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INTEGRO-INTERPOLATION METHOD OF CONSTRUCTING A
DIFFERENCE SCHEME IN A PROBLEM WITH A MOVING BOUNDARY

Working with systems that involve moving boundaries can be a very difficult task. Not only do
we have to solve the equations describing the system, but we also have to find the region the
system occupies at each step. One of the common moving-boundary classes, Stefan problems
are systems of diffusion or heat-conduction where the boundaries between the different phases
in the system change over time [1,2]. Unfortunately, since Stefan problems can be so complex
that an analytical solution of the system is often impossible. Therefore, approximate analytical
methods or numerical methods, which are the most practical for working with these problems,
are often used. This work is devoted to numerical investigation of nonlinear fluid filtration.
Hydrodynamic study of non-Newtonian fluid filtration requires solving nonlinear differential
equations with partial derivatives. The integration of these equations is associated with serious
mathematical difficulties caused by moving boundaries, the dependence of the physical properties
on the coordinates and time, the specifics of the boundary conditions. Therefore, in the works
devoted to the study of nonlinear effects of filtering liquid and gas, approximate methods are
used (quasistationary approximation, the integral relations and numerical). Among them, we
can note the simplicity and versatility of finite difference method, which, however, requires
the solution of a complex system of algebraic equations with simple computational algorithms.
In our problem, in order to close the mathematical system, another equation is required is
a type of Stefan’s condition. This is the law of conservation of momentum balance, which
determines the position of the moving interface. Note that this moving boundary is an unknown
surface. Consequently, the problem we are considering is an example of a free boundary problem [3].

Key words: nonlinear fluid filtration, non-newtonian fluid, movable boundary, region of the grids,
numerical solution, finite difference method, approximate analytical solution.
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IITekapachl >KBII>KBIMAJIBI €CEITIiH allbIPBIM/IBIK, CXEMACHIH KYPY/IbIH
MHTErpO-UHTEPIOJISIIINS dIici

2Kyite xKbpunRKBIMAIBI IeKepaJiap OoiibiHIa Oepisice Kypzemni ecenke kartanbl. MyHaa xyiteni cu-
nmaTTafiThlH TEeHJEYl IIelin KoiMaii, »KyiieHiH esrepic aiimarbin 6i1y Kaxker. OcblHmail Ken Ta-
paraH >KbLIKBIMAJIBI MTEKpachbIMeH OepinreH ecentepain 1uddy3usIbK, HeMece *KbLIYOTKI3TMTIK
nporecrepe Ke3necyi Credan Tunrec ecernrrepre )karajibl. byHail xxyiiese oprypJi dasaaapibiy,
IIeKapachl yaKbITKa GaflJlaHbICTHI 03repin oTbipasl [1,2]. Okinimke opait, Credan ecenrepi Kyp-
Jesi 6OFaHIBIKTaH aHaATUTHKAJBIK MENTiMIepiH aHbIKTay MYMKIHIITT KubiH. COHIBIKTAH MYHIAM
ecenrepe KYybIK aHAJTATUKAJBIK ITETiMi YKoHe ToXKipnbeae bIHFaIbl CAHIBIK, YKYbIK ITeNTiMIepi
KOJITaHbLIa Ibl. Byur ecent chI3bIKTHI emec (uIonITiH QuaTpIenyiHiH CaHIbIK 3epPTTey YKYMBIChIHA
KaTabl. HBIOTOHIBIK eMec CYHABIKTapIbIH (DUIHTPJICHYIHIH THIPOIMHAMIKACHIH 36PTTEY CHI3BIKTHI
eMec jiepbec TYBIHABLIBL TudepeHnraIbK, TeHIEYIiH menniMine 0aillaHbICTh Kypaesi 601ab.
MyHalt ecenTep/iiH MHTErpajIblH AHBIKTAY KEJIeCi MaTaMaTUKAJIBIK KUBIHIBIKTAD TYIBIPAIbI: IPO-
[ECTi CAMATTANTHIH (PU3NKAJBIK IMAMAJAP/IBIH KEHICTIK KOODIWHATTAPBIHA YKOHE YaKbITKA Oaii-
JIAHBICTBI ©3repici, KBIIKBIMAJIBI ITeKapaJap/IblH *KoHe IeKapaJiblK, IIapTTap/IblH epeKIesirine
GaitiaupicTel 60a b, COHABIKTAH CYHBIKTAP/IBIH, (DUIBTPIIEHYIHIH ChI3BIKTHI eMec 3 deKTimrin
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3eprTeylie KYbIK HIbIFapy ojicrepi (KBa3UCHI3BIKTBI, WHTEIDAJIBIK KATHIHAC HEMECEe CAHJIbIK)
KOJIJIAHBLIAIbI. DyaapaplH, iMmiHge KapamailbIMIbLIBIFEIMEH 2KOHE JKeTIMIIIriMeH aKbIPJIbI-
aflbIPBIMJIBIK, OJIIC epeKIlie OpbIH afajpl. bipak ecenrey ajaropuTMiHiH KEHUITITiHE KapaMacTaH
KypZesi ajaredpaJiblk TeHJeyJep KyHeciH KypblIll IIbFapy KepeK. Bi3jiH ecenTi TyHbIKTAJIFaH
MaTeMaTUKAJIBIK 2Kyitere keaTipy yiria CredaH mapThiHIa Ke3IeCeTiH TeHIey KaxKeT. By xkepie
CYHMBIKTBHIK, KO3TAJIBICHIHBIH, MIEKAPACHIHA OAMIAHBICTHI KO3FAJIBIC MOJIIIEPIHIH CAKTAILY HMITYJIbC
3aHBIH OepeTin TeHgey 0oy Kepek. MyHgait ecen Genrici3 mexkapara 0aIaHBICTBI KBLIXKBIMAJIBI
6erTi Gepeii. COHIBIKTAH €PKiH YKBIJIKBIATHIH IIeKapara 6ailjlaHbICThI IIapTIIeH OepijireH ecerke
MbIcaJl Godta aasl [3].

TyiiiH ce3ep: ChI3BIKTHI eMeC CYHBIKTHIKTBI (huiibTparusiiay, HbIOTOHIBIK eMec CYIBbIKTHIK,
KBUIKBIMAJIBI IIIEKaPa, TOP aliMarbl, CAHIBIK, IIEINTiM, KT albIPMIBIK, J/IiC, YKYBIKTAJTAH aAHAJIU-
THUKAJIBIK, TITETITiM.
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Kazaxckuii HarmoHa/IbHBIN yHUBepcuTeT nMeHn ajib-Papabu, Kasaxcran, r. Ajmars
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Nurerpo-uHTEpPHOJSIMOHABIE METO/, TIOCTPOEHUS PA3HOCTHOUM CXEMBbI
B 3ajiave C MOJBUXKHOW rpaHuIiei

Pabora ¢ cucremamu, KOTOpble MMEIOT MOJABUKHBIE TPAHUITBI, MOXKET OKA3ATHCS OYEHDb CJIOYKHOM
zamadeir. HyKHO He TOJBKO peNInTh ypaBHEHUs], ONUCHIBAIOIINE CHUCTEMY, HO U HAWTU 00JIACTD,
KOTODPYIO CHCTEMa 3aHMMaeT Ha KakjoMm mare. OJuH U3 PaclpOCTPaHEHHBIX KJIACCOB 3aJad C
JBUXKYIIUMUCS TpaHunamu, 3agadu Credana — 310 cucrembl quddy3un WM TEIIONPOBOIHOCTH,
B KOTOPBIX TPAHUIILI MEKJLy PA3IMIHBIMU (DA3aMU B CUCTEME MEHAIOTCS ¢ TedeHneM Bpement [1,2].
K coxanenuro, nmockosbky 3azadun CredaHa MOTYT OBITh HACTOJIBKO CJIOXKHBIMHU, UYTO AHAJIATH-
YecKOe peIlleHre CUCTEMBI YacTO OKA3bIBAETCH HEBO3MOXKHBIM. 1l03TOMYy YacTO WCIIONB3YIOTCS
IPUOIMKEHHbIE aHAJIUTHYECKAE METO/IbI HJIM YUCJIE€HHbIE METObl, KOTOPbIe Hanboiee IPAKTHIHBI
JUIst paboThI ¢ TAaKUME 3ajadaMu. JlanHas paboTa MOCBAIEHA THCJICHHOMY HCCICTOBAHUIO HEJIH-
HeitHoi dubrparun urronga. ['uapoaunHaMudeckoe nccaea0Banne (puIbTPAINi HEHbIOTOHOBCKOM
KHUJAKOCTU CTABUT TepeJ HeOOXOINMOCTBIO PEleHns HeJIMHEeHHBbIX AuddepeHnuaabHblX ypaBHe-
HUAW € YACTHBIMH NPOU3BOAHLIMU. VIHTErpmpoBaHme TAaKWX yPABHEHUIl CBA3AHO C CEPHE3HBIMU
MaTeMaTUIECKIMU TPYAHOCTAMH, OOYCJIOBJIEHHBIMHU IIOJBHKHBIMYM TPAHUIAMM, 3aBACHMOCTBIO
du3MIeCKUX CBOICTB OT KOODJMHAT W BPEMeHH, Cleludukoil KpaeBblx ycjosuit. Ilosromy B
paboTax, MOCBSIIEHHBIX UCCJIEIOBAHNIO HEJIMHEHHBIX 3D MEKTOB duibTpanun GJIOuIa, TPUMEHs-
I0TCsl TIPUOJIMKEHHBIE METO/Ib (KBA3UCTAIIMOHAPHOE TPUOJINKEHNEe, HHTErPAJIbHBIE COOTHOIICHNUS
u uucienubie). Cpeln HUX IPOCTOTON M YHUBEPCAJIBLHOCTBIO OTJINIAETC METOJ, KOHEUHBIX Pa3HO-
cTeil, KOTOPBIi, OHAKO, TPeOYeT pelreHns TPOMO3IKON CUCTEMBI aJiredOpandecKux ypaBHEHUH Tpu
[IpoCTaTe BBIYUC/IMTEBHBIX AJITOPUTMOB. B Hameil 3ajade, 9T00bI 3aMKHYTh MaTEeMATHYIECKYIO
cucremy, tpebyercs ere onHO ypaBHeHue — Tuna ycjaoBusg Credana. DTO 3aKOH COXPAHEHUS
OaslaHCa UMILYJIbCa JBUYKEHUsI, KOTOPBI OMpeesseT MOJI0KEeHNe IBUXKYIIEeCs: TPAHUITHl PA3/IeIa.
SamMeTnM, 9TO 3Ta ABUKYIIASCS TPAHUIA SBJISIETCS HEN3BECTHON MOBEPXHOCTHIO. Ciie10BATE/IBHO,
paceMaTpuBaeMast HaMU 33/1a4a sIBJIsIeTCsT IPUMEPOM 3aJIa9u €O CcBOGOHOM Tpanumeii [3].

KuroueBble ciioBa: nenuneiinas GuiabTpanus *KUIKOCTH, HEHbIOTOHOBCKAsT YKUJIKOCTD, TTOIBUK-
Hasl TpaHUIE@, 006/1acTb CETOK, UMCJIEHHOE PeIleHre, MeTOJI KOHEYHBIX PAa3HOCTel, MpuOIN:KeHHOe
AHAJIUTUIECKOE peleHue.

1 Introduction

Oils of Western Kazakhstan, containing a relatively large amount of paraffin-asphaltene-
resinous substances, belong to non-Newtonian fluids. The study of the structural and
mechanical properties of such oils is of great interest for solving various issues of oil
production. The study of the rheological characteristics of non-Newtonian oils on a capillary
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viscometer (copper capillary tubes with a diameter of 2, 3 and 4 mm and a length of 200,
300 and 400 mm) was carried out according to a well-known technique, [4-6]. For oil with
a 25% resin content at temperatures of 16, 18 and 210 C, the characteristic dependence
¥ = Y(|]VP|) Figure 1 shows the curve, |7,8|. For the test oil, the plot of dependence is
nonlinear and passes through the origin, and it is convexed downwards at small pressure
gradients, and at large it has a linear shape. Models of viscous and viscous-plastic media and
various types of dependence were used to describe the structural behavior of the fluid. So,
for example, the flow curve shown in Figure 1 can be approximated by two straight lines, in
particular, one straight line O A, passing through the origin, and another AC, cutting off on
the abscissa axis segment OB, corresponding to the limiting shear gradient g,. If we restrict
research to |[VP| > g,, then we obtain a model similar to the Shvedov-Bingham model, and
for [VP| < g, is viscous fluid flow model.

+/9/ c

Figure 1

Figure 1. Shows the experimental dependence of the ¥ = J(|VP|) fluid filtration rate
(solid curve 1) and its approximation (dashed lines) BC or OAC. If the rate of fluid filtration
at low pressure gradients cannot be neglected, then it is necessary to use filtration models
that take into account the fluid flow at such gradients. These models include those based on
polygonal or other approximations of the indicator curve

9 = 9(|VP)).

When using the experimental curve (1), the velocity of fluid movement in a porous medium

can be described by the nonlinear equation, [5,8]:
— k VP
v MF(|VP\)|VP|. (1)

In this case F(|VP]|) is a continuous positive, monotonically increasing function
(F'(|VP|) > 0), derivative of which can have a finite number of discontinuities of the first
kind.

Figure 1 (curve 1) shows a model of a viscous medium with an apparent viscosity [7]
depending on the pressure gradient. In this case, the polygon fits into the indicator curve
in such a way that its first link passes through the origin and characterizes filtration at low
pressure gradients, and the second link coincides with the asymptote of the graph ¢ = 9(|V P|)
and characterized the flow of fluids at large pressure gradients.
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To calculate the filtration of a Newtonian fluid, along with mathematical methods,
simulators (analog computers) are widely used, however, electric simulation of the flow of
a non-Newtonian fluid in a porous medium using conventional simulators is in most cases
impossible. In work [9] similarity criteria are derived and an analog simulator based on the
well-known electrohydrodynamic analogy is described. In the case when the movements of the
liquid at small pressure gradients are not taken into account, i.e. the curve is approximated
by a half-line BC| cutting off on the abscissa axis a segment of OB.

Thus, approximation by a two-link polygon will give the following model of nonlinear
filtering [8].

= { —kvP, IVP| < g.,

—2(IVP| = g gy, IVP > ga

(2)

Here p, = (1 — 5) is the apparent viscosity, and p and v are dynamic viscosities at small
and large pressure gradients.

In other works [8], approximate analytical solutions for this problem were obtained using
various approximations: either the half-line BC' or the polygon OAC. To obtain approximate
solutions, usually use the method of integral relations proposed by G.I. Barenblatt [6] and the
method based on applying the Laplace transform. With the help of the Laplace transform,
the approximate solution of the problem is limited to the initial stage of the process (quasi-
stationary approximation).

2 Methods and materials

2.1 System of equations describing isothermal fluid filtration

It is assumed that the terrestrial rock is elastic, and the fluid belongs to the class of weakly
compressible liquids. Under these assumptions, the mathematical model can be represented
in the form of the following system of equations: continuity equation % +div(pd ) = 0;
equation of the porous medium state is dm = S,.dP; equation for the fluid state is p =
po exp[Br (P — Ry)].

Then the equation of continuity, taking into account the equations of state of the porous
medium and fluid becomes

6*%—1; +divd = 0. (3)

In the above formulas, the following designations are adopted: k is permeability coefficient,
B* = B, + By is reservoir coefficient of elasticity, f, and 3¢ are rock and fluid compressibility
factors.

2.2 Mathematical model of nonlinear fluid filtration

Let’s now consider the problem of fluid filtration, i.e. with polygonal approximation of
the experimental flow rate is depression curve (Figure 1). Let an isotropic layer of unit
thickness and width be filled with a homogeneous liquid. Under the long-term influence of
the temperature field, the liquid acquired structural and mechanical properties that were
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unequal along the length of the formation. In this case, the value of the gradient at the
boundary of the viscosity discontinuity can depend on the x coordinate. If the structural and
mechanical properties of liquid particles are distributed during their transfer, we will assume
that the magnitude of the gradient at the viscosity discontinuity boundary g(z, t) will change
in proportion to the speed of the liquid. Then, taking into account the filtration law (2), the
continuity equation (3) in a one-dimensional formulation for the case g(x,0) = g. = const
is reduced to solving the equations |7, 8]. Thus, it is required to find the function P;(z,t),
Py(x,t), £(t) from the conditions:

on _ 0 OP,
on _ 9 - ;
ot T oz {kl(ﬂf’t) (—&E u*g*)] , mo <z <E(t), t>0, (1)
op, 0 OP,
or _ 0 o |
ot T ox {]@(%t) ax} , W <z<L, t>0 )

where ¢; = up*, co = vp*.
Under the initial condition

Py(2,0) = p(x), 20 <z <L, £0)= o, (6)

and the condition of matching the initial values P, and P, : Pr% P(x,t) = @(xp).
—

Under the following conditions on the unknown boundary £ = &(¢) :

xl_l)fgrio P(x,t) = xl_l)t{IJer Py(x,t), t>0, (7)
li 8P( t) li aP( t) t>0 (8)
im —P(z,t) = lim —Ps(z,t) = g., .

rz—£—0 ox 1 z—£+0 ox 2\ g

and the corresponding condition on the gallery

ok (w - u*g*) L AP (a0 t) = a(t), 50, (9)
Py(L.t) = o(L), ¢>0. (10)

where oy - 81 =0, ay + 51 = 1.

Unlike problems [10-12], here there is no explicit equation for determining the free
boundary, however, the known value of the gradient at the viscosity discontinuity boundary
allows us to construct a difference scheme that allows us to determine the position of the
boundary.

It should be noted that in a layer of finite length L, filtration is divided into two periods.
The first period is at 0 <t < T, where T is the moment in time when the boundary reaches
the right end of the formation (£(7") = L), the second period at t > T is characterized by the
solution of equation (4). An approximate solution of the problem by the method of integral
relations was considered, for example, in [8].

In the case of rectilinear-parallel motion of the medium and g, = const, taking into
account the following dimensionless parameters:

§ R;(Sl?,t) 7 ]ﬁ(I,t)

zv U= PO )

__Z =
x_za 5_
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S [,Lokfg(l‘,t) — t _ g*L — Mql L
k t e t: —_ = — e _— «Jx e,
2(T, 1) o o 9=po O " + psg 2
*LQ
to_“i =2 a=1, e=1, i=1,2
0 2

For Py, P in dimensionless form, one notation u(7, t) is adopted, since they are defined
in non-intersecting areas, and the continuity conditions are satisfied at the interface. It is
necessary to define the functions u(x,t) so that they satisfy the filtration equation. Let’s
write the equations by omitting the dashes above the variables

ou 0 (,0u

Moreover, the functions u, ¢ and k are defined in the intervals 0 < z < £(t) and £(t) <
r <1, ie.

k::{ ki(z,t), 0<xz<(t), 0 < ks < ko
kQ(Iat)a §<t) <z < 17
(12)
) a@t), 0<z <), .
‘- { o), ()<<, | SGSO

Note that the functions ¢ and k may have a discontinuity at = = &(¢). In addition
to equation (11), the functions u(z,t) and £(t) at the interface x = £(¢) must satisfy the
conditions of continuity of the desired function

u(§ —0,t) =u(§ +0,1),

and matching gradients at the viscosity discontinuity boundary:

0 0
Sou(§ = 0,8) = =€ +0.1) = g. (13)

Initial conditions
u(z,0) = p(x), £(0) = zo, (14)
and boundary conditions
hu(zo,t) = qi(t), wu(l,t)=1. (15)
Here the operator corresponds to plane-parallel filtration

ou

ll = (k1%> + ﬁlu.

Assuming that problem (11)—(15) is posed correctly and we assume that &(¢) is a
monotonically increasing function ¢t € (0,77, ¢'(x) > 0 and ¢;(¢) < 0.
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2.3 Difference scheme

For the numerical solution of the considered nonlinear problem, we construct an iterative
implicit difference scheme based on the idea of the method of attaching a moving boundary
¢ = &(t) to grid node [11,13,14]. The domain for solving the problem is the half-grid D =
{z,tlzg <z <1, t > 0}. On the segment [0, 1], we introduce a quasi-uniform grid of basic
and flow nodes:

{xi:x@-,l—l-h,i:l,n—l; xo = 0; xNzl},

{%’-1/2 =x;_1+05h, t=1,n-1; 2o = T_1/2; TN = SUN+1/2} .

The area [0, 1] of streaming nodes is split into cells i = [xi_l /25 Tig1 /2} . i = 0,n. The line

x = £(t) in the solution area is the dividing one. Here we consider a uniform mesh in  and

a non-uniform mesh in time Wy, = {;, tx|z; = 2o +ih, h > 0,i=0,n, t), =t}_1 + Th, o =

k
AT;, A1; > 0, k > 1, n > 3}. In this case the time step 7, we will take depending on k

=0

so that the end of the broken line approximating the movable boundaries = = £(t) for any

k
7 = »_ A7; would hit the node of the difference grid.
=0

The initial boundary value problem (11)—(15) corresponds to the following conservative,
purely implicit two-layer difference scheme [7,11]. Let us consider the case ¢; = ¢o = 1. Then
we write (11) at all points except the point x = £(¢) in the form of

ou 0 ou
E‘%(ka_x)’ t>0. (16)

Integrate it within (§ — h1/2), (& + h1/2),

&thi/2 g, &k ) ou &thi/2 9 ou
—dr = — | ki=— ) d — | ke— | dx. 17
/fk—h1/2 ot ! /Ek—}u/? Ox ( 18‘%) v /5; Ox ( 28$) ’ ( )

Applying the mean value theorem to the integral on the left, we obtain

ou ou

ou

N A 18
Gth/z O (18)

€o—h1/2

Here the condition from the point of discontinuity is divided into two, which reduces the
approximation error arising from the inaccurate determination of the interface. Moreover, if
we divide (18) by hy and go to the difference derivatives [15], for the point = = £(t) we get:

Yr = (E?/:E)I; (19>

where under £ is considered

k=

ki(x —hy/2,t) given that 0<x < (1),
ko (x 4+ h1/2,t) given that &(t) <x < 1.
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Passing to the difference derivatives in (16) and comparing them with (19), we obtain a
homogeneous difference scheme over the entire interval [0, 1]. Combining it with the initial
and boundary conditions, we arrive at the difference problem in the entire domain:

- 0
= (kyi)x7 yzg ) = 12 ("El) )
Oy =q (tg) given that = =0, (20)
y=1 given that x = 1.

The operator ¢; is determined by the balance method by integrating (16) on the segments
(0, h/2) and using the boundary condition. As is known, in this case, the approximation error
will be o(h?).

Difference problem (20) is supplemented by the condition within which x = £(¢). For this
in the area D, taking into account the condition on the fracture line of the fluid viscosity
(13), at t = ¢y, calculate the integral for a cell with a node of i = i;. Then the equation (16)

becomes:
Z+2 au (9u Tipl 3u 1 —au Ek—0
—dr = —5) = 2 5 +32 4+ k—
/I. 1 ot o ( Z) ot z, 1 0z |z T, 1 Oz §k+0]
i—7 2 2
ou ou ou ou
=k 11— —k == O | k1 — — k=
H_% (933 xi+% Z_%Gm mii% + < Z_%aiﬁ Ek—o H—% al‘ §k+0>
ou ou

xr. 1
=g

Here:given6i21,§€[i1x }andé 05@%[1»% %}.

We denote the grid function y;, = u(z;,tx) and g;, = (mi, tr_1).
Then we have:

Yoo =i\ — g Yarl T g Y "Y1 s _
( ATy ) = k2k+2 hq klk*% h1 +o (klk*% kszr%) Gx-

Hence, when the interface of two viscosities is displaced by one step, we find the
corresponding time

b =y Oy
ik iy I _
hy kik‘f’* h1 k%—% h1 + (klk—% klzﬁ-%) 9=

(s+1) o S - ’
ATy yz( - yzk)

(21)

where §; = 1, s is t.
The computational algorithm is based on a counter sweep. Difference equation (20) over
the entire grid region is then reduced to the form:

Az iYzi—1 — bz,iyz,i + CzilYzi+1 = dz,i; z = 17 2. (22)

Then, to determine the pressure value at the interface between two viscosities, we obtain
a system of algebraic equations.
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a) from left to right, using the right sweep formulas, we determine the sweeping coefficients

C1,i al,zﬂi—l - dl,i . .
b ; 62 = b ) 1= ]'7Zk - 17 (73 Z 27 (2?))
1,4 — Q1,041 15 — Q14041

a; =
b) from right to left, calculate the sweep coefficients of the left sweep

as i1 — d;
7 T — 7,
b2,i - CQ,i¢z‘+1 b2,i - Cg,ﬂbwl

;= i=n—1,ix. (24)

For the movable unit < ¢ = i, >, based on the formula of right and left runs

Y1 = Gi1Yii + Bic1, 1= Gy, —N; (25)

Y2.it1 = Vit1Y2i + Nig1, = U, Ny, (26)

and taking into account (13), we find the required function vy, = v, = i,

Bix—1 + Nip41
2 — (i1 + 1)

Y = (27)
Wherein «q, £y and v, 1, are determined depending on the setting of the boundary
conditions.
Thus, when passing from the (k—1) time layer, calculations are performed in the following
order
AT = (20) = (22) = (21) = (18) =

(s)

= AT,E,S) — AT,ES_D <&, Amax|y;” — yl(s_l)‘ < ep.

If the convergence condition is satisfied, we assume that A7,_; = ATé‘?l and &g = &+ hy
and go to the next time layer, and if the inequalities are not satisfied, we repeat the iterative
process.

2.4 Numerical solution results

For illustration, the numerical solution of the problem was carried out for a constant shear
gradient g, = const. This problem has an approximate analytical solution [8], and for a
quasi-stationary approximation of a physical process, we execute the law of variation of the
moving boundary.

When the gallery is set on the constant pressure of Ap = pg — p., then the solution has
the form of:

_ (1-2)Ap _ (VA - v)
f(t)—Z\/%Htln((g*\/WTut)), €= (7t ) (28)

If the production gallery is set to a constant flow rate D = g, + pu - %, then the solution has

E(t) = O/,

the following form:
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where py + DVt = py + 24/ il [(1 +e)e (me‘CQ — Cy/merfc C’) - 1] : (29)
m

Here 5, = (u-_kﬂ*)’ 7, = %, g« = 5-1073atm/m, py = 150atm, p, = 120atm, u = 2.5¢Ps,
v =3.6cPs, k = 04D, 8* = 16 - 10 %atm™?, ¢; = 6.077 - 10%cm?/sec, L = 10°m, t, = 10%sec,
»,, », are the piezoconductivity coefficients at high and low pressure gradients.

Position of the movable boundary versus time during operation with a given constant
pressure on the gallery and at a constant gradient value g, = 5 - 1073atm/m at the
discontinuity of viscosities boundary is shown in Figure 2. Here, the absolute error, defined
as the difference between the numerical and approximate analytical solutions depending on

the operating time, varies from 1.73 - 1072 to 7.22 - 1072,

08

06

nkx, an

04

02F ¢

Figure 2

Figure 2. Graph of a moving border £ = £(t) depending on the time when the gallery is
operated with constant pressure. The solid line corresponds to the numerical solution, and
the dashed line to the approximate analytical solution (28).

The coordinate of the moving boundary depending on the time during operation with a
given flow rate and at g, = 51073 atm/m is shown in Figure 3. Here, the absolute error of
the solution, depending on the operation time, varies from 1.92 - 1072 to 8.15- 1072,
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Figure 3. Graph of a moving border £ = £(t) depending on the time when the gallery
is operating with a constant flow rate. The solid line corresponds to the numerical solution,
and the dashed line to the approximate analytical solution (29).
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For the value of the gradient at the boundary of the discontinuity of viscosities g, =
5-1073atm/m at Ap = py — p. = 30atm the moving front £(¢) reaches the right end of
the formation L = 10°m in 19.4 hours. If the value of the gradient at the boundary of the
discontinuity of viscosities increases, then the time to reach the moving boundary xi(t) the
right end of the layer is correspondingly growing. Calculations were carried out for various
constant values of the shear gradient: 7-10~%atm/m; 8 - 10~*atm/m and 9-10~%atm/m. The
time to reach the moving front £(t) of the right end of the reservoir L = 10%m is growing: 22.2
hours; 25 hours and 27.7 hours; respectively. In the case of the first stage of fluid filtration,
the change in pressure as a function of time is shown in Figures 4 and 5 at g, = 5-10~%atm/m.

Figure 4

Figure 4. Pressure change graphs during gallery operation with constant pressure for
various values of dimensionless time: 1 — 0.2924E — 02; 2 — 0.6866E — 02; 3 — 0.1275E — 01;
4 —0.2078E — 01; 5 — 0.3118E — 01; 6 — 0.4404E — 01.

0.995

Figure 5

Figure 5. Graphs of pressure changes during gallery operation with constant flow rate for
various values of dimensionless time: 1 — 0.3165E — 02; 2 — 0.5959E — 02; 3 — 0.9645E — 02;
4 —0.1425E — 01; 5 — 0.1972E — 01; 6 — 0.2611E — 01.

3 Conclusion

Analysis of the results showed that the number of iterations depends on the step size of the
grid region. In this case, the step along the spatial coordinate is selected depending on the
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value of the fracture gradient of the fluid viscosity. With a large shear gradient, one should
take a smaller step along the spatial coordinate. In a numerical experiment, formula (21) was
used to find the appropriate time for fishing in the node of the movable boundary. The results
presented showed that the proposed method can be used to determine the free boundary in
similar problems with conditions (7), (8), implicitly determining its position.
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