
ISSN 1563–0277, eISSN 2617-4871 JMMCS. 2(122). 2024 https://bm.kaznu.kz

IRSTI 81.93.29 DOI: https://doi.org/10.26577/JMMCS2024-122-02-b10

V.V. Shkarupilo1 , V.A. Lakhno1 , N.B. Konyrbaev2∗ ,

Zh.D. Baishemirov3,4 , A.B. Adranova2 , A.G. Derbessal2
1National University of Bioresources and Nature Management of Ukraine, Ukraine, Kyiv

2Korkyt Ata Kyzylorda University, Kazakhstan, Kyzylorda
3Abai Kazakh National Pedagogical University, Kazakhstan, Almaty

4Kazakh-British Technical University, Kazakhstan, Almaty
∗e-mail: n.konyrbaev@mail.ru

HIERARCHICAL MODEL FOR BUILDING COMPOSITE WEB SERVICES

The current evolution of disseminated computer program frameworks is characterized by a
growing adherence to the principles of service-oriented engineering (SOA). Simultaneously, these
frameworks are becoming more intricate, with an increasing number of components and more
complex data connections between them. This situation underscores the importance of employing
mechanisms to unify artifacts in the process of developing composite web services, which govern,
among other aspects, the architectural plane of the frameworks under construction. A model for
constructing composite web services is suggested as a suitable tool, implemented in accordance with
a hierarchical approach, intended for use in designing distributed systems. Model is constructed
over an assumption that coordination of the components of a composite web service is carried out
in a centralized manner ? in accordance with the orchestration model. To implement formalization
and obtain, based on analytical representations, the corresponding software implementations, it has
been decided to use the DEVS mathematical apparatus. The aspect of software implementation
is considered pivotal in determining the feasibility of automating the acquisition of composite
web services that operate within the orchestration model. Obtained research results has been
interpreted as a confirmation of the effectiveness of this approach on the basis of the scenario
of querying the database. Resulting artifacts have been represented with UML notation. The
relationship between analytical representations and corresponding software implementations has
also been demonstrated. Usage of the DEVS Suite tools has made it possible to visualize the
process of simulation - to obtain estimated values of the indexes of the resulting solutions.
Key words: distributed system, composite web service, DEVS, UML.

В.В. Шкарупило1, В.А. Лахно1, Н.Б. Коңырбаев2∗ , Ж.Д. Байшемиров3,4,
А.Б. Адранова2, А.Ғ. Дербесал2

1Украинаның биоресурстар және табиғатты пайдалану ұлттық университетi, Украина, Киев қ.
2Қорқыт ата атындағы Қызылорда университетi, Қазақстан, Кызылорда қ.

3Абай атындағы Қазақ ұлттық педагогикалық университетi, Қазақстан, Алматы қ.
4Қазақстан-Британ техникалық университетi, Қазақстан, Алматы қ.

∗e-mail: n.konyrbaev@mail.ru
Композиттiк веб-қызметтердi құрудың иерархиялық моделi

Бөлiнген бағдарламалық жүйелердi дамытудың қазiргi деңгейiн сервистiк-бағдарланған
архитектура (СБA) ережелерiн ұстану барған сайын кең таралған тәжiрибеге айналатын
деңгей ретiнде сипаттауға болады. Сонымен қатар, мұндай жүйелердiң күрделiлiк деңгейi
қатысатын құрамдас бөлiктердiң саны бойыншада, осы құрамдас бөлiктер арасында
орнатылған ақпараттық байланыстардың күрделiлiгi бойынша да арта түсуде. Бұл жағдай,
өз кезегiнде, құрылатын жүйелердiң архитектуралық құрамдас бөлiгiн реттейтiн құрама
веб-қызметтердi әзiрлеу процесiнде артефактiлердi бiрiктiру тетiктерiн пайдаланудың
маңыздылығын анықтайды. Тиiстi құрал ретiнде иерархиялық тәсiлге сәйкес жүзеге
асырылатын композиттiк веб-қызметтердi құру моделi ұсынылады.

c© 2024 Al-Farabi Kazakh National University

https://orcid.org/0000-0002-0523-8910
https://orcid.org/0000-0001-9695-4543
https://orcid.org/0000-0002-8788-4149
https://orcid.org/0000-0002-4812-4104
https://orcid.org/0000-0001-7233-4104
https://orcid.org/0009-0004-4624-8797

120 Hierarchical model for building composite . . .

Модель бөлiнген жүйенi жобалау кезеңiнде пайдалануға арналған. Модель композиттiк
веб-қызметтiң құрамдас бөлiктерiн үйлестiру орталықтандырылған - оркестрлiк модельге
сәйкес жүзеге асырылады деген болжамға негiзделген. Ресiмдеудi жүзеге асыру және
аналитикалық ұсыну негiзiнде сәйкес бағдарламалық қамтамасыз етудi енгiзу үшiн DEVS
математикалық аппаратын пайдалану туралы шешiм қабылданды. Бағдарламалық қамта-
масыз етудi енгiзу, өз кезегiнде, оркестрлiк модель бойынша жұмыс iстейтiн композиттiк
веб-қызметтердi алу процесiн автоматтандыру мүмкiндiгiн анықтайтын фактор ретiнде
қарастырылады. Зерттеу нәтижелерi дерекқорға сұраныстарды орындау сценарийiнiң
мысалын пайдалана отырып, бұл тәсiлдiң тиiмдiлiгiн растады. Алынған артефактiлер
UML экспрессивтi құралдары арқылы ұсынылды. Сондай-ақ аналитикалық көрiнiстермен
сәйкес бағдарламалық қамтамасыз етудi енгiзу арасындағы байланыс көрсетiлдi. DEVS
Suite құралдарының мүмкiндiктерiн пайдалану, басқалармен қатар, модельдеу процесiн
визуализациялауға – жасалатын шешiмдердiң көрсеткiштерiнiң болжалды мәндерiн алуға
мүмкiндiк бердi.

Түйiн сөздер: бөлiнген жүйе, композиттiк веб-сервис, DEVS, UML

В.В. Шкарупило1, В.А. Лахно1, Н.Б. Конырбаев2∗, Ж.Д. Байшемиров3,4,
А.Б. Адранова2, А.Г. Дербесал2

1Национальный университет биоресурсов и природопользования Украины, Украина, г. Киев
2Кызылординский университет имени Коркыт Ата, Казахстан, г. Кызылорда
3Казахский национальный университет имени Абая, Казахстан, г. Алматы
4Казахстанско-Британский технический университет, Казахстан, г. Алматы

∗e-mail: n.konyrbaev@mail.ru
Иерархическая модель построения составных веб-сервисов

Текущий уровень развития распределенных программных систем можно охарактеризовать
как такой, при котором следование положениям сервис-ориентированной архитектуры
(СОА) становится все более повседневной практикой. Вместе с тем уровень сложности таких
систем продолжает возрастать – как с позиции количества задействованных компонентов,
так и с позиции комплексности информационных связей, устанавливаемых между данными
компонентами. Такое положение вещей, в свою очередь, обуславливает важность использо-
вания в процессе разработки составных веб-сервисов механизмов унификации артефактов,
регламентирующих, в том числе, архитектурную составляющую создаваемых систем.
В качестве соответствующего инструмента предлагается модель построения составных
веб-сервисов, реализованная согласно иерархическому подходу. Модель предназначена
к использованию на этапе проектирования распределенной системы. Модель построена
на допущении, что координирование компонентов составного веб-сервиса осуществляется
централизованно – согласно модели оркестровки. Для проведения формализации и полу-
чения на основе аналитических представлений соответствующих программных реализаций
принято решение задействовать математический аппарат DEVS. Программная реализация,
в свою очередь, адресована в качестве фактора, обуславливающего возможность автома-
тизации процесса получения составных веб-сервисов, функционирующих согласно модели
оркестровки. Результаты проведенных исследований подтвердили действенность такого
подхода на примере сценария выполнения запросов к базе данных. Получаемые при этом
артефакты были представлены с использованием выразительных средств UML. Также была
продемонстрирована связь между аналитическими представлениями и соответствующими
программными реализациями. Использование возможностей инструментария DEVS Suite
позволило, в том числе, визуализировать процесс имитационного моделирования – для
получения оценочных значений показателей создаваемых решений.

Ключевые слова: распределенная система, композитный веб-сервис, DEVS, UML.

V.V. Shkarupilo, V.A. Lakhno et al. 121

1 Introduction

Today, the concept of reuse, which underlies service-oriented architecture (SOA), is one of the
defining concepts considered when creating distributed web applications. The reason for this
could be to save money on the development process. Web services are parts of SOA-based
systems. One big advantage of web services is that they are not tightly connected. This makes
the system better at working together and communicating with its different parts. The group
of online services in a system is often called a composite web service, and the individual parts
of the system are called atomic web services.

Given that composite web services (CWS) can embody systems of varying complexity,
it is prudent to conceptualize a CWS as a stratified system. This approach facilitates the
process of specification, verification, and validation, ensuring that the synthesized CWS
operates correctly through a series of automated steps. Research [1] highlights a deficiency
in addressing verification and validation (V&V) issues during development. Synthesizing a
CWS involves employing diverse methods to create a CWS with the necessary functional (F)
and non-functional (NF) characteristics.

Having a detailed plan in writing, like a set of rules or instructions. A detailed plan
for how atomic web services interact with each other is needed to automatically create
CWS. This condition is needed because machines need to clearly understand the specification
when they are doing automated tasks. Proposed to use TLA (Temporal Logic of Actions)
formalism by L. Lamport [2] is a way to explain how something works. The selection
of this formalism is substantiated by several distinguishing characteristics: firstly, the
utilization of the Model Checking verification method (TLC, TLA Checker) is seamlessly
integrated into the corresponding TLA Toolbox software. Secondly, the incorporation of the
"behavior"concept enables the description of acceptable scenarios for the operation of the
system under examination. Through the Model Checking approach, it becomes feasible to
automatically verify permissible system states, acceptable parameter values for specifications,
and to detect potential "deadlocks". One notable advantage of adopting the Model Checking
approach for verification lies in its potential for complete automation.

The verification process is tasked with determining whether the formal specification
of the Composite Web Service (CWS) has been accurately constructed. This entails
confirming the correctness of the specification. A supporting statement from [3] reinforces
this notion: "Finding methods to ensure that the developed hardware and software meet their
specifications is a core challenge in computer science."Conversely, the validation procedure
for CWS seeks to answer the question, "Are we developing the appropriate system with
CWS?"This process focuses on validating the suitability of the CWS, ensuring its compliance
with predefined standards for both functional (F) and non-functional (NF) attributes. It is
recommended to evaluate the practicality of the synthesized CWS for a specific instance,
with predetermined criteria for its F and NF characteristics.

2 Formulation of the problem

It is imperative to identify the functional (F) and non-functional (NF) properties of a
newly conceptualized Composite Web Service (CWS) during the planning phase of its
creation [4]. The automated synthesis of CWS is proposed to proceed systematically through

122 Hierarchical model for building composite . . .

the stages of conceptualization, specification, and verification and validation (V&V). This
sequence, referred to as "conceptualization/specification/V&V,"entails developing a formal
model specification, designing a CWS model, validating the model, and assessing its adequacy.
To streamline the specification stage, it is recommended to structure the model of the CWS
during the conceptualization phase. This involves creating a formal, machine-interpretable
definition of acceptable scenarios for the operation of the CWS. The verification and
validation (V&V) stage ensures alignment between the developed model and specification,
while also confirming the adequacy of the model by verifying that the planned CWS’s F and
NF characteristics meet the required specifications. As a result, this work undertakes the
investigation of the proposed sequence of steps in the automated synthesis process of CWS,
along with the technologies and tools utilized in its implementation.

3 Conceptualization of CWS

Consider the Composite Web Service (CWS) as a hierarchical structure, which simplifies
the subsequent specification process. Complex hierarchical systems can be organized as
follows [5, 6]: initially, a conceptual model of the system is crafted, with each layer
representing a different level of the subsystem hierarchy. The hierarchical modeling approach
is demonstrated by creating models of system components that are then integrated into the
overall system model.

The system under investigation is denoted as "coordinator/computers,"representing a
specific instance of CWS. The "Controller"design pattern [7] can aptly describe the behavior
of such a system. According to this pattern, "a controller should typically delegate tasks to
other objects and manage their activities rather than executing tasks themselves."Examples
of existing system components aligning with the "Controller"pattern include elements of
the Grid infrastructure (CE/WNs, Computing Element & Working Nodes), where the CE
component assumes the role of the controller (coordinator). These proposed abstractions
resonate with the composition model outlined in the WS-BPEL standard [8], known as
"orchestration a model for centrally coordinating web services within a composition (CWS).
The function of the synthesis process coordinator is performed by the BPEL Engine
component, implemented as part of the corresponding tools (Oracle BPEL Process Manager,
ActiveBPEL, Eclipse BPEL Designer, etc.). Let’s denote the BPEL Engine component as
CRD (Coordinator, Controller).

To describe the specification formalism, we use a set-theoretic approach. Let us denote
the set of atomic web services as AWS =

{
awsi

∣∣ i = 1,m
}
, m ∈ N , where awsi ∈ AWS –

atomic web services available for use. Sets of some necessary for the implementation of the F-
characteristics of CWS will be represented as subsets of the set AWS:

{
Cj| j = 1, n

}
, n ∈

N , where Cj ⊆ AWS – subset of atomic web services required for implementation j-th
F-characteristics of CWS.Cj =

{
awsk| k = 1, p

}
, p ∈ N , and p ≤ m.

Let everyone awsi characterized by a pair (afi, anfi), where afi and anfi – Φ- and НΦ-
characteristics awsi, respectively. By afiwill understand some F-transformation, performed
on a set of input data veci: afi = fi(veci). Conceptually under awsiwe can understand some
abstract entity that implements a function fi(veci).

Let the NF characteristic anfi determined by three (ri, ti, ci), where ri(response) –
response time awsi; ti (throughput) – the capacity of the network channel formed by the

V.V. Shkarupilo, V.A. Lakhno et al. 123

sender node of the request and the recipient node (on which some awsi); ci(cost) – function
execution cost value fi(veci). In this case, we will assume that the value of the element
riequals the sum of the times spent on transmitting the request (from the sending node to
the receiving node) and on implementing the F-characteristic to some awsi, deployed on the
recipient node.

Let’s assume that the client request specifies requirements for F-(F_req) and
NF characteristics (NF_req)CWS. NF_req, wherein, are determined by three
(r_req, t_req, c_req), where the elements of the triple represent the response time, link
capacity, and cost requirements of CWS, respectively.

A positive answer to the question “Does some NF characteristic of CWS satisfy the
requirements of the client request?” it is proposed to give if the corresponding inequalities
are true:

r_req ≥
n∑

i=1

ri. (1)

t_req ≤ min(ti).

c_req ≥
n∑

i=1

ci.

If we view the interactions among certain awsk, awsk+1 ∈ Cj entities through the
lens of CWS as sequential exchanges between computing processes dispersed geographically,
facilitated by asynchronous exchange of structured messages, it seems plausible to consider a
formalism grounded in the principle of function superposition as an apt means to depict the
functional characteristic of CWS. This approach can be justified by Charles Hoare’s theory
of interacting sequential processes [9] and specific aspects of message exchange mechanisms
among distributed computer system components outlined in the SOAP protocol [10]. This
technique serves as a natural method for attaining the requisite functional characteristic of
CWS aggregation, as illustrated in (Fig. 1).

Figure 1: j-th F-characteristic of CWS aggregation scheme

Let’s separate the "coordinator/computers"system into two strata: St_0 and St_1 (Table
3).

Because the function is to coordinate atomic web services as part of CWS; by the
coordination procedure we mean the execution of calls to some awsk ∈ Cj in a given sequence.
CRD and awsk In this case, we will call them elements of the corresponding strata.

124 Hierarchical model for building composite . . .

Losses Purpose of the component Formal notation
St_0 coordinator CRD
St_1 calculators Cj = {awsk}

Utilizing the introduced formalism, we offer a structural UML diagram depicting the
stratification of the CWS "coordinator/computers"(fig. 2). Here, the term "refines,"denoted
by the operation (operator), signifies the execution of the coordination procedure.

Figure 2: CWS stratification scheme

Let the procedure for coordinating elements Cj is implemented within a certain
subroutine. In the theory of interacting sequential processes proposed by Charles Hoare,
it is recommended to regard the entire system under examination as a process. Here, the
behavior of this process is delineated by the behaviors of its constituent subprocesses.
These subprocesses’ behavior, in turn, is contingent upon the frequency and order of events.
Consequently, alterations in the states of the system in question transpire upon the incidence
of events of three distinct types: “boundary”, “challenge”, “result”. Let us represent these types
of events in the form of corresponding sets:

REQ = {req, resp} ,

whereREQ – many boundary events, and req– coordinator receiving event CRDrequest with
requirements for F and NF characteristics of CWS (we will consider req as initial event);resp–
final event – sending the result of the CWS work;

INV OKE = {invokek} ,

whereINV OKE – many call events from the coordinator CRDelements awsk ∈ Cj;

RES = {resk} ,

whereRES – set of receiving events by coordinator CRDresults of element’s operation awsk ∈
Cj.

Some event invokek ∈ INV OKE we will consider as a stimulus the following type of
display:

fk : veck 7→ resk.

V.V. Shkarupilo, V.A. Lakhno et al. 125

We aim to delineate subprocesses that unveil the functional characteristics of CWS
via suitable scenarios. Drawing from Charles Hoare’s formalism, we propose documenting
events using a protocol—a predefined sequence of notations linked to events. We advocate
substituting the term "protocol"with the notion of "scenario."This adjustment aligns better
with the intricacies of the system under consideration, as the orchestration model delineates
a centralized approach to orchestrating the coordination process. Let us denote by a set of
scenarios describing the dynamics CWS’s (F-characteristics):

S =
{
sCRD
j

}
.

sCRD
j =< invokek, ..., resl >, l = 1, p. (2)

Those every sCRD
j describes a method (scenario) for implementing some CWS F-

characteristic based on coordination of elements Cj.The initial entry of the script corresponds
to some event of the “call” type, and the final entry corresponds to an event of the “result”
type. It’s obvious that |S| (cardinality of the set S) equal to the number of F-characteristics
of CWS.

The item under investigation (system) first takes part in an event, and then it behaves
exactly like a process (subprocess), according to C. Hoare’s theory of interacting sequential
processes. Formally, it is proposed to write it like this:x → P , where x, P – some event
and process (as a sequence of events), respectively; ‘ ’ – follow operator; reads like “P for
x”. Let’s modify this recording method by including a selected type of boundary events into
consideration. To do this, let us denote by sCRD

j+1 some alternative scenario specifying an
alternative CWS’s F-characteristic. The alternative will be designated as ."The following
characteristics apply to acceptable CWS speakers:

req → (sCRD
j | sCRD

j+1)→ resp. (3)

One could think about this method of defining the CWS dynamics (3) as an expansion
of (2).

It is also important to note that [11] suggests an alternative method of documenting events
(instead of laying out a timeline). The concept of "process history"(h) is utilized in place
of "protocol."Synopsis h is carried out in the manner: e h−→ e

′
; e, e

′ ∈ E, where E– several
incidents, ‘→’indicates the changes between occurrences, h – an arrangement of transitional
events from E.

From the perspective of streamlining the process for interpreting a script into a formal
TLA specification, we believe that setting the sequence of events using scripts is a more
acceptable method.

4 A system with CWS example

Now, let’s delve into a specific scenario. Let’s suppose we’re examining a system equipped
with Composite Web Services (CWS). This system can be perceived as a modified version of

126 Hierarchical model for building composite . . .

the "coordinator/computers"system. We introduce an additional actor named "Client"into
this system, denoting a source of boundary events: request generation is represented by event
req; while receiving the CWS output is depicted by event resp.

As an example domain scenario, let’s consider the process of generating queries to a
Database Management System (DBMS). The significance of this scenario is underscored by
the prevalence of corresponding web-based software systems (eBay, newegg, etc.). Because
Oracle or MySQL solutions are usually used as a DBMS; let the set of query generation
functions be presented as the following set: {select, delete, update}, where the elements
denote the functions for generating queries for selecting, deleting and modifying table
records, respectively. Let the specified functions be implemented by atomic web services
aws1, aws2, aws3, respectively.

To modify (delete) the required record of a table, you must first generate a query to
make sure that exactly the required record is selected; then, depending on the end goal being
pursued, execute either the request delete, or request update. As a consequence, we see that
a possible way to automate this procedure is the synthesis of CWS, the functioning of which
can be carried out according to two scenarios:

req → (sCRD
1 | sCRD

2)→ resp.

Scenarios sCRD
1 and sCRD

2 reveal the F-characteristics of CWS:

AWS = {aws1, aws2, aws3} ;

C1 = {aws1, aws2}; C2 = {aws1, aws3} ;

sCRD
1 =< invoke_1, res_1, invoke_2, res_2 >;

sCRD
2 =< invoke_1, res_1, invoke_3, res_3 > .

Let us present the described scenarios in the form of a UML interaction sequence diagram
(fig. 3).

5 Specification, V & V

Interpreting scenarios sCRD
1 and sCRD

2 into a formal TLA specification involves envisioning
scenario records as sequences of Composite Web Service (CWS) states. To achieve this, we
establish rules for specifying event occurrences:initialization of variables corresponding to
events involves assigning elements of the set; ’0’ denotes the event did not occur, while any
other value represents occurrence; a modifier (”) indicates the value of a variable specifying
event occurrence at a subsequent point in time.

To define CWS states and their sequence: utilize the conjunction operator (∧) to connect
the current state to the previous one and set variable values based on events within
the CWS state; employ the disjunction operator (∨) to indicate alternation in scenarios;
the ’UNCHANGED’ modifier denotes that a variable’s value in the current state remains
unchanged from the previous state.

The TLA specification for the given cases (sCRD
1 and sCRD

2), is then created using the
interpretation rules outlined above. Listing for formal CWS TLA demonstrated (Fig. 4).

V.V. Shkarupilo, V.A. Lakhno et al. 127

Figure 3: Scenarios for the operation of a system with CWS

Listing 1 defines valid CWS states according to the following conventions: Init, OnReq,
OnInvoke_1,..., OnRes3, OnResp. The correctness of the specification was checked using the
Model Checking method (TLC, TLA Checker), integrated into the TLA Toolbox development
environment.

Analyzing the proposed specification method, one can note some cumbersomeness
(syntactic redundancy) of the resulting CWS TLA specification. As an opposite (positive)
point, we can point out the clarity and structure of the TLA specification obtained through
the use of the proposed set of translation rules. The indicated advantages and disadvantages
can also characterize wsdl (Web Services Description Language) descriptions of atomic web
services.

The next step is to implement the validation procedure. In our case, the validation
procedure consists of conducting discrete-event simulation modeling in the DEVS Suite
environment. A distinctive feature of the DEVS formalism is the concept of “atomic model”
[12]. This concept is preferable in that it allows one to naturally represent the hierarchical
connections (relationships) of component models within a system model with a CWS.

Let us denote by am_1, ..., am_3 atomic web service models aws1, ..., aws3, respectively.
Coordinator Model CRD let’s denote it as am_CRD. We will represent the “Client”
component of a system with CWS in the form of an atomic model of a scenario generator
(sCRD

1 , or sCRD
2), which are then sent to the model’s input ports am_CRD. Let us denote

the model of the “Client” component as am_Gen.
Let’s include models of atomic components as part of the system model with CWS

(cm_CWS). We will record the moments when messages appear on the input and output
ports (in and out) models cm_CWS as moments of the onset of boundary events reqand
resp, respectively.

128 Hierarchical model for building composite . . .

Figure 4: Fragment of specification

V.V. Shkarupilo, V.A. Lakhno et al. 129

Now let’s model the system we are studying. As NF features of the system model’s
constituent parts with CWS, we select the response time, ms:anf1.r1 = 30, anf2.r2 = 40,
anf3.r3 = 35. Model response time am_Gen set equal to 10 ms, and the time spent on
implementing the coordination procedure by the model am_CRD – 50 ms.

Let the requirements for SF characteristics CWS NF_req.r_req = 200 ms.Our task is
to check through simulation whether the CWS model satisfies the given NF requirements.
Satisfaction of the requirements for the CWS F-characteristics is confirmed by the correct
functioning of the model.

Consider the case when the input port of the coordinator model am_CRD script arrived
sCRD
1 (fig.5).

Figure 5: Block diagram of a system with CWS

A fragment of time diagrams of the modeling process is shown in fig. 6.

Figure 6: Operation time intervals am_1, am_2

The results of the simulation show that the total value of the component’s NF
characteristics cm_CWS sums to 225 milliseconds, which is insufficient to meet inequality

130 Hierarchical model for building composite . . .

(1). For clarity purposes, we have incorporated an illustration of the proposed conceptual
model in Figure 7, specifically pertaining to the scenario under examination.

Figure 7: CWS automated synthesis process conceptual model

V.V. Shkarupilo, V.A. Lakhno et al. 131

6 Conclusion

Henceforth, the automated synthesis of CWS entails three consecutive stages:
conceptualization, specification, and V&V.

In the conceptualization phase, the composite web service model was stratified, drawing
upon Charles Hoare’s theory of interacting sequential processes to establish conditions
facilitating the subsequent specification stage.

Guidelines for formalizing ideas from the conceptualization stage into a TLA specification
are proposed during the specification step.

During the V&V phase, a discrete-event simulation model of CWS was developed within
the DEVS Suite environment, and the accuracy of the TLA specification was validated. A
domain scenario instance was examined, involving the formulation of queries for a database
management system.

References

[1] Shkarupilo V.V., An integrated approach to automating the composition of web services, Scientific Bulletin of the
Chernivets National University, Series: Computer systems and components, 2(1) (2011), 113 – 119.

[2] Lamport L., Specifying Systems, Boston:Addison-Wesley (2002). https://lamport.azurewebsites.net/tla/book-02-08-
08.pdf

[3] Pakonen A., Model-checking I&C logics — insights from over a decade of projects in Finland, 12th Nuclear Plant
Instrumentation, Control and Human-Machine Interface Technologies (2021), 792–801. https://dx.doi.org/10.13182/T124-
34322

[4] Deretsky V.A., An approach to the composition of web services based on the specification of functional semantics, Problems
of programming, 2, (2009), 30–39. https://core.ac.uk/download/pdf/38330531.pdf

[5] Mesarovic M.D., Macko D., Takahara Y., Theory of hierarchical multi-level systems, Elsevier Science,
(1970).https://esploro.libs.uga.edu/permalink/01GALI_UGA/182omg4/alma99201813902959

[6] Samarsky A.A., Mathematical Modeling: Ideas. Methods. Examples, Moscow:Fizmatlit, (2001).

[7] Larman, C. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative
Development 3rd. Addison Wesley Professional(2004). https://bsituos.weebly.com/uploads/2/5/2/5/25253721/applying-
uml-and-patterns-3rd.pdf

[8] Web Services Business Process Execution Language Version 2.0, OASIS Standard: ad/2007-04-11 (2007). http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf

[9] Hoare C.A.R., Communicating Sequential Processes, Prentice Hall International(2022).
http://www.usingcsp.com/cspbook.pdf

[10] SOAP Version 1.2 Part 1: Messaging Framework (Second Edition) [Electronic resource], W3C Recommendation: ad/2007-
04-27, (2007). http://www.w3.org/TR/soap12-part1/

[11] Toporkov V.V., Modeli raspredelennykh vychisleniy, Moscow:FIZMATLIT,(2004).
https://rusneb.ru/catalog/000199_000009_002557693/

[12] Tendeloo Y.V., Vangheluwe H., An evaluation of DEVS simulation tools. Simulation, 93(2),(2017), 103–121.
https://dx.doi.org/10.1177/0037549716678330

	Introduction
	Formulation of the problem
	Conceptualization of CWS
	A system with CWS example
	Specification, V & V
	Conclusion

