ISSN 1563-0277, eISSN 2617-4871 JMMCS. 2(122). 2024 https://bm.kaznu kz

IRSTT 81.93.29 DOLI: https://doi.org/10.26577/JMMCS2024-122-02-b10

V.V. Shkarupilo’ —, V.A. Lakhno!—, N.B. Konyrbaev*—,
Zh.D. Baishemirov®*—, A.B. Adranova®> —, A.G. Derbessal?

!National University of Bioresources and Nature Management of Ukraine, Ukraine, Kyiv
2Korkyt Ata Kyzylorda University, Kazakhstan, Kyzylorda
3Abai Kazakh National Pedagogical University, Kazakhstan, Almaty
4Kazakh-British Technical University, Kazakhstan, Almaty
*e-mail: n.konyrbaev@mail.ru

HIERARCHICAL MODEL FOR BUILDING COMPOSITE WEB SERVICES

The current evolution of disseminated computer program frameworks is characterized by a
growing adherence to the principles of service-oriented engineering (SOA). Simultaneously, these
frameworks are becoming more intricate, with an increasing number of components and more
complex data connections between them. This situation underscores the importance of employing
mechanisms to unify artifacts in the process of developing composite web services, which govern,
among other aspects, the architectural plane of the frameworks under construction. A model for
constructing composite web services is suggested as a suitable tool, implemented in accordance with
a hierarchical approach, intended for use in designing distributed systems. Model is constructed
over an assumption that coordination of the components of a composite web service is carried out
in a centralized manner ? in accordance with the orchestration model. To implement formalization
and obtain, based on analytical representations, the corresponding software implementations, it has
been decided to use the DEVS mathematical apparatus. The aspect of software implementation
is considered pivotal in determining the feasibility of automating the acquisition of composite
web services that operate within the orchestration model. Obtained research results has been
interpreted as a confirmation of the effectiveness of this approach on the basis of the scenario
of querying the database. Resulting artifacts have been represented with UML notation. The
relationship between analytical representations and corresponding software implementations has
also been demonstrated. Usage of the DEVS Suite tools has made it possible to visualize the
process of simulation - to obtain estimated values of the indexes of the resulting solutions.

Key words: distributed system, composite web service, DEVS, UML.

B.B. Illkapymuto', B.A. Jlaxno!, H.B. Konpip6aes? , 2K.JI. Baitmemupos3?,
A.B. Axpanosa?, A.T. Jlepbecarn?
l'Vkpannanbis 6uopecypcrap KoHe TaGUFaTThl Haillalany YITTHIK yHUBepcuTeri, Ykpanna, Kues K.
2KopksIT aTa arbiHaarsl Kessuiopaa yausepcureri, Kasaxcran, Ku3puiopaa K.
3 AbGait aTeiEarsl Kazak yITTHIK IIeIaroruKafbK, yHEBepeuTeTi, Kazakcran, AIMaTs K.
4Kazakcran-Bpuran Texnukasbk yHuBepcureri, Kazakcran, AmMaTs! K.
*e-mail: n.konyrbaev@mail.ru
KoMno3uTTik BeO-KbI3MeTTep/Ii KYPY/AbIH NepapPXUsJIbIK MOIeJIi

Beutinren OarjmapiiaMaiblk, Kyilejaepil JaMbITyIbIH Ka3ipri JeHreilin cepBUCTIK-Oariap/aHraH
apxurekTypa (CBA) epexenepin ycrany Gapran cailblH KeH TapaJjifaH ToxKipubere aflHaJaTbIH
nmenreil perinze cumarrayra Oosazpl. CoOHbIMEH KaTap, MYHAAN Kyhesepiid, KypAaeiik geHreiii
KATBICATHIH Kypamaac OeJiKTep/JiH caHbl OOMWBIHINAIa, OCHI KypaMmjaac OeiKTep apachIHIa
OPHATBLITAH aKIIapATTHIK, OailTaHbICTAP/IBIH, KYP/IeaiIiri 6oiibIHIa ga apTa Tycyae. by karmaif,
63 Ke3eriHjie, KYpbUIATHIH KYHeJIep/liH apXUTEeKTYPAJbIK KypamJjac OeiriH perTefiTiH Kypama
BeO-KbI3MeTTEPIl 93ipsey mporeciage apredakrTiiepi OipikTipy TeTIKTepiH maiigaaHy I IbiH,
MAaHBI3IBUIBIFBIH AHBIKTAW 6. THuicTi Kypaa peTiHae HepapXWsIbIK, TOCciare coifkec Kysere
ACBHIPBIIATHIH KOMIIO3UTTIK BEO-KBIBMETTEP/Il KYPY MOJIEN YCHIHBLIATHI.

© 2024 Al-Farabi Kazakh National University

https://orcid.org/0000-0002-0523-8910
https://orcid.org/0000-0001-9695-4543
https://orcid.org/0000-0002-8788-4149
https://orcid.org/0000-0002-4812-4104
https://orcid.org/0000-0001-7233-4104
https://orcid.org/0009-0004-4624-8797

120

Hierarchical model for building composite . . .

Mogenns Gesinren kyiteHi »kobaJiay Ke3eHiHJe Naiifaanyra apHasjran. Mojgemab KOMIIO3UTTIK
BEO-KBI3METTIH Kypamiac OeJIKTepiH YMJIecTipy OpTaJbIKTAHJBIPBLIFAH - OPKECTPJIK MOJEIbre
colikec »Ky3ere achIpbLIaJbl JEereH OoJiKaMfa Herizjesren. PeciMieymi 2Ky3ere acbIpy KoHE
AHAJINTUKAJIBIK, YCBIHY HETi3iHJe coiikec OarmapJiaMasblK KaMTaMachl3 eTyi enrizy ymrin DEVS
MaTeMAaTUKAJIbIK allllapaThblH MaiilaJaHy TypaJibl IIeliM KaObLIIaHbl. BargapiraMaiblK KaMTa-
MacChI3 €Tyl eHri3y, 3 Ke3eriH/le, OPKeCTPJIK MOJeNb OOMbIHINA YKYMBIC iCTEHTIH KOMIIO3UTTIK
BeO-KBI3METTEP/[l aJIy IIPOIECiH aBTOMATTAHILIPY MYMKIHJIINH AHBIKTANTHIH (aKTOp peTiHje
KApaCThIPBLIAIbl. 3€pTTEy HOTHXKEJEPl JIePeKKOPFa CYPAHBICTAPIbI OPBIHIAY CIEHAPUITiHIH,
MBICAJIBIH TafiiajaHa OTBIPHIN, OV TOCULIH THIMALICIH pactaigpl. Asbiaran apredaxrisep
UML skcmpeccuBTi Kypasgapbl apKbLIbl YCbIHBLLIBL. CoHmall-aK aHaJIUTUKAJBIK, KOPiHiCTepMEH
colikec OarmapJilaMaJiblK KaMTaMachl3 €Tyl eHri3y apachlHjarbl Oaitjanbic kepceriiai. DEVS
Suite Kypa/gapblHBIH MYMKIHJIKTEpiH MaiijajiaHy, OacKajapMeH KaTap, MOJejbJey IPOIECiH
BU3yaJM3aIUsIayFa — YKACAJAThIH IIENIiMIep/IiH KOPCETKINITEePiHiH OO/KAJIIBl MOHJEDIH ajyFa
MYMKIHTIK Gepi.

Tyiiin ce3aep: Gosinren xKyite, KOMIo3uTTiK Beb-cepsuc, DEVS, UML

B.B. HlIxapymuiao!, B.A. Jlaxuo!, H.B. Konsipbaes?*, 2K./1. Baiimenmupos>*,
A.B. Anpanosa?, A.I'. Jlepbecar?

! HanmoHa b YHEBEPCHTET OHOPECypCoB U IPUPOIONOIL30BAHNA YKPanHLl, YKpanHa, T. Kies
2Kesputopanuackuit yansepcurer umenn Kopksir Ara, Kasaxcran, r. Kebuiopaa
3Kazaxckuil HAIMOHAJIBHEIN yHUBepcHTeT nMenn A6as, Kasaxcran, . AiMaThl
4Kazaxcrancko-Bpurancknii Texumaeckuii yausepenrer, Kazaxcran, r. Ajmars
*e-mail: n.konyrbaev@mail.ru
Wepapxuueckass Moaeb NOCTPOEHUS COCTABHBIX BEG-CEPBHUCOB

Tekymuit ypoBeHb Pa3BUTUS PACIPEIETEHHBIX IPOrPAMMHBIX CHCTEM MOYXKHO OXapaKTepU30BATh
KaK TaKOil, IpH KOTOPOM CJeJIOBaHHUe IIOJIOKEHUSAM CEePBUC-OPUEHTUPOBAHHON apXUTEKTYPhI
(COA) cranoButcs Bce GoJiee TIOBCEJHEBHOM IPaKTUKOI. BMecTe ¢ TeM ypoBeHb CJI0KHOCTH TAKUX
CUCTEM TPOJIOJIZKAET BO3PACTATH — KaK C MO3UIUU KOJMYECTBA 33/IefICTBOBAHHBIX KOMIIOHEHTOB,
TaK U C MO3UIMNANA KOMILUIEKCHOCTH NH(MOPMAIMOHHBIX CBSI3€i, YCTAHABIMBAEMBIX MEXKIY JTAHHBIMUI
KOMIIOHEHTaMu. Takoe MOJIOXKeHre Belleil, B CBOIO 0Yepeib, 00YCAABINBAET BayKHOCTH MCIIOJIB30-
BaHUA B IPOIECCE Pa3PaAbOTKU COCTABHBIX BEO-CEPBUCOB MEXAHU3MOB YHUMUKAIINU apTedaKkTOB,
peryIaMeHTUPYIONINX, B TOM YHCJE, APXUTEKTYPHYIO COCTABJIAIONIYIO CO3/ABAEMbBIX CHUCTEM.
B kadecTBe COOTBETCTBYIOIIETO WHCTPYMEHTA IPEIJIAraeTcs MOJEIb ITOCTPOEHUS COCTABHBIX
Be0O-CEPBUCOB, pean30BaHHAs COIJVIACHO MEPAPXUYIECKOMY moaxomy. Momensb mnpeaHasHaveHna
K HCIOJIb30BAHUIO HA ITAlle MIPOEKTUPOBAHUS DPACIPEIEIeHHON cucTeMbl. Momesnb mocTpoena
Ha JIONYIIEHUU, YTO KOODJWHUPOBAHHE KOMIIOHEHTOB COCTABHOI'O BEO-CEPBUCA OCYIIECTBJISIETCS
[IEHTPAJIN30BAHHO — COIVIACHO MOJIeJIN OpKecTpoBKU. J[na mpoBenenus dopmanu3anuud U IOJTY-
YeHUsl Ha OCHOBE AHAJMTUYIECKUX IPEICTABJIEHUI COOTBETCTBYIONIUX MPOrPAMMHBIX DPeAJIM3AIII
IIPUHSATO PeIleHne 3a/eiicTBoBarh MaTeMarudeckuit ammapar DEVS. IIporpamyuast peanm3sarus,
B CBOIO OYepe[ib, aJIPecoBaHa B KadecTBe (aKTopa, 00yC/IaBJIMBAIONIETO BO3MOXKHOCTH aBTOMa-
TH3AIUU IIPOIECCA IIOJyUIEHHsI COCTABHBIX BeO-CEpBUCOB, (DYyHKIIMOHUPYIONIUX COIVIACHO MOIEJIH
OPKECTPOBKH. PeSyﬂbTaTbI IIPpOBEICHHBIX I/ICCﬂe‘ZLOBaHI/IfI NOATBEP NN):[‘ef/'ICTBeHHOCTb TaKOI'O
[IOJIX0JIa HA IMpUMepe CIleHapHUsi BBIIOJIHEHUsI 3allpocOB K 0Oase jaHHBIX. llosiyuaembie mipu 3TOoM
apredakThl ObLIN IIPEICTABIIEHBI C UCIIOIb30BaHNEM BbIpasuTebHbIX cpenctB UML. Takxke ObLia
MIPOJIEMOHCTPUPOBAHA, CBA3b MEXKJY AHAJUTAIECKUMU IIPEICTABICHUSIMA U COOTBETCTBYIOIIMMEI
IPOrPAMMHBIMHU peasim3anusiMu. Vlcrmosb3oBanne Bo3MoxkHOCTEH nHCTpyMeHTapust DEVS Suite
[IO3BOJIMJIO, B TOM HYHCJIEe, BU3YaJM3UPOBATH IIPOIECC WMHUTAIMOHHOIO MOJIEJIMPOBAHUS — JIJIA
MOJTyI€HUs OTCHOYHBIX 3HAYCHUN TTOKa3aTeseil co3/1aBaeMbIX PEIeHU .

KitroueBbie cjioBa: pacipejie/ieHHas CUCTeMa, KOMIIO3UTHBIN BeG-cepsuc, DEVS, UML.

V.V. Shkarupilo, V.A. Lakhno et al. 121

1 Introduction

Today, the concept of reuse, which underlies service-oriented architecture (SOA), is one of the
defining concepts considered when creating distributed web applications. The reason for this
could be to save money on the development process. Web services are parts of SOA-based
systems. One big advantage of web services is that they are not tightly connected. This makes
the system better at working together and communicating with its different parts. The group
of online services in a system is often called a composite web service, and the individual parts
of the system are called atomic web services.

Given that composite web services (CWS) can embody systems of varying complexity,
it is prudent to conceptualize a CWS as a stratified system. This approach facilitates the
process of specification, verification, and validation, ensuring that the synthesized CWS
operates correctly through a series of automated steps. Research [1| highlights a deficiency
in addressing verification and validation (V&V) issues during development. Synthesizing a
CWS involves employing diverse methods to create a CWS with the necessary functional (F)
and non-functional (NF) characteristics.

Having a detailed plan in writing, like a set of rules or instructions. A detailed plan
for how atomic web services interact with each other is needed to automatically create
CWS. This condition is needed because machines need to clearly understand the specification
when they are doing automated tasks. Proposed to use TLA (Temporal Logic of Actions)
formalism by L. Lamport [2] is a way to explain how something works. The selection
of this formalism is substantiated by several distinguishing characteristics: firstly, the
utilization of the Model Checking verification method (TLC, TLA Checker) is seamlessly
integrated into the corresponding TLA Toolbox software. Secondly, the incorporation of the
"behavior"concept enables the description of acceptable scenarios for the operation of the
system under examination. Through the Model Checking approach, it becomes feasible to
automatically verify permissible system states, acceptable parameter values for specifications,
and to detect potential "deadlocks". One notable advantage of adopting the Model Checking
approach for verification lies in its potential for complete automation.

The verification process is tasked with determining whether the formal specification
of the Composite Web Service (CWS) has been accurately constructed. This entails
confirming the correctness of the specification. A supporting statement from |[3| reinforces
this notion: "Finding methods to ensure that the developed hardware and software meet their
specifications is a core challenge in computer science."Conversely, the validation procedure
for CWS seeks to answer the question, "Are we developing the appropriate system with
CWS?"This process focuses on validating the suitability of the CWS, ensuring its compliance
with predefined standards for both functional (F) and non-functional (NF) attributes. It is
recommended to evaluate the practicality of the synthesized CWS for a specific instance,
with predetermined criteria for its F and NF characteristics.

2 Formulation of the problem

It is imperative to identify the functional (F) and non-functional (NF) properties of a
newly conceptualized Composite Web Service (CWS) during the planning phase of its
creation [4]. The automated synthesis of CWS is proposed to proceed systematically through

122 Hierarchical model for building composite . ..

the stages of conceptualization, specification, and verification and validation (V&V). This
sequence, referred to as "conceptualization/specification/V&V,"entails developing a formal
model specification, designing a CWS model, validating the model, and assessing its adequacy.
To streamline the specification stage, it is recommended to structure the model of the CWS
during the conceptualization phase. This involves creating a formal, machine-interpretable
definition of acceptable scenarios for the operation of the CWS. The verification and
validation (V&V) stage ensures alignment between the developed model and specification,
while also confirming the adequacy of the model by verifying that the planned CWS’s F and
NF characteristics meet the required specifications. As a result, this work undertakes the
investigation of the proposed sequence of steps in the automated synthesis process of CWS,
along with the technologies and tools utilized in its implementation.

3 Conceptualization of CWS

Consider the Composite Web Service (CWS) as a hierarchical structure, which simplifies
the subsequent specification process. Complex hierarchical systems can be organized as
follows [5, 6]: initially, a conceptual model of the system is crafted, with each layer
representing a different level of the subsystem hierarchy. The hierarchical modeling approach
is demonstrated by creating models of system components that are then integrated into the
overall system model.

The system under investigation is denoted as "coordinator/computers,"representing a
specific instance of CWS. The "Controller"design pattern |7] can aptly describe the behavior
of such a system. According to this pattern, "a controller should typically delegate tasks to
other objects and manage their activities rather than executing tasks themselves." Examples
of existing system components aligning with the "Controller"pattern include elements of
the Grid infrastructure (CE/WNs, Computing Element & Working Nodes), where the CE
component assumes the role of the controller (coordinator). These proposed abstractions
resonate with the composition model outlined in the WS-BPEL standard 8|, known as
"orchestration a model for centrally coordinating web services within a composition (CWS).
The function of the synthesis process coordinator is performed by the BPEL Engine
component, implemented as part of the corresponding tools (Oracle BPEL Process Manager,
ActiveBPEL, Eclipse BPEL Designer, etc.). Let’s denote the BPEL Engine component as
CRD (Coordinator, Controller).

To describe the specification formalism, we use a set-theoretic approach. Let us denote
the set of atomic web services as AWS = {aws; |i=1,m}, m € N, where aws; € AW S —
atomic web services available for use. Sets of some necessary for the implementation of the F-
characteristics of CWS will be represented as subsets of the set AWS: {Cj| J= I,_n} , nE
N, where C; C AWS — subset of atomic web services required for implementation j-th
F-characteristics of CWS.C; = {awsk| k= m} , p€ N,and p <m.

Let everyone aws; characterized by a pair (af;, anf;), where af; and anf; — ®- and HP-
characteristics aws;, respectively. By af;will understand some F-transformation, performed
on a set of input data vec;: af; = f;(vec;). Conceptually under aws;we can understand some
abstract entity that implements a function f;(vec;).

Let the NF characteristic anf; determined by three (ry,t;,¢;), where r;(response) —
response time aws;; t; (throughput) — the capacity of the network channel formed by the

V.V. Shkarupilo, V.A. Lakhno et al. 123

sender node of the request and the recipient node (on which some aws;); ¢;(cost) — function
execution cost value f;(vec;). In this case, we will assume that the value of the element
riequals the sum of the times spent on transmitting the request (from the sending node to
the receiving node) and on implementing the F-characteristic to some aws;, deployed on the
recipient node.

Let’s assume that the client request specifies requirements for F-(F req) and
NF characteristics (NF _req)CWS. NF req, wherein, are determined by three
(r_req, t_req, c¢_req), where the elements of the triple represent the response time, link
capacity, and cost requirements of CWS, respectively.

A positive answer to the question “Does some NF characteristic of CWS satisfy the
requirements of the client request?” it is proposed to give if the corresponding inequalities
are true:

r_req > Zn. (1)
=1

t_req < min(t;).

n
c_req > Z C;.
i=1

If we view the interactions among certain awsy, awsgi1 € C; entities through the
lens of CWS as sequential exchanges between computing processes dispersed geographically,
facilitated by asynchronous exchange of structured messages, it seems plausible to consider a
formalism grounded in the principle of function superposition as an apt means to depict the
functional characteristic of CWS. This approach can be justified by Charles Hoare’s theory
of interacting sequential processes [9] and specific aspects of message exchange mechanisms
among distributed computer system components outlined in the SOAP protocol [10]. This
technique serves as a natural method for attaining the requisite functional characteristic of
CWS aggregation, as illustrated in (Fig. (1))

anf,, = L L TR N
. min(t, ...),
(el S krik
C* +(.’}‘|
aws, aws, C,
af, af., af, e af.,,

Figure 1: j-th F-characteristic of CWS aggregation scheme

Let’s separate the "coordinator/computers"system into two strata: St 0 and St 1 (Table
3.

Because the function is to coordinate atomic web services as part of CWS; by the
coordination procedure we mean the execution of calls to some aws;, € Cj in a given sequence.
CRD and awsy, In this case, we will call them elements of the corresponding strata.

124 Hierarchical model for building composite . ..

Losses | Purpose of the component | Formal notation
St 0 coordinator CRD
St 1 calculators C; = {awsy}

Utilizing the introduced formalism, we offer a structural UML diagram depicting the
stratification of the CWS "coordinator/computers" (fig. . Here, the term "refines,"denoted
by the operation (operator), signifies the execution of the coordination procedure.

CWS
St 0uSt 1

¢

«refines»

CRD }-----------3 C
S7 0 ST 1

Figure 2: CWS stratification scheme

Let the procedure for coordinating elements C; is implemented within a certain
subroutine. In the theory of interacting sequential processes proposed by Charles Hoare,
it is recommended to regard the entire system under examination as a process. Here, the
behavior of this process is delineated by the behaviors of its constituent subprocesses.
These subprocesses’ behavior, in turn, is contingent upon the frequency and order of events.
Consequently, alterations in the states of the system in question transpire upon the incidence

Yy A4 YhANY4

of events of three distinct types: “boundary”, “challenge”, “result”. Let us represent these types
of events in the form of corresponding sets:

REQ = {req, resp},

where RE(Q) — many boundary events, and req— coordinator receiving event C'R Drequest with
requirements for F and NF characteristics of CWS (we will consider req as initial event);resp—
final event — sending the result of the CWS work;

INVOKE = {invokey} ,
where/ NVOKE — many call events from the coordinator C' RDelements awsy € Cj;
RES = {resy},

where RE S — set of receiving events by coordinator C'R Dresults of element’s operation aws; €
Cj;.

Some event invoke, € INVOKE we will consider as a stimulus the following type of
display:

fr 1 vecy — resy.

V.V. Shkarupilo, V.A. Lakhno et al. 125

We aim to delineate subprocesses that unveil the functional characteristics of CWS
via suitable scenarios. Drawing from Charles Hoare’s formalism, we propose documenting
events using a protocol—a predefined sequence of notations linked to events. We advocate
substituting the term "protocol"with the notion of "scenario."This adjustment aligns better
with the intricacies of the system under consideration, as the orchestration model delineates
a centralized approach to orchestrating the coordination process. Let us denote by a set of
scenarios describing the dynamics CWS’s (F-characteristics):

S = {77}

GCRD

7 =<invokey, ..., res; >, =1, p. (2)

Those every SjCRD describes a method (scenario) for implementing some CWS F-
characteristic based on coordination of elements C;.The initial entry of the script corresponds
to some event of the “call” type, and the final entry corresponds to an event of the “result”
type. It’s obvious that |S| (cardinality of the set S) equal to the number of F-characteristics
of CWS.

The item under investigation (system) first takes part in an event, and then it behaves
exactly like a process (subprocess), according to C. Hoare’s theory of interacting sequential
processes. Formally, it is proposed to write it like this:x — P, where x, P — some event
and process (as a sequence of events), respectively; * ’ — follow operator; reads like “P for
2”. Let’s modify this recording method by including a selected type of boundary events into
consideration. To do this, let us denote by sjcﬁD some alternative scenario specifying an
alternative CWS’s F-characteristic. The alternative will be designated as ."The following
characteristics apply to acceptable CWS speakers:

req — (S]CRDl sj(-’:ﬁD) — resp. (3)

One could think about this method of defining the CWS dynamics as an expansion
of (2).

It is also important to note that [11] suggests an alternative method of documenting events
(instead of laying out a timeline). The concept of "process history"(h) is utilized in place

of "protocol."Synopsis h is carried out in the manner: e LN ¢ e, € € E, where E— several
incidents, ‘—’indicates the changes between occurrences, h — an arrangement of transitional
events from F.

From the perspective of streamlining the process for interpreting a script into a formal
TLA specification, we believe that setting the sequence of events using scripts is a more
acceptable method.

4 A system with CWS example

Now, let’s delve into a specific scenario. Let’s suppose we're examining a system equipped
with Composite Web Services (CWS). This system can be perceived as a modified version of

126 Hierarchical model for building composite . ..

the "coordinator/computers"system. We introduce an additional actor named "Client"into
this system, denoting a source of boundary events: request generation is represented by event
req; while receiving the CWS output is depicted by event resp.

As an example domain scenario, let’s consider the process of generating queries to a
Database Management System (DBMS). The significance of this scenario is underscored by
the prevalence of corresponding web-based software systems (eBay, newegg, etc.). Because
Oracle or MySQL solutions are usually used as a DBMS; let the set of query generation
functions be presented as the following set: {select, delete, update}, where the elements
denote the functions for generating queries for selecting, deleting and modifying table
records, respectively. Let the specified functions be implemented by atomic web services
awsy, awss, awss, respectively.

To modify (delete) the required record of a table, you must first generate a query to
make sure that exactly the required record is selected; then, depending on the end goal being
pursued, execute either the request delete, or request update. As a consequence, we see that
a possible way to automate this procedure is the synthesis of CWS, the functioning of which
can be carried out according to two scenarios:

(s7P| s§7P)

req — — resp.

Scenarios s{%#P and s§FP reveal the F-characteristics of CWS:
AWS = {awsy, awss, awss};

C1 = {awsy, awss}; Cy = {awsy, awss};
slcRD =<invoke 1, res 1, invoke 2, res 2 >;
SQCRD =< 1tnvoke 1, res 1, invoke 3, res_ 3 > .

Let us present the described scenarios in the form of a UML interaction sequence diagram

(fig.).

5 Specification, V & V

Interpreting scenarios s¢#P and s§#P into a formal TLA specification involves envisioning

scenario records as sequences of Composite Web Service (CWS) states. To achieve this, we
establish rules for specifying event occurrences:initialization of variables corresponding to
events involves assigning elements of the set; ’0’ denotes the event did not occur, while any
other value represents occurrence; a modifier (”) indicates the value of a variable specifying
event occurrence at a subsequent point in time.

To define CWS states and their sequence: utilize the conjunction operator (A) to connect
the current state to the previous one and set variable values based on events within
the CWS state; employ the disjunction operator (V) to indicate alternation in scenarios;
the "UNCHANGED’ modifier denotes that a variable’s value in the current state remains
unchanged from the previous state.

The TLA specification for the given cases (s{#’and s , is then created using the
interpretation rules outlined above. Listing for formal CWS TLA demonstrated (Fig. .

§0)

V.V. Shkarupilo, V.A. Lakhno et al. 127

| Clignt CRD aws, ‘ aws, aws,

I 1:req I : : :
I | | 1 |
2; invoke_1 | : I
gl i |
3 res_1 u) select | :
e | |
| 1 |
| I |
i | | |
AL1 4 Irrwljl-:e_2 ! :
= b I
5: res 2 ; delete |
I E'M)J e AR R [
h¥ [| [
1 | | |
b | |
{ ,('PJ}J I dinvoke 3| :
5! | 1 ol e
i 5 res 3 ; iU‘,/D update
K mm e mm o e e e e
6: resp

TRl Mt T
|

Figure 3: Scenarios for the operation of a system with CWS

Listing 1 defines valid CWS states according to the following conventions: Init, OnReq,
Onlnvoke 1,..., OnRes3, OnResp. The correctness of the specification was checked using the
Model Checking method (TLC, TLA Checker), integrated into the TLA Toolbox development
environment.

Analyzing the proposed specification method, one can note some cumbersomeness
(syntactic redundancy) of the resulting CWS TLA specification. As an opposite (positive)
point, we can point out the clarity and structure of the TLA specification obtained through
the use of the proposed set of translation rules. The indicated advantages and disadvantages
can also characterize wsdl (Web Services Description Language) descriptions of atomic web
services.

The next step is to implement the validation procedure. In our case, the validation
procedure consists of conducting discrete-event simulation modeling in the DEVS Suite
environment. A distinctive feature of the DEVS formalism is the concept of “atomic model”
[12]. This concept is preferable in that it allows one to naturally represent the hierarchical
connections (relationships) of component models within a system model with a CWS.

Let us denote by am__1, ..., am__3 atomic web service models awsy, ..., awss, respectively.
Coordinator Model C'RD let’s denote it as am_ CRD. We will represent the “Client”
component of a system with CWS in the form of an atomic model of a scenario generator
(s§BDor s§BP) which are then sent to the model’s input ports am CRD. Let us denote
the model of the “Client” component as am__Gen.

Let’s include models of atomic components as part of the system model with CWS
(em_CWS). We will record the moments when messages appear on the input and output
ports (in and out) models em_CW.S as moments of the onset of boundary events regand
resp, respectively.

128 Hierarchical model for building composite . ..

“* operate with natural numbers
EXTENDS Naturals
* variables denoting events
VARIABLES req, resp,
invoke_1, invoke 2, invoke 3,
res 1, res 2, res_3
* setting acceptable wvalues
Def == /\ req\in{0,1}
/N resp \in{0,1}
/\ invoke 1 \in{0,1}
/\res_1 win {0,1}
/\ invoke 2 \in{0,1}
/\ res_2 \in {0,1}
/\ invoke 3 \in (0,1}
/\ res_3 \in {0,1}
“* CWS state specification:
* 1 — none of the events happened
*
Init == /\ reg=0__/\ invoke 1=0/\res 1=0/\resp=0/\invoke 2=0/\ res 2=0/\invoke 3=0 /\ res 3=0
“W* 2 — receipt of a request
“W* from the client
OnkReq == /\ req' =1 - req
/\ UNCHANGED<<Iresp>>
/\ UNCHANGED<<invoke 1, invoke 2, invoke_ 3>>
/\ UNCHRNGCED<<res_ 1, res_2, res_3»>
* 3 - call by coordinator aws_1
OnInvoke 1 == /% OnReq
/\ invoke 1'=l-invoke_ 1
/\ UNCHANGED<<req, resp>>
/\ UNCHANGED<<invoke 2, invoke 3>>
/\ UNCHANGED<<res 1, res 2, res 3>>
“* 4 - receipt by coordinator
* call result aws_1
OnRes_1 == /\ OnInvoke 1
/N res 1' =1 - res_1
/\ UNCHANGED<<req, resp>>
/\ UNCHANGED<<invoke 1, invoke 2, invoke 3>>
/% UNCHRNGED<<res_ 2, res_3>>
“* 5 — call by coordinator aws 2
OnInvoke 2 == /\ OnRes 1
/\ invoke 2' = 1 - invoke 2
/N UNCHANGED<<req, resp>>
/\ UNCHANGED<<invoke_ 1, invoke 3>>
/\ UNCHRNGCED<<res_ 1, res_2, res_3»»>
* & — receipt by coordinator
W* call result aws_2
OnRes_2 == /\ OnInvoke 2
/N res 2' =1 - res_2
/\ UNCHANGED<<req, resp>>
/\ UNCHANGED<<invoke 1, invoke 2, invoke 3>>
/\ UNCHANGED<<res 1, res 3>>
* 5 - call by coordinator aws 3
CnInvoke 3 == /\ OnRes 1
/\ invoke 3' = 1 - invoke 3
/\ UNCHANGED<<req, resp>>
/\ UNCHANGED<<invoke_ 1, invoke 2>>
/N UNCHARNGED<<res_ 1, res_2, res_3»>
* & — receipt by coordinator
W call result aws_3
OnRes 3 == /\ OnInvoke 3
/N res 3' =1 - res 3
/\ UNCHANGED<<req, resp>>
/\ UNCHANGED<<invoke 1, invoke 2, invoke 3>>
/\ UNCHANGED<<res_1l, res_2>>
* 7 - sending to client
* work result CWS,
* task of alternativeness
* scenarios
OnResp == (OnRes_2 \/ OnRes_3) /\ resp’ = 1 - resp
Spec == Init /\ [OnResp] <<req, resp, invoke 1, invoke 2, invoke 3,
res 1, res 2, res 3>>

Figure 4: Fragment of specification

V.V. Shkarupilo, V.A. Lakhno et al. 129

Now let’s model the system we are studying. As NF features of the system model’s
constituent parts with CWS, we select the response time, ms:anfi;.r; = 30, anfo.ry = 40,
anfs.r3 = 35. Model response time am_Gen set equal to 10 ms, and the time spent on
implementing the coordination procedure by the model am CRD — 50 ms.

Let the requirements for SF characteristics CWS NF' _req.r _req = 200 ms.Our task is
to check through simulation whether the CWS model satisfies the given NF requirements.
Satisfaction of the requirements for the CWS F-characteristics is confirmed by the correct
functioning of the model.

Consider the case when the input port of the coordinator model am C'RD script arrived

s¢RD (fig[5).

cm_CWa

i am_CRD - out!

in2 & @ outz

el active e out

am_Gen &S 1_poil res 2 - b res

activate 4 passive res 3o @ =60,000 o res
0 = infinity & 5_2_port :

am_1
Lein in@ passive -@out o
0 = infinity
am_2 EE)
inel passive o ou fhy [PEEERO oy
a = infinity o = infinity

Figure 5: Block diagram of a system with CWS

A fragment of time diagrams of the modeling process is shown in fig. [0

res_2

res 2
[IES

00 0.0 800 1000 1200 140.0 160.0 190.0 2000 2200
Time [msec]
g N
3 x
00 0.0 0.0 1000 1200 140.0 160.0 160.0 2000 2200

Time [msec)]

res_1

1
res

400 0.0 800 100.0 1200 140.0 160.0 180.0 2000 200

Time [msec]
- -
=
6 ﬂ
a0 0.0 800 100.0 1200 140.0 160.0 180.0 2000 2200
Time [msec]
active active
§ passive passive |
£
0.0 0.0 800 100.0 1200 140.0 160.0 100.0 2000 2200

Time [msec)]

Figure 6: Operation time intervals am 1, am_2

The results of the simulation show that the total value of the component’s NF
characteristics em_CW'S sums to 225 milliseconds, which is insufficient to meet inequality

130 Hierarchical model for building composite . . .

(1). For clarity purposes, we have incorporated an illustration of the proposed conceptual
model in Figure [7] specifically pertaining to the scenario under examination.

e N\

CWS Conceptualization §‘
ST 0US 1 —
¢ |/
: i
: L
1] ;

a I

: «refines» i:J

| !
€16 k1 €CRD i
St 1 St 0 .

| «uses» i i

, req —» ! E
(2 55) o

i — resp :
__________________________ I

e Lr e Ao r
i I A
: [

[1

i am Gen,am CRD,

am l,am 2,am 3

Figure 7: CWS automated synthesis process conceptual model

V.V. Shkarupilo, V.A. Lakhno et al. 131

6 Conclusion

Henceforth, the automated synthesis of CWS entails three consecutive stages:
conceptualization, specification, and V&V.

In the conceptualization phase, the composite web service model was stratified, drawing
upon Charles Hoare’s theory of interacting sequential processes to establish conditions
facilitating the subsequent specification stage.

Guidelines for formalizing ideas from the conceptualization stage into a TLA specification
are proposed during the specification step.

During the V&V phase, a discrete-event simulation model of CWS was developed within
the DEVS Suite environment, and the accuracy of the TLA specification was validated. A
domain scenario instance was examined, involving the formulation of queries for a database
management system.

References

[1] Shkarupilo V.V., An integrated approach to automating the composition of web services, Scientific Bulletin of the
Chernivets National University, Series: Computer systems and components, 2(1) (2011), 113 — 119.

[2] Lamport L., Specifying Systems, Boston:Addison-Wesley (2002). https://lamport.azurewebsites.net/tla/book-02-08-
08.pdf

[3] Pakonen A., Model-checking I&C logics — insights from over a decade of projects in Finland, 12th Nuclear Plant
Instrumentation, Control and Human-Machine Interface Technologies (2021), 792-801. https://dx.doi.org/10.13182/T124-
34322

[4] Deretsky V.A., An approach to the composition of web services based on the specification of functional semantics, Problems
of programming, 2, (2009), 30-39. https://core.ac.uk/download/pdf/38330531.pdf

[5] Mesarovic M.D., Macko D., Takahara Y., Theory of hierarchical multi-level systems, Elsevier Science,
(1970).https:/ /esploro.libs.uga.edu/permalink/01GALI _ UGA /1820mg4/alma99201813902959

[6] Samarsky A.A., Mathematical Modeling: Ideas. Methods. Examples, Moscow:Fizmatlit, (2001).

[7] Larman, C. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative
Development 3rd. Addison Wesley Professional(2004). https://bsituos.weebly.com/uploads/2/5/2/5/25253721 /applying-
uml-and-patterns-3rd.pdf

[8] Web Services Business Process Execution Language Version 2.0, OASIS Standard: ad/2007-04-11 (2007). http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf

[9] Hoare C.AR., Communicating Sequential Processes, Prentice Hall International(2022).
http://www.usingcsp.com /cspbook.pdf

[10] SOAP Version 1.2 Part 1: Messaging Framework (Second Edition) [Electronic resource], W3C Recommendation: ad/2007-
04-27, (2007). http://www.w3.org/ TR /soapl2-partl/

[11] Toporkov V.V, Modeli raspredelennykh vychisleniy, Moscow:FIZMATLIT,(2004).
https://rusneb.ru/catalog/000199 000009 002557693/

[12] Tendeloo Y.V., Vangheluwe H., An evaluation of DEVS simulation tools. Simulation, 93(2),(2017), 103-121.
https://dx.doi.org/10.1177/0037549716678330

	Introduction
	Formulation of the problem
	Conceptualization of CWS
	A system with CWS example
	Specification, V & V
	Conclusion

