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SOME LOCAL WELL POSEDNESS RESULTS IN WEIGHTED
SOBOLEV SPACE H'? FOR THE 3-KDV EQUATION

The paper analyses the local well posedness of the initial value problem for the k-generalized
Korteweg-de Vries equation for £ = 3 with irregular initial data. k-generalized Korteweg-de
Vries equations serve as a model of magnetoacoustic waves in plasma physics, of the nonlinear
propagation of pulses in optical fibers. The solvability of many dispersive nonlinear equations
has been studied in weighted Sobolev spaces in order to manage the decay at infinity of the
solutions. We aim to extend these researches to the k-generalized KdV with k = 3. For initial data
in classical Sobolev spaces there are many results in the literature for several nonlinear partial
differential equations. However, our main interest is to investigate the situation for initial data in
Sobolev weighted spaces, which is less understood. The low regularity Sobolev results for initial
value problems for this dispersive equation was established in unweighted Sobolev spaces with
s > 1/12 and later further improved for s > %1. The paper improves these results for 3-KdV
equation with initial data from weighted Sobolev spaces.

Key words: nonlinear equations, dispersive equations, contraction, semigroup, nonlinear
propagation.
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CanmakTeiK CoboseB kenicriringe 3-Ka® renneyi ymin H'/3
JKepriJiKTi KUCBIHABLIBIK 2Kalijibl Keiidip HoTuKeJiep

By xxymbicTa 6acTanksl gepekTepi peryaspiasl emec k = 3 OoraH Karaaigarsl k->KasInblIaHraH
Kopreser-n1e @pus Teneyi yIirin 6acTankbl €CenTil JOKAJIBIKUCHIHIBIIBIFBIHA TAJIIAY YKACAJIAbI.
k-xkanmbuianran Kopreser-ie @pus renjieysiepi 1mia3Ma (GU3HKACBIHIAFB MATHUTOAKYCTUKAJIBIK,
TOJIKBIHJAP/IBIH, »KOHE COHBIMEH KATap ONTUKAJIBIK TAJIIBIKTAPIAFbl HUMITYJIbCTEP/IH ChI3BIKTHI
eMeC TapaJybIHBIH, MOJiesi peTiHge KbidMmeT erei. [lemrimaepiin IMeKCi3AiKTe bIIBIPAYBIH
JKaKChIpaK OaKbIIay VIMiH, KONTEreH CBI3BIKTHIK €MeC IUCIEPCUSIIBIK TeHICYIePIiH IIermiaiM-
giriri  casmakTeik, CobosieB Kenicriringe seprreneni. Bisgin makcarbiMbis kK = 3 0oJaThIH
k-xkanmbuianran Kopreser-yie @pus TeHjieyi VIIiH OChI 3epTTEYJIEPIl XKAJFACTHIPY OOJIBIIN TAOBI-
Jabl. OaebnerTe bacTankbl JepekTepi Kiaaccukaablk CobojeB KeHicTiTepiHae »KaTaTblH bipKaTrap
CBI3BIKTHI eMec Jepbec muddepeHImaiapK TeHIeyaep YIIiH KOITereH HoTmkerep dap. Jlereamen,
613111 6acThl MyIIeMi3 OacTanKbI JepeKTepi caaMakThIK, Co00IeB KEHICTITIHIE KATKAH YKAFIAM ThI
3epTTey OOJBIT TaOBLIAABI, OYJ »Karmail aca TyciHikciz OobIn TabBLIaAbl. KapacThIPBLIBIT
OTBIPFaH JINCIEPCUs] TeHJeyJ/Iepi YImiH OacTallKbl ecenTepyinin TeMeHri peryisapibik CoboseBTik
HoTHKesep canMakcbs Coboses Kericririage s > 1/12 moHzepi yiIiH OpHATBHIIFAH KOHe KeliHipek
s > %1 MOHIEpl VIIH Je >KaKcapThLIraH. bi3 Oyl HoTHKeJepdi aJbIHFaH OacTAIKbI JepeKTepi
caaMakThIK Co0ojieB KeHicTirimme »KaTaTblH k = 3 OoiraH Karmaimarbl k-KasblLIaHraH
Kopreser-ge @pusreneyi yimin KakcapTaMbI3.
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HekoTopble pe3yiabTaThl O JIOKAJILHONH KOPPEKTHOCTYU
B BecoBoM mpocrpancrse Co6Gonesa H'/? nns ypaBuenns: 3-Ka®

B mannoit paboTe aHamM3UpyeTcs JIOKaIbHas KOPPEKTHOCTH HAYAJIBHON 3a/1a91 JIJIs HEJTU-
HeitHoro k-obobrenHoro ypasaenuss Koprepera-ige ®puza it kK = 3 ¢ HeperyJIsipHbIMU
HAYAJIBHBIMU JTaHHBIMU. k-00001ennble ypaBuenus Kopresera-jie @pusa ciiykar MOJIE/IbIO
MArHUTOAKYCTUIECKUX BOJTH B (pU3UKE TIa3Mbl, & TAKKE HEJIMHEHHOTO PACIIPOCTPAHEHUST M-
y/JIbCOB B ONITUYECKUX BOJIOKHAX. Pa3penmMocTb MHOTHX JTUCIIEPCUOHHBIX HEJIMHEHHBIX YPaB-
HEHU n3y4veHbl B BECOBBIX IpocTpancTBax CoboseBa ¢ MEeJbIo JIYUIIero yipaBJIeHus Pacia-
JIoM perrieHnii Ha 6eckonedHocTH. Hailreil 1e/ibio gBIsgeTcs TPOJOJIKUTD 9TU PACCIEOBAHUS
i k-obobmiennoro ypasuenust Kopresera-je @pusa ¢ k = 3. B siureparype uMmeroTcss MHO-
JKECTBO PE3yJIbTATOB JIJIsl Psi/ia HEJUHEHHBIX YPABHEHUI B YACTHBIX ITPOU3BO/IHBIX C HATA Ib-
HBIMU JTAHHBIMU B KJIacCHYIecKnx mpoctpanHcTBax CobosieBa. OHAKO HAIT OCHOBHON MHTEPEC
[IPEeJICTABIISET UCCJIEIOBAHNE CUTYAIINN C HAYaJIbHBIMU JIAHHBIMI B BECOBBIX ITPOCTPAHCTBAX
CobosieBa, KOTOpas ocraeTcs MeHee nmouaTHOH. Husko peryssipabsie CobosieBcKue pe3ysibTa-
TBI JIJIsT PACCMATPUBAEMbIX HEJTUHEHHBIX JUCHEPCHOHHBIX YPABHEHUI OBLIN YCTAHOBJIEHBI B
HeBecOBBIX mpocTpaHcTBax Cobosiea s 3HadeHuit § > 1/12 u mo3aHee ObLIM YTy YIIEHBI
I S > %1. B nmanmoit cratbe 3TH pe3ysbTaThl ObLIN YIIydIeHbl jiig ypaBHenusa 3-Kaid c
HAYATBHBIMU JAHHBIMI U3 BECOBBIX IpocTpancTB Cobosena.

KiroueBble cjioBa: HelnHellHble ypaBHEHUs, JUCIEPCHOHHBIE YpaBHEHUS, CXKaTUe, TOJIy-

rpyl1ia, HeJJMHEHOe pacIpoCcTpaHeHue.

1 Introduction

We investigate the Cauchy problem for the k-generalized Korteweg-de Vries equation with
k =3 (or briefly gKdV-3)

Vy + Vgzz + (V) =0, 2ER, £ >0 (1)

with initial data v(z,0) = vy(z), z € R, from weighted Sobolev spaces H*(R) N L?(|z|*"dz).
Equation serves as a model of magnetoacoustic waves in plasma physics [13|, of the
nonlinear propagation of pulses in optical fibers |18§].

The well-posedness of the initial value problem for the gKdV-3 equation was firstly
established in the work of C. Kenig, G. Ponce and L. Vega [16] in classical Sobolev spaces
with regularity s > 1/12 and later optimally improved by A. Griinrock [10] and T. Tao [23|
for s > —1/6, using Bourgain’s spaces techniques.

Inspired by T. Kato [12], in order for manage the decay of the solutions as x — oo,
the several nonlinear dispersive equations has been investigated in weighted Sobolev spaces
H*(R) N L(|z[*dx) ( |3}H9,)21]). We aim to extend these researches to 3-KdV as we detail
below.
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We claim the Banach fixed point theorem to the integral equation version of the initial
value problem ([I), i.e.

v(x,t) = W(t)ve(x) — /W(t — 7)) (2, 7) dT, (2)

where W (t)vy(z) is the solution of the initial value problem for the associated linear partial
differential equation, that introduced in (g]) below.

2 Materials and methods

Our main result is the following theorem.

Theorem 1. Suppose that m € [0,1/6]. For initial value vy from weighted Sobolev space
HY3(R) N L%(|z|*™dx) there exist a unique solution v of the integral equation (2)) that belongs
to the weighted Sobolev space v(-,t) € H'3(R) N L?(|x*™dx), t € (0,T] for T > 0.

We mentioned above the sharp Sobolev results (for s > —1/6). So, it is natural to improve
the regularity s on the weighted Sobolev resuls for 0 < s < 1/3. Indeed, in |6] we considered
the situation for s = 1/12 + ¢, employing a more delicate analysis.

Now we introduce the notations. For a constant ¢ > 0 satisfying inequality a < cb, we
write a < b. And, if a < b and b < a, then we write a ~ b.

We denote by

o0

F(h)(&) = /exp(—ix{)h(x) dr, £€eR

the Fourier transform of A € L*(R) and by

1

fﬂww:%/mmmw%:mR

—00

its inverse Fourier transform.

Let (£) := (1 +]¢|?)Y2. The Sobolev space H*(R) can be defined by the norm

o0

wi= ([ erFm@ra)”

—00

17

where s € R is the order of the Sobolev space. The inclusion H*(R) C H*(R) holds for
s < &, that is,

12llzzs < 1|7

e (3)

In order to treat functions defined in a space-time domain we introduce mixed norm
spaces. Let 1 < p,q < co. We say that h € LP L1 if

|hllzeps = { /OO </T |h(m,t)|th>p/q dw}up
0

—00
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and h € LLLP if
T 0

lligez o= { [ ([ e )™ a}™

0 —00

For p = oo or ¢ = 0o, we have the definition involving the essential supremum.
The fractional derivative D2 for A € C can be defined as the Fourier multiplier given by

F(Dyh)(€) = [EF(h)(E).
Similarly, the operator (1 + D?)* is defined as follows
F((L+D2)*h)(€) = (1 + €1 F(h)(S).
Consequently, by Plancherel theorem we have

1l ~ 111+ D2)?hllz2 S Nhllze + 1 D3R g2

We exploit the Hilbert transform H introduced as

F(HR)(E) := —isgn(§) F (h)(£).

Hence, D, can be expressed via % in the following way D, = H a%'

We recall the the fractional version of Leibniz rule ( |16, Theorem A.8]). Let A € (0, 1),
A1, A2 € [0, A] such that A = A\; + Ao. And let p, p1,p2, ¢, ¢1, 92 € (1,00) with

p=1/p+1/ps, 1/qg=1/q1 +1/p, (4)

then

|DA(gh) = gDMh — hD2gllizrs S 1D gllyos o || D22 A o . (5)

T

Also, g1 = oo for \; = 0.
We evoke the derivative chains rules in fractional calculus ( |16, Theorem A.6])

1Dz E(M) s, S I1F (Ao pan D2 a2 22 (6)

with 0 < A< 1,1 <p,p1,p2,¢,¢2 < 00 and 1 < ¢; < oo such that .
The solution of IVP for Airy equation

Vp + Vpw = 0, zeR, t>0, (7)
v(x,0) =vo(z), z€R

can be represented as v(z,t) = W (t)vo(x), where we denote by W (t) the Fourier multiplier
defined as

F(W(t)vo)(€) := exp(it&®)F (vo)(€)- (8)
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Plancherel theorem implies that

W (t)vollz2 ~ [Jvoll 2. (9)

Some properties of the semigroup {W (¢) };~¢ can be applied to prove the theorem We recall
the estimates for semigroup from [14, Theorem 2.4]

W (#)vollzs s < llvollz, (10)
and from [22, Theorem 2]
W (#)vollLsrse S llvoll s (11)

and from |16, Theorem 3.5

0
I W ()vollzze s < llvollze. (12)

We exploit in Section [3] bounds of the Airy semigroup, that we present in the following
lemma.
Lemma 1. Suppose that vy € H'/3(R). Then,

0
I W @woll gazrs S llvoll . (13)

Proof. First we construct operators
A, == D¥B3(1+ D)~ VSw (1)
which are analytic for z € C, 0 < Rez < 1. The estimates above implies
1 Aiyvollsrse = IW ()1 + D2) D3 Pvg g g S D5 Pvoll 2 = [|vol 2,

for any y € R and also implies that

x

0 ] _
[ Avviyvoll peerz = ||3_$W(t)D(l+4 D31+ D2) TV Hug| e
S IDYP(1+ D) Hugl| 2 < [[Hvoll 2 ~ [|voll 2.
Consequently, by Stein’s theorem [1] for any 6 € (0,1) and p,q € [1, 00| such that
1 1-6 0 I 1-6 0

P 6 o’ q 00 2

we obtain [|Agvollzzrs S llvollze. Thus, we have HA3/4U0||L%4L;/3 < |lvol|zz for 6 = 3/4. Tt

follows that ([L3)).
We present the following bounds [16] that

<
Lz ™ ||h||L;L2T (14)

H%/W(t—f)h(-,r) df‘
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and [9]
t
— . < ’or
| [wee—mmtmar]] < bl (15)
0
for p > 2 and
LR S U S B B
g 6 3p p p q q°

Now we recall Fonseca-Linares-Ponce pointwise formula established in [8] which allows to
commute fractional powers |z|™ and the Airy semigroup W (t), with the proper adjustments.
Namely, the following identity

2| W (t)vo(x) = W (t)(J2]"vo) () + W (8) F @4 (F (v0) (€)] () (16)

holds for all ¢t > 0, vy € H*(R) N L*(|x|*™dz), with 0 < s < 2 and 0 < m < s/2, and almost
any x € R. Also, the L?>norm of the last term can be bound as followa

17 @ (F (00) ()]llzz S (1 + ) ([lvollz2 + 1D vollz2). (17)

We note that only the particular case of s = 2X and m = A, for 0 < A < 1 is considered in [§].

3 Proof of Theorem

In Section we treat the the initial value problem for the 3-KdV in the Sobolev space.
Previously we noted that the well posedness of the initial value problem for the 3-KdV in
the Sobolev space H'/3(R) is already known. The local well posedness results for 3-KdV was
proved in classical Sobolev spaces with s > 1/12 in |16, Theorem 2.6]. Then this result was
extended up to s > —1/6 in |10,23]. Nevertheless, the local well posedness of the IVP for 3-
KdV in weighted Sobolev spaces with regularity s < 1/3 is interesting open question. Inspired
by Kenig-Ponce-Vega ( |16, pp. 583-585]) and Fonseca-Linares-Ponce ( [8, pp. 5364-5366])
works, we prove our new local well posedness result in weighted Sobolev spaces (Section .
By using the Banach fixed-point theorem to the mapping

U(v) :=W(t)vg — /W(t — 1) (v, (-, 7) dT,

our goal is to establish that this mapping is a contraction on a conveniently chosen subspace
of LY HY* N L L2(|z|*mdx).

3.1 Unweighted case (m = 0)

Let Y2 := {v : ||v]ly, < d}, will be the complete metric space (with §, T > 0 that are fixed)
with the norm

[v]lyz = ZUJT(U), (18)
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where
of (v) == V1] o0 5172 o1 (0) == |D*ve |l peer2, 03 (v) = V2]l 20572
ot (v) == |vllzarse, o3 (V) == DY vl 1515, o4 (v) = |[vallpeera.-

Step 1. First, we will prove that ¥ is well defined on Y. Now show that ¥(v) € Y3 for
any v € Y7, that is,

(@)l = Zaf(‘lf(v)) <. (19)

We note that the treatment of the terms on the left hand side of can be converted
to L2.L2-norm of Dy/*(v*), and (v4),. Leibniz rule (B), the fractional derivatives chain rule

@ and Holder integral inequality imply that
1D (el iz iz ~ 1D (WP 0s)ll 2.2
< 1Dy (v*vs) = v* D%, — v, DY (V) |12z
+ [10* Dy ve | 21, + 02 D3 (0%) | 222
S Moz 102 oll s s lvall a5 + 0l e 1D Pvall e s
= |0l e 102l s s l1vall g 5ss + 10l e 1D *vall e

= (02 (v)) oF (v)oT (v) + (62 (v)) 0T (v) < [V, - (20)

We observe that motivates the choice of the norms o, o1, o] and of.
Otherwise, the necessity of the norm ol can be justified as below

|’(U4)x|’L2TL§ ~ vavaLgL?T < HUSHL%L%’H%HLgOL% = HUHigL%OHUIHLgOLQT
3
= (o3 (v)) o5 (v) < |Jvlly,.- (21)
Now we will analyse the norms O']T(\I/(U)), j=1,...,6, which rely on the Airy semigroup

estimates and the estimates and that we deduced.
Plancherel formula, Minkowski inequality, @ and Holder integral inequality give us

oT(W(0)) < [W(E)onll sz + / Wt =) (0o ) ez dr

T
+||W(t)Di/3vo||Lgs>L§+/HW(t—T)Di/g(v4)m('77)|lL%°Lg dr
0

< lvoll s + TN (el gz + TY2IDY (")l 1212
S Mlvoll s + T2[vlly,,. (22)

Here we are allowed to permuted Dy* and W (t) since both are Fourier multipliers.



10 Some local well posedness results in weighted Sobolev space . ..

In the same way, by exploiting Lemma , the estimates , , and the Sobolev
embedding theorem we deduce

6
>0 (T©) S llvollas + 10hallgrz + 1D (0%l g2

j=2
< llvoll gass + T2l (23)

Therefore, if v € Y2, collecting and one gives
1) vz < Cllvollzass + CT25"
for some constant C' > 0. Consequently, taking
§ 1= 2C||vo|| 15 (24)
and choosing 7" > 0 such that

g + OTY?5% < 6, (25)

we get .
Step 2. Secondly, we will show that W is a contraction on Y2. Let v,w € Y2, for § defined
in . Our goal is to show that
W (v) = ¥(w)lly, < Klv—wlly, (26)

for some 0 < K < 1 and T sufficiently small to specify below. We have
t
U(v) — ¥(w) = /W(t — ) —wh), dt, (27)
0

then we need to prove

(" = wellz Lz S & llv —wllyy (28)
and

1D (0 = w)allzz 2 S 0%l = wllvs (29)

Really, using the same argument as in the Step 1 and invoking and , instead of
and , for some C' > 0 we obtain

W (v) = T (w) ]y, < CTY26|lv - wlly,. (30)

Consequently, by taking 7' > 0 such that CT%/26% < 1 and (25)), we conclude that (26).
Notice that

vt —wt = (v —w)(V* + v*w + vw? + w?) (31)
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and differentiating,

(v —wh), = (V® +v*w + vw® + w?) (v —w),

+ (v —w) (31)2119; + 20w, + viw, + wl, + 2uww, + 3w2wx).
Therefore, and can be converted to
lurugus(ua)ell 212 < 0%l — wllys, (32)
and
1D/ (urugus (ua)e) |l 212 S 0°[lv = wllv, (33)

for uy, ug, us, ug € {v,w,v —w} and one, and only one, of the u;’s being equal to v — w.
Inequality can be proved by Hoélder integral inequality

3

|uruaus(ua)e 2z < |lurusus||r2rse || (wa)el oo rz < H Jujllze e [l (wa)zl| oo 22,
j=1

3 4
H a3 (u;)og (ua) H lujllve < 8°flv —wllyy-

We split the proof of a in a few parts. By using the same argument as in (20)), we
obtain

1Dy (uyugus (us) o) || 22 S HDi/g(UleU:%)Hﬁ/%gH(U4)x\|L34L8T/3

+ Hu1U2U3HL§L%°|‘Dalc/3(u4)ét”L%°L2T

3
= HD;/3<’U/1U2U3)”L24/11L% U;(U;;) + H U?(Uj)(ff(lbz;). (34)
j=1

Further, the Leibniz rule and Holder integral inequality give us

HD}C/3<U1UQU3) HL24/11L8 ~ Hulung/ U3”L24/11L8 + HU3D1/3 (u1u2) HL24/11
+ llurval|a e[| Dy Pus]| s 15
2
< 03 (us)| Dy (wrua) | e s + [ [ 0 ()05 (us) (35)
j=1
and
||D91&/3(U1U2) ||L24/7 < ||u1Dglc/3u2 ||L9264/7L% + ||u2D;/3u1 ||La2v4/7L§‘

+ ||U1||L2L%°||Di/3u2||LgL§

< 04 (u1)og (ug) + o (uz)og (ur). (36)

Putting together (34)—(36]) we deduce (33).
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3.2 Weighted case (0 < m < 1/6)

Let us define the space
Zy = {v : ollz < 6}

for some suitably taken o, 7 > 0, with
[0z = llvllye + 2™l g2 (37)

and ||v||y, introduced in (18]).
Step 1a. First, we establish that U is well defined on Z4.. Above we examined the Y7-norm
of U(v). In this section we focus on L L2-norm of |z|™¥(v). We can write

el W)z < el W Oolless + el [ Wit =taar]
T x
0
= IT+4+1I.
By (16), (17), Plancherel theorem (9) and (3), we control the linear term
1< WO (2l lzpz2 + W OF e (F00) O ez
< el wollzs + (1 + ) (lfoollz2 + | D20l 12)
< ™o 22 + (1+T)l[oo]| v (33)

Let ¢ be a compact support, such that that 0 < ¢ <1 and ¢ =1 on (—1,1). Using the
pointwise formula and Minkowski integral inequality, we split the nonlinear term /1 as
follows

dr

Hg/HWt—r)(lx\m (x)<v4)m)

’L;OL%

+H/W (t=7)5 |:v|’”(1—%0(5”))“4] dr

LgL?

+H/Wt—7' —{Jal™(1 - (x))}v4>d7"

LPLE
v / [~ F RPN dr
The estimates @D and , the compact support of , Holder integral inequality imply
that

/ llal" o) (@ )elsz d S T2y S T 0l (40
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By we bound I

Iy S ll=™(1 = @@ lleiee S Nel™v ez < o™ vllz ez 1l z2os

3
= [llz™0ll 2 12 10l|2e 50 < T2 0ll ez (05 ()" < T2 |07, (41)

By invoking the semigroup property with ¢ = 18 and p = 3 (¢ = 18/17 and p' = 3/2)
and Minkowski’s integral inequality, we bound the following term

0
1l S | (12l (1= @) i e S el e

4
ST Nvllzzers < Tollzgree =T (05 (v)" < vz, (42)

for some 6 > 0. Finally, formulas @, , and allow to deduce

I N/H]-" U, (F ((”4)$))]”LooLg dr
S A+ DT (0Nl z2rz + 1D (0ol 1222
S L+ T)TY |||y, (43)

Finally, the bounds , — give

19 ()| 2y < C(L+T)|[voll g5 + Cll|™vol 2 + CT?8*
for v € Z39, C,0 > 0. Therefore, if we take
5 = ZC(HUOHHU?’ + H]a:|mv0|\,;2) (44)

and 7T such that

)
5 + CT6(||U0||H1/3 + 54> <4, (45)

then the following inequality holds
W()|lz, < 6.

Consequently, ¥ maps Z2. into itself.

Step 2a. Now we need to prove that W is a contraction on Z2. Suppose that v, w € Z2.,
where ¢ from (44)) and T' to determine in a moment. For some 6 > 0 to establish the following
estimate

™ (@ (v) — @ (w T°8%|[v — wl|z, (46)

(W) |lperz

we is the main goal of the part Step 2a. Analogously, using the same argument as in estimating
the nonlinear term /7 in Step la, we bound the left hand side norm of .
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Applying the expression we change v* by v* — w*. We apply and (29), instead
of and , for the new factors related to I1; and 11, . As for 11, and 115 it suffices to

insert
™ (v* = w2z S T0% v — w2,
and

o — 0 sy S T80 — ]z,

in and (42), respectively.

Furthermore, by using expressions the last inequalities can be rewritten as follows
2™ (v — wywrusus|| 1 2. S T6 v — w]l 2
and
(v = w)uruzus|l 157 52 S T8 o — wllz,,

where wuq, usg, ug represent the functions v or w. Really, these inequalities can be obtained by
Holder’s inequality,

[z (v — w)urugus||prrz. < [[lz[™ (v — w) || 22 22 lvrusus| 2 g
3
<TY2|||2|™ (v — w)|| g 22 H il orge < TY26%v — w2,
j=1

and

(v — w)U1U2U3HL1TB/17Lg/2 < T17/18||(U - w)U1U2u3||Lg/2L%o

3
< T o — wllpgrz [T lusllzerze < T756° 0 = wllz.
j=1

In summary, collecting and we obtain
19 (v) = ¥ (w)]lz, < CT&|lv — wl|z,

for some C,0 > 0.
Finally, we prove that ¥ is a contraction on Z9 for T' > 0 such that CT?§* < 1 and .
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