consequently, by Plancherel theorem we have
hllrs ~ 11+ D2)*hll 2 < [hllze + | D3hl| 2.
We exploit the Hilbert transform H introduced as
F(Hh)(E) = —isgn(§)F(h)().

Hence, D, can be expressed via % in the following way D, = H 8%.

We recall the the fractional version of Leibniz rule ( [16, Theorem A.8]). Let A € (0, 1),
A1, A2 € [0, A] such that A = Ay + Xo. And let p, p1,p2, ¢, 1, q2 € (1,00) with

Ip=1/pr+1/p2, 1/qg=1/q1+ 1/, (4)
then
HDi(gh) - gDi‘h - hD;\QHL?;LqT S HDilglngquTl ||D9)c\2hHL§2L§?' (5)

Also, g1 = oo for \; = 0.
We evoke the derivative chains rules in fractional calculus ( |16, Theorem A.6])

ID2E(M) s, S I1F (Bl o pan D2 e 22 (6)

with 0 < A< 1,1 <p,p1,p2,4,q2 <00 and 1 < ¢; < oo such that .
The solution of IVP for Airy equation

Vp + Vpw = 0, zeR, t>0, (7)
v(x,0) =vo(z), z€R

can be represented as v(z,t) = W (t)vo(x), where we denote by W (t) the Fourier multiplier
defined as

F (W (t)vo)(€) = exp(it&®) F (vo) (). (8)
Plancherel theorem implies that
W (&)vollLz ~ [[voll 2. (9)

Some properties of the semigroup {W(t)};o can be applied to prove the theorem 2] We recall
the estimates for semigroup from |14, Theorem 2.4]

W (E)vollzs s, < llvollz2, (10)



Castro A.J., Zhapsarbayeva L.K. 7

and from |22, Theorem 2]
W (#)vollrerse S llvoll gass (11)

and from [16, Theorem 3.5]

0
I W (tvolleers, < llvollze- (12)

We exploit in Section [3] bounds of the Airy semigroup, that we present in the following
lemma.
Lemma 1. Suppose that vy € H'/3(R). Then,

0
=W (0ol 3100 S leoll o (13)

Proof. First we construct operators
A, == D¥B(1+ D)~ VSw (t)
which are analytic for 2 € C, 0 < Re z < 1. The estimates above implies
[ Aiyvollzers = W () (1 + D2) =YDy ug|| s e S 11Dz vl 22 = [[voll e,
for any y € R and also implies that

B i )
[ A1riyvoll Lerz, = ||%W(t)va1+4 D31+ D)V Hug | ez

S D31+ D2) VS Hugl| 2 < || Huollr2 ~ ||vol|ze-

Consequently, by Stein’s theorem [1] for any 6 € (0, 1) and p,q € [1, 00| such that
1 1-6 6 1 -0 0

P 6 ~' q 00 2
we obtain
[Agvollzzrs. < lvollze.
Thus, we have

143 /400l[ 24 573 < w0l 2

for 6 = 3/4. It follows that (L13).
We present the following bounds [16] that

t
5 [wie=rmendn] . <iblu (14
0
and [9]
t
| /W(t —T)h(-, tr) dr] s < Wl (1)

0
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for p > 2 and
11111 1
g 6 3 p ¥ q¢ 4
Now we recall Fonseca-Linares-Ponce pointwise formula established in [8] which allows to
commute fractional powers |z|™ and the Airy semigroup W (t), with the proper adjustments.

Namely, the following identity
2| W (t)vo(2) = W (t)(|2]vo) () + W () F [ @en(F (v0) (§)](w) (16)

holds for all ¢t > 0, vy € H*(R) N L*(|x|*™dz), with 0 < s < 2 and 0 < m < s/2, and almost
any x € R. Also, the L?>norm of the last term can be bound as followa

1F = (@ (F (v0) ()]l 2 S (1+ 8) (llvollz2 + 11D voll 2). (17)

We note that only the particular case of s = 2\ and m = A, for 0 < A < 1 is considered in [§].

3 Proof of Theorem

In Section [3.1] we treat the the initial value problem for the 3-KdV in the Sobolev space.
Previously we noted that the well posedness of the initial value problem for the 3-KdV in
the Sobolev space H'/3(R) is already known. The local well posedness results for 3-KdV was
proved in classical Sobolev spaces with s > 1/12 in |16, Theorem 2.6]. Then this result was
extended up to s > —1/6 in |10,]23]. Nevertheless, the local well posedness of the IVP for 3-
KdV in weighted Sobolev spaces with regularity s < 1/3 is interesting open question. Inspired
by Kenig-Ponce-Vega ( [16, pp. 583-585]) and Fonseca-Linares-Ponce ( [8, pp. 5364-5366])
works, we prove our new local well posedness result in weighted Sobolev spaces (Section .
By using the Banach fixed-point theorem to the mapping

t
U(v) :=W(t)vg — /W(t — 7)), (-, 7) dr,
0
our goal is to establish that this mapping is a contraction on a conveniently chosen subspace

of L Hy* N L L2(|z > dx).

3.1 Unweighted case (m = 0)

Let
Y2 = {v : vl <6},

will be the complete metric space (with 0, T > 0 that are fixed) with the norm

[v]lyr = ZUJ-T(U), (18)

where s
of (v) = [[vl] o 1o, ol (v) = || D> v, || e 2.,
U2T(U) = ||Uw||L%4L8T/3a Ug(v) = HUHL?:L%Oa
1/3
0T () = IDy*vllsps,  0F(©) = [[vallpzera
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Step 1. First, we will prove that W is well defined on Y. Now show that ¥(v) € Y2 for
any v € Y, that is,

@)z = ZOJT(‘I’(U)) <o (19)

We note that the treatment of the terms on the left hand side of can be converted
to L2.L2-norm of Dy/*(v*), and (v*),. Leibniz rule (B), the fractional derivatives chain rule
@ and Holder integral inequality imply that

IDY*(0")allzz 2 ~ 1D (W ve) |l 212
<|IDy (v*vs) = v* Dy P, = v, Dy (V)| 1.1
+ ||USD91;/3%||L§L2T + ||Unglc/3(U3)||LgL2T
SNDP W) gz s 0l sy + 10|22 10500 o1
S Moz 103 0ll s s lvall o 75 + 0l e 1D Pvall e s
= ||U||%2L%o||D316/31)HL§L8THvx||L%4LsT/3 + “U”igLOTOHDalc/gvaLgOL?T

= (02(v))*0f (v)oT (v) + (o2 (v)) 0T (v) < [V, - (20)

We observe that motivates the choice of the norms o, o1 o] and of.

Otherwise, the necessity of the norm ol can be justified as below

1allzzzz ~ 0%l 2z < 0P lrzesellvellgene = 0llzeree lvall Loz
3
= (03 (v)) 05 (v) < |lv]ly,- (21)
Now we will analyse the norms UJT(\IJ(’U)), j=1,...,6, which rely on the Airy semigroup

estimates and the estimates and that we deduced.
Plancherel formula, Minkowski inequality, @ and Holder integral inequality give us

o1 (¥(v) S ||W(t)vo||L;°L;a+/\|W(t—7)(v4)z(w7)|lL%°Lg dr

T
+ W () Dy Pl ez + / W (t = 7) DY (0o (-, 7)l| L 2 dr
0

< lvoll s + 1@hell e + 1032 (0")all g1z
< lvoll s + TN (el gz + T2D (")l 12 12
S lvoll s + T2|[vlly,- (22)

Here we are allowed to permuted Dy* and W (t) since both are Fourier multipliers.
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In the same way, by exploiting Lemma , the estimates , , and the Sobolev
embedding theorem we deduce

6
>0 (T©) S llvollas + 10hallgrz + 1D (0%l g2

j=2
< llvoll gass + T2l (23)

Therefore, if v € Y2, collecting and one gives
1) vz < Cllvollzass + CT25"
for some constant C' > 0. Consequently, taking
§ 1= 2C||vo|| 15 (24)
and choosing 7" > 0 such that

g + OTY?5% < 6, (25)

we get .
Step 2. Secondly, we will show that W is a contraction on Y2. Let v,w € Y2, for § defined
in . Our goal is to show that
W (v) = ¥(w)lly, < Klv—wlly, (26)

for some 0 < K < 1 and T sufficiently small to specify below. We have
t
U(v) — ¥(w) = /W(t — ) —wh), dt, (27)
0

then we need to prove

(" = wellz Lz S & llv —wllyy (28)
and

1D (0 = w)allzz 2 S 0%l = wllvs (29)

Really, using the same argument as in the Step 1 and invoking and , instead of
and , for some C' > 0 we obtain

W (v) = T (w) ]y, < CTY26|lv - wlly,. (30)

Consequently, by taking 7' > 0 such that CT%/26% < 1 and (25)), we conclude that (26).
Notice that

vt —wt = (v —w)(V* + v*w + vw? + w?) (31)
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and differentiating,

(v —wh), = (V® +v*w + vw® + w?) (v —w),

+ (v —w) (31)2119; + 20w, + viw, + wl, + 2uww, + 3w2wx).
Therefore, and can be converted to
lurugus(ua)ell 212 < 0%l — wllys, (32)
and
1D/ (urugus (ua)e) |l 212 S 0°[lv = wllv, (33)

for uy, ug, us, ug € {v,w,v —w} and one, and only one, of the u;’s being equal to v — w.
Inequality can be proved by Hoélder integral inequality

3

|uruaus(ua)e 2z < |lurusus||r2rse || (wa)el oo rz < H Jujllze e [l (wa)zl| oo 22,
j=1

3 4
H a3 (u;)og (ua) H lujllve < 8°flv —wllyy-

We split the proof of a in a few parts. By using the same argument as in (20)), we
obtain

1Dy (uyugus (us) o) || 22 S HDi/g(UleU:%)Hﬁ/%gH(U4)x\|L34L8T/3

+ Hu1U2U3HL§L%°|‘Dalc/3(u4)ét”L%°L2T

3
= HD;/3<’U/1U2U3)”L24/11L% U;(U;;) + H U?(Uj)(ff(lbz;). (34)
j=1

Further, the Leibniz rule and Holder integral inequality give us

HD}C/3<U1UQU3) HL24/11L8 ~ Hulung/ U3”L24/11L8 + HU3D1/3 (u1u2) HL24/11
+ llurval|a e[| Dy Pus]| s 15
2
< 03 (us)| Dy (wrua) | e s + [ [ 0 ()05 (us) (35)
j=1
and
||D91&/3(U1U2) ||L24/7 < ||u1Dglc/3u2 ||L9264/7L% + ||u2D;/3u1 ||La2v4/7L§‘

+ ||U1||L2L%°||Di/3u2||LgL§

< 04 (u1)og (ug) + o (uz)og (ur). (36)

Putting together (34)—(36]) we deduce (33).
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3.2 Weighted case (0 < m < 1/6)

Let us define the space
Zy = {v : ollz < 6}

for some suitably taken o, 7 > 0, with
[0z = llvllye + 2™l g2 (37)

and ||v||y, introduced in (18]).
Step 1a. First, we establish that U is well defined on Z4.. Above we examined the Y7-norm
of U(v). In this section we focus on L L2-norm of |z|™¥(v). We can write

el W)z < el W Oolless + el [ Wit =taar]
T x
0
= IT+4+1I.
By (16), (17), Plancherel theorem (9) and (3), we control the linear term
1< WO (2l lzpz2 + W OF e (F00) O ez
< el wollzs + (1 + ) (lfoollz2 + | D20l 12)
< ™o 22 + (1+T)l[oo]| v (33)

Let ¢ be a compact support, such that that 0 < ¢ <1 and ¢ =1 on (—1,1). Using the
pointwise formula and Minkowski integral inequality, we split the nonlinear term /1 as
follows

dr

Hg/HWt—r)(lx\m (x)<v4)m)

’L;OL%

+H/W (t=7)5 |:v|’”(1—%0(5”))“4] dr

LgL?

+H/Wt—7' —{Jal™(1 - (x))}v4>d7"

LPLE
v / [~ F RPN dr
The estimates @D and , the compact support of , Holder integral inequality imply
that

/ llal" o) (@ )elsz d S T2y S T 0l (40
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By we bound I
Iy S ll=™(1 = e(@)v e S Nel™ v pieg < o™ vll2 iz 1*llr2og

3
= [zl oll g 2 vl g ree < T2 M2l™vllzgerz (0 (0)" < T2 |0l (41)

By invoking the semigroup property with ¢ = 18 and p = 3 (¢’ = 18/17 and p' = 3/2)
and Minkowski’s integral inequality, we bound the following term

I3 5 ||%[|$’m(1 - W(x)]v4|’L1TS/17Lg/2 N HU4HL;8/17L3/2
4
ST ollzsers < T0N0llzeree = T (05 (v)" < T?0l|Z, (42)

for some 6 > 0. Finally, formulas @, , and allow to deduce

dr

LgL?

114N/Hf‘l[q%,m(f((v”‘)x))])

T

su+ﬂ/ﬂmmmaﬂw?w%m9w

0
L+ DT ([(0allzz 22 + 1D ()l r2.22)
(L+T)T||v] .- (43)
Finally, the bounds , f give

1 ()llzr < CA+T")voll s + Clll[vo]| 2 + CT5"

I ZANRYAN

for v € Z2, C,0 > 0. Therefore, if we take
(5 = 20(”@0”]{1/3 -+ H|£C|m1)0HL2) (44)

and 7T such that

4}
5+ CT (voll s +6%) <6, (45)

then the following inequality holds
W (0)]|z, < 0.

Consequently, ¥ maps Z2 into itself.

Step 2a. Now we need to prove that U is a contraction on Z2. Suppose that v,w € ZJ,
where ¢ from and 7' to determine in a moment. For some 6 > 0 to establish the following
estimate

™ (¥ (v) — ¥(w)) ST v —wlz, (46)

Iz =
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we is the main goal of the part Step 2a. Analogously, using the same argument as in estimating
the nonlinear term I/ in Step la, we bound the left hand side norm of .

Applying the expression we change v* by v* — w*. We apply and (29), instead
of and , for the new factors related to I1; and 11, . As for I1, and I15 it suffices to

insert
™ (v* = w22z S T0% v — w2,
and

[o* — w4”L1T8/”L§/2 ST v — wllz,

~

n and , respectively.

Furthermore, by using expressions the last inequalities can be rewritten as follows
™ (v — wywrusus|| s 2. S T80 — wll 2
and
(v = w)uruzus|l 157 52 S T80 = wllz,,

where uq, us, uz represent the functions v or w. Really, these inequalities can be obtained by
Holder’s inequality,

[|lz|™ (v — w)uruous || L2 < H|~”C|m(v — w)|| 22 [luruous|| L2 g
< TY2|[J2™(0 = w) || e 12 H lujllzg s < TV28%0 = w]|z,
7=1
and
(v — w)U1U2U3||L1T8/17L§:/2 < T17/18||(U - w)U1U2U3||L3/2L%o
3
< TN o = wleree [ [ lusllorse < T76% v — w2,
j=1
In summary, collecting and we obtain
19 (v) = ¥(w)lz, < CT&|lv — wl|z,

for some C, 6 > 0.
Finally, we prove that ¥ is a contraction on Z3 for T > 0 such that CT?§ < 1 and .
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