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STUDY ON THE INITIAL BOUNDARY VALUE PROBLEM FOR A
FRACTIONAL DIFFERENTIAL EQUATION WITH A FRACTIONAL
DERIVATIVE OF VARIABLE ORDER

This article studies the convergence of a numerical method for solving an initial-boundary value
problem of a fractional differential equation with a variable order of the fractional derivative.
In the generalized fractional differential filtration equation with a transitional filtration law in
heterogeneous porous media, it is assumed that the order of the fractional derivative depends on
the spatial variable. The main attention is paid to the development and theoretical justification
of a method that provides high accuracy and efficiency of calculations with a variable order of the
fractional derivative. For the numerical solution, an approximation was developed that combines
the finite difference method for the time derivative and the finite element method for the spatial
variable. The fractional derivative of variable order in the sense of Caputo is approximated by
a formula of second order in time. The convergence of the constructed method is proven with
order O (72 + h*™1) for the case a(z) € (0,1). The results of computational experiments for
various functions of the order of the fractional derivative are presented, confirming the reliability
of the theoretical analysis. The conclusions drawn emphasize the importance and relevance of the
further development of numerical methods for fractional differential equations of variable order in
modern mathematics and applied sciences, including the modeling of complex processes.

Key words: Fractional differential problem, Filtration problem, Fractional derivative,
Heterogeneous medium, Variable order of fractional derivative.
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BeJimek TybIHABICHI AHBIMAJIBI PETTi OeJieK-audPepeHnnaIabIK, TeHAeY YIIiH
OacTanKbI-IIIETTIK ecenTi 3epTTey

Byn makamamga GeJiek TYBIHABICHI afHBIMAJIBI PeTTi OeJieK-1uddepeHIuaiIblK TeHIey YIImiH
OaCTalKbBI-TIETTIK €CEITi MIeNTyre apHaJJraH CAHIbIK OICTiH KMHAKTBHLILIFLI 3epTTereni. [erepo-
TeH/Il KeyeKTi opTajia oTme i (puaIbTparus 3aHbl 0ap KaJNbIIaHraH OeJek-1nddepeHITua bl
dbunbTparus TeHieyinae 0eJIIIeK TYBIHIBIHBIH PeTi KeHICTIKTIK affHbIMAJIbIIaH TOYEI/Il eIl eCcell-
Tesesi. BeJek TybIHIBIHBIH PeTi aifHbIMAaJIbl OOJIFaH KAaFIaiijIa eCcernTeyIep/IiH KOFaphbl JIRJIIIT1
MEH THIMJIUIINH KaMTaMachl3 eTeTiH 9ICTi o3ipJeyre »KoHe TeOPUsIBIK Herizjeyre 0acThl Ha3ap
aymapbliaabl. CaHIbIK IIEMiM YIMH YaKbIT TYBIHIBICH OOMBIHINA AKBIPJIBI AMBIPHIMIAD OiCi MeH
KEHICTIKTIK affHBIMAJIBI VIMIH aKBIPJIbI JeMEHTTEp dmiciH OipikTiperin KybIkTay o3ipaenmi. Ka-
IIyTO MAFBIHACHIHIAFBI AfHBIMAJIBI PETTI OOJIIEK TYBIHIbI YAKBIT OOMBIHINA eKiHIm perTi ¢op-
MyJIaMeH KybIKTauaajpl. Kypacroipeuran ogictin a (z) € (0,1) xarmaiior yuria O (7'2 + hk"'l)
peTiMeH >KUHAKTBLIBIFBL JQJIEIeH . TeOpUsIIbIK, TAIIAYIbIH, JJIIINH PACTANTHIH OOJIIIEK TYbIH-
JIbl PeTiHiH opTYp/i (GYHKIUIAPBIHA apHAJFAH €CelTey ToXKipruOesepiHiH HoTHXKeepi Gepimi.
?Kacanran KOpBITBIHIBLIAD Ka3ipri MaTeMaThKa MeH KOJIAHOAbI FHIIBIMIAP/IA, COHBIH, IMHIe
KYPJIe/Ii MpoIecTepai MOJETbaeyae afHbIMAaJIbl PeTTi OoJek-1uddepeHnaiIblK, TeHIeyIepIiH
CaH/IBIK, 9JIICTEPIH OJIaH OP1 JIAMBITY/IBIH, MAHBI3/IbLJIBIFBI MEH ©3€KTLIITIH aTaln KepceTe.
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HNccnenoBanne HavyaibHO-KPaeBoOii 3a1auu i APoOHO-aud PepeHInaaIbHOro
ypaBHeHUs C JPOOHOI MPOU3BOJIHON MEPEMEHHOIO MOPsIKa

B sro0it craThe nccieyercs CXOAMMOCTD YUCICHHOTO METO/IA JIJIsl PEIeHns] HadaIbHO-KPAeBoil 3a-
Jadau IpobHO-anddepeHITnaIbHOTO YPABHEHUST ¢ TIEPEMEHHBIM TTOPSIIKOM JPOOHON ITPOU3BOIHOI.
B 06061menHOM J1poGHO-1ud dhepPEHITIAIBHOM ypaBHeHUH (DUJIBTPAIME C [TEPEXOIHBIM 3aKOHOM
durbTpay B TeTEpOreHHbIX MMOPUCTHIX Cpeax IMPEeJIIoIaraeTcs, IYTO MOPsIOK IPOOHON Tpon3-
BOJIHO# 3aBUCHUT OT MPOCTPAHCTBEHHOI repementoii. OCHOBHOE BHUMAHUE YJEICHO pa3paboTKe u
TEOPETUIECKOMY ODOCHOBAHUIO METO/Ia, 0OECIIeTNBAIOIIET0 BHICOKYIO TOYHOCTh U 3P (HEKTUBHOCTH
BBIYUCJIEHUI TP TIEPEMEHHOM IOpsiJiKe JPOOHON Tpom3BOiHOM. /JlJisT 9uCIeHHOTO perreHust
ObLTa paspaboTaHa AINMPOKCUMAIIUsI, COYETaloINasi MeTOJ KOHEYHBIX Pa3HOCTel Ijis BPEMEHHOI
MIPOU3BO/IHOM U METOJ KOHEUHBIX 3JIEMEHTOB [1JIsl IPOCTPAHCTBEHHOI iepeMenHoit. JIpobHast mrpons-
BOJ[HAsI IEPEMEHHOT0 TOPsIIKa B cMbicie KamyTo anmpokcumupoBana popMy/Ioit BTOPOro MOPSIIKa
o Bpemenu. JlokazaHa CXOUMOCTD TOCTPOEHHOIO METOIa ¢ TOpsiakoM O (72 + th) JUIS CITydast
a(xz) € (0,1). IlpencraBieHbl pe3yibTaTbl BBIYUCIUTENbHBIX IKCIEPUMEHTOB [JIsl PA3JIMIHBIX
byHKIM TOpsAIKa JIPOOHON MTPOU3BOIHOMN, MOATBEPKIAIONINE JOCTOBEPHOCTD TEOPETUIECKOTO
anaju3a. Clie/laHHBIE BBIBOJBI II0IYEPKUBAIOT BAaXKHOCTb W AKTYaJbHOCTH JAJIbHENIIEro pasBu-
THUS 9UCJE€HHBIX METOIOB sl APOOHO-TuddEepeHIInaIbHBIX YPABHEHNIT IEPEMEHHOIO MOPSIKA B
COBPEMEHHOM MaTEeMATHKE M MPUKJIATHBIX HAYKAX, BKJIIOYas MOJEJUPOBAHNUE CJIOYKHBIX TTPOIECCOB.

Krouessbie cioBa: /Ipobuo-nmuddepeniumanbhas 3a1a4a, 3agada dpuabrparuu, JIpobuast npons-
BojHasI, ['eTeporennast cpejia, IlepeMennblit MOPSIOK JIPOOHOM TPOU3BOIHOIMN.

1 Introduction

Fractional differential equations with variable derivative order are an important tool for
modeling various complex processes in science and technology. These equations allow more
accurately describing the dynamics of systems with memory and heredity, which is especially
relevant for applications in fields such as oil production, biophysics and fluid dynamics.
In the oil industry, fractional differential models are used to describe fluid flow in porous
media, taking into account their heterogeneity and time-varying parameters. One of the key
tasks when working with fractional differential equations is the development of numerical
methods that provide high accuracy and efficiency of calculations. Particular attention is
paid to problems with a variable order of the fractional derivative, where the order of the
derivative depends on the spatial variable and the desired solution. Such problems require
the development of special approximation methods and analysis of their convergence.

Over the last two years there have been significant progress in the theory and methods for
variable order fractional differential equations. Research during this period has substantially
expanded the applicability of these methods in various scientific and engineering fields. The
studies in [1] focus on developing of improved adaptive finite difference methods for variable
order fractional equations. These works demonstrate that adaptive schemes can significantly
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reduce computational costs while maintaining high-accuracy solutions. In particular, they
proposed new adaptive algorithms that take into account the variability of the equation
order in each grid point, which improve the accuracy and efficiency of calculations. The
papers |23| present new spectral element methods that have been adapted to solve fractional
equations of variable order. These methods reduce computational costs and increase the
stability of the solution. They have also developed hybrid approaches that combine spectral
methods with finite difference methods to improve the performance and accuracy of numerical
solutions. The authors of [4] show the prospects of using deep learning methods for solving
fractional differential equations of variable order. Their approaches demonstrate significant
improvements in accuracy and efficiency of the numerical scheme. They developed neural
networks specifically adapted for modeling processes with variable order, which opens up new
possibilities for the application of these methods in various scientific fields. In addition, |5, 6]
developed an efficient and accurate hybrid method based on shifted orthogonal Bernoulli
polynomials and radial basis functions. Their research shows that such hybrid approaches
can significantly improve the performance and accuracy of numerical solutions for complex
problems involving variable-order fractional equations. Furthermore, the authors of |7, 8]
proposed innovative methods based on the fractional Laplace transform for solving fractional
differential equations. These methods have demonstrated high efficiency in a number of
test problems and have opened up new prospects for the numerical solution of complex
equations. They also showed that the use of such transformations can significantly simplify
the solution process and increase the accuracy of the results. Research in [9,/10| shows
the prospective application of machine learning methods for solving fractional differential
equations. Their approaches demonstrate promising results in improving the accuracy and
efficiency of numerical solutions, which opens new horizons for the application of these
methods in various scientific fields.

The purpose of this research is the development and theoretical justification of a numerical
method for solving an initial boundary value problem for a fractional differential equation
with a variable order in the sense of Caputo. To achieve this goal, a numerical method was
developed for solving the initial boundary value problem for a fractional differential filtration
equation with a transitional filtration law. The convergence of the proposed numerical method
has been investigated and its order of convergence has been determined.

The study and development of numerical methods for initial boundary value problems for
variable-order fractional differential equations is an important and dynamically developing
area. Progress in this area opens up new opportunities for modeling and analysis of complex
systems, which has great practical importance in various fields of science and technology.
Thus, we believe that this research is aimed at filling the existing gap in the field of numerical
methods for variable-order fractional equations and will make a significant contribution to
the development of this important and promising area of mathematical modeling.

2 Materials and methods

In [11], a system of partial differential equations is considered and it has been transformed
into the following initial boundary value problem for a variable-order fractional differential
equation describing a filtration process with the transitional filtration law in the domain



124 Study on the initial boundary value problem ...

Qr = Q x [0,T], where Q = (0, 1):

Dy (z,t) — vV (x,t) = f (z,t),  a(z) e (0,1), (1)
u(x,t) =0 = ug (), z€Q, (2)
u(z,t) [p=0 = u(x,t) |p=1 =0, t>0. (3)

The variable-order fractional derivative operator in the sense of Caputo is defined as
follows [12]:

u' (s)

@y () = L t : s al(x
o, (t) F(l—a(a:))/o (t—s)o‘(x)d’ 0<a(r) <l (4)

Let us first present the variational formulation of the problem.

Problem 1 Findu € H'(0,T; H} (Q)), such that for any v € H} (Q) the following identity
holds:

(07 0) + (70, To) = (,0). (5)
u (7,t) im0 = ug (7), € 9, (6)
u(x,t) om0 = u(x,t) |41 =0, t > 0. (7)

where o (x) € (0,1).

To construct a semi-discrete formulation of the problem, we divide the time interval [0, T']
into segments using points ¢, = n7,7 > 0, n =0, 1, ..., N, such that N7 = T'. Here u" denotes
the semi-discrete approximation of the function u at the point ¢ = ¢,,. Let us introduce the
notation

un+1/2 _ (un—i—l + un) : Atun+1/2 _ % (Un+1 . un) ) (8)

N | —

To discretize the variable-order fractional derivative in the sense of Caputo, we utilize the
second-order approximation formula presented in [12]. As a result, we obtain the following
semi-discrete formulation of Problem [Il
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Problem 2 Let the values u™ € H} (2),u’ = ug (x) be known. Find v € H} (Q),n =
1,2,...,N — 1 such that for allv € H} (Q2):

(AS’T%U"%,v) + (Vu’”%, Vv) = (f,v), (9)
or
r Y d::% (Atu’”%, v) + (VU”JF%, VU) = (f,v), (10)

u(x,t) im0 = up (z), x € Q, (11)
where a1 € (0,1).

Let K, be a uniform partition of the domain €. For [ € N we denote by P, (e) the space
of polynomials of degree at most [ on the element e € /.
Now we define the discrete space Vj,, which is a subspace of the space H} (2):

Vi, = {Uh € H& (Q)ﬂC’O (ﬁ) ‘ Up,

€ P e, VeelCh}.

Let us introduce the projection operator @y : Hj () — Vj, satisfying the condition
(V(Qnu—u),Vuy) =0 Yue Hy (), up € Vj, (12)

which has the following property:

I — Quull + b llu = Quull g o) < CH [l s g (13)
for all uw € H} (Q) N H*1(Q).
Let
w(tn) —up = (u(tn) = Qnu®) + (Quu" — up) = " + ", (14)

Problem 3 Let the values u}! € HE(Q), u) = wug(x) be known. Find uj™' € Vi, n =
1,2,...,N — 1, satisfying the following identities for any v, € Vj,:

(A;’“;*%u;l*%,vh) + o (w}j*%, Vo) = (f ) (15)

or



126 Study on the initial boundary value problem ...

2.1 Research results

The result of the main research is the convergence theorem for the constructed numerical
scheme. To prove this theorem, the following assumptions are defined:

(AI) Problem [ has a unique solution with the number of derivatives sufficient for the
analysis.

(AII) There exists a finite positive real number 7, such that for all € R the condition
0 <7 <~v(x) holds.

2.1.1 Convergence of a semi-discrete scheme

First, we prove an auxiliary lemma, that will be used to obtain estimates of terms containing
fractional derivatives.

Lemma 1 For any function u € L*(Q), the following identity holds:

n—1

1
Ta F(?—Oz 2) k=0

ad () = ) ) =

1 . et
= a2 [ [l = ™ gl +
T 7L+§F<2—Oén+%)
n—1
S () Hu’“H] |
k=0

Lemma 2 Let u™ be the solution to Problem[3, and u be the solution to Problem [, Then
there exists 9 > 0 such that, under assumptions (Al) and (All), the following inequality
holds for all T < 79:

VTOC"*%F (2 —«

)
|w (tngr) — w1 || + i - IV (u (tus) = unﬂ)“p(m <t (16)

2d, "+

where C' is a constant that depends on the solution norms, but does not depend on the grid
parameters.

Proof. Consider the difference between the identities and @D:
<8f(x)u (tn+%) — AOZ+2U/”+2 U) + <Vu <tn+%) — Vut, VU> =0. (17)
Let us denote 7" = u (t,) — v and note that

a1 1
o(x) Ity nl nt3 _nts Yt l
9, (tn+%> Agy Pu2 = Ay, 2a 2 4t
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o o tn 1
where r"t3 = 98y <tn+%> — AOS +2)u <tn+%>. Choosing v = 7! in , and taking

into account assumptions (AI) and (AII), we obtain:
<A02+27T”+2 7r"+1> + <V7T”+%,V7T"+1> < (ra’”%ﬂr"“) ) (18)

Using the formula for approximating the fractional derivative, we rewrite this inequality
as follows:

> Zd n+l ( okt ﬂ,k) ’ﬂ_n+1> 4 % (V (Wn+1 + 7Tn) ’Vﬂ_nJrl) <

F(Q—Oén+

«
+ n+1
g(r"?,ﬂ )

Separating the last term from the sum, using Lemma [I| and taking into account that
|7 = 0 we get:

n+1
Y A I A &
Ta"+%l_‘<2—05n+%> 4

1 ntl il n
5 > (d = it I e+

a1
. <2—0¢n+%> =

i n2
1 IVa*{|i20) +

Ta7z+%

=]

Tan‘i’%l—‘ <2 — O{’n-f—l)
Multiply both sides by T 22 and applying the Cauchy-Schwartz inequality

n+7

0
to the terms on the right-hand side of this inequality we obtain:

Ta"+%F(2—an+l>’y
=4 + o el | L TN
0
< 1 Sl \2 2
<— > (4 - d50) I+

T ”+%F<2—an+%>’y

ni2
VA |12 ) +

2 2
+e |7
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1 o 2
By choosing ¢; = 3 g9 = (7 n+3 <2 — an+%>) , for small 7 we get

Ta"+%F(2—an+l>7 (Pl i1 )\2
w1+ e 97 gy < O3 (45 = )+
0 k=1
Tan+%I‘<2-—-an l>/7
i o = HVw”Hiz(Q)JrCHrO‘“% i (19)
0

Considering the inequality for n = 0 and taking into account r""+z = O (7%), we
obtain

% <2—a;>’y
I + | V7 20y < O (20)
0

Nl

Let us similarly consider the inequality in the case of n = 1. Taking into account the
inequality and 7"+ = O (72), we obtain

T (2 — a1;> v
2112 2 2|2 4
I+ g 97 e < O (21)
0
The inequality (19) is considered in the case of n = 2 in a similar way, and taking into
account (20) and (21f), we get

72T (2 - a2;> 04
—— ||Vr

[

0

SHiQ(Q) <crt

By repeating this process, we arrive at the inequality

a1
TRl (2 - a0

)7
7)) + o VA e < CT" (22)
0

By taking the square root of both sides of the inequality and applying the elementary
inequality \/a? + a3 > \/Li (la1| + |az|), we obtain the inequality .
2.1.2 Convergence of a fully discrete scheme

Lemma 3 Let uj be the solution to Problem[3, and u™ be the solution to Problem[4. Then,
under assumptions (Al) and (AIl), the following inequality holds:

WTQ"%F (2—an+%)

n+1 n+1
lQuu™ — |+ ]
2d,""?

|V (Quu™* — ™ < Cn*! [l s )

Mz o)

where C' is a constant that depends on the norms of the solution, but does not depend on the
grid parameters.
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Proof. Consider the difference between the identities @D and :

(Ag’z% (u”+% — uZJr%) ,vh> + (V (u”+% — uZJr%) ,Vvh> =0.
Using the notation and choosing v, = £""!, we arrive at the following inequality:
( n+2€n+2 £n+1> 4oy (V£n+2 V£n+1) (A§7z+%wn+%7§n+l> +7(vwn+%’vén+l> <0
Using the approximation formula, property and multiplying both sides by
7Ol (2 - anJr%)

(0%
n+g
dO

, we get

AT ST <2 -«

)
eI+ = [V g <

a 1
nt+3

aasi) (2 -

o +%> ni|2 2 an+% n+3g
< S IVE ey + vz D (s = ) e+
4dy <d0”+7> k=1
2 n
b () O e (23)
()
Considering the inequality for n = 0, we obtain
1|2 QF(2_ ) 1|2 2k-+2 2
et + e V€ ) < O e (24)
0

Then consider the inequality for n = 1 and taking into account the inequality ,
we obtain

")/T 137 (2 — )
2
1€7[" + w1 [ve?
2d,?
Similarly, consider the inequality for n = 2, and taking into account and ,

we get

HLQ < Cp*t2 HUHHkH @) (25)

9 VTQQ%F (2 — ) )
6 + e 7€ g < O il

25
0

By repeating this process we arrive at the following inequality:

VTa”%F (2 —

n+1(|2 a”+%) n+1(|2 2%k+2 2
€ + IVE™ | Loy < CH** Nl gy

a1l

2d,""?

By taking the Square root of both sides of the inequality and applying the elementary
inequality \/a? + a3 > —= |a1| + |ag|) we obtain the statement of the lemma.
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Theorem 1 Let uj} be the solution to Problem[3, and u be the solution to Problem[1. Then
there exists 7o > 0 such that under assumptions (AI) and (All), the following inequality holds
for all T < 7y:

Fntd —
yr "2 <2 ozn+%>

a1
ntg

o (sr) 1+ 9 (1 trn) ~ 1) [y < C (72 4251,

where C' is a constant that depends on the norms of the solution, but does not depend on the
grid parameters.

Proof. The proof of the theorem follows from the inequality
[ (tn) = upll < llu(tn) — u®(| + [Ju" — Quull + [|Qnu — up]l,

from Lemmas and inequality .
The theorem is proven.

3 Results
Example 1 Consider the following equation with a variable-order fractional derivative:

Oy (z,1) — Vu(z,t) = f (2,1), (26)
where a(x) € (0,1) subject to the following initial and boundary conditions:

u(xz,0) =0,z €[0,1],

uw(0,t) =u(l,t)=0,t € (0,1].

The exact solution to this problem has the form
u(r,t) =tz (1 —x).

Let us choose various functions for the order of the fractional derivative a(x) and the
corresponding right-hand sides of the equation:

2 . _9t§(1—x)x_ 9
041(1])—3,]0( 7t)_ QF(%) 27,
ag(z)zé(xﬂ), fet) = (3_221;(8_“2;)??%) o
2241 _
az () =1—2° f(r,t)= w;ﬁ +(11)Ffa):2) —2t%
ag(x)=€¢", f(x,t)= e (-z)z — 212,

(I—e®)(2—e™)[(1—e?)
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In the experiments, the time step was chosen equal to 7 = 1072 when analyzing the
dependence of the error on the spatial step. The step value in the spatial variable A varied
between h = % and h = Té()' Similarly, the spatial step was chosen equal to h = 10~ when
analyzing the dependence of the error order on the time step, and the time step value varied
between h = io and h = %.

Tables provide L2-error values for various functions representing the variable order of

the fractional derivative « (z) as well as the parameters h and 7.

Table 1 Ly-errors and orders of convergence for Example |1| (for the cases oy (z) and ay (),
with 7 = 1072

. ar () = 2 OEICES)
Error Rate Error Rate
1/10 | 2.5002 - 1074 — 1.0559 - 104 —

1/20 | 6.2506 - 10~° | 2.00 | 2.6581-107° | 1.99
1/40 | 1.5626 -107° | 2.00 | 6.6453-107° | 2.00
1/80 | 3.9066-107° | 2.00 | 1.6499-107° | 2.01
1/160 | 9.6991 - 10~7 | 2.01 | 4.0961 10" | 2.01

Table 2 Lsy-errors and orders of convergence for Example 1| (for the cases a3 (z) and a4 ()),
with 7 = 1072

L az(x) =1—2? ay(x)=e7"
Error Rate Error Rate
1/10 | 1.6410 - 1073 - 1.0922 - 1072 -

1/20 | 4.1888-107% | 1.97 | 2.7879 - 1073 | 1.97
1/40 | 1.0618-10~* | 1.98 | 7.0670-10~% | 1.98
1/80 | 1.6916- 10~ | 1.98 | 1.7914-10* | 1.98
1/160 | 6.7290 - 107° | 2.00 | 4.5097 - 10~ | 1.99

Table 3 Ly-errors and orders of convergence for Example |1| (for the cases oy (z) and ay (x)),
with h = 1073

; o (2) = 2 OESICES)
Error Rate Error Rate
1/10 | 9.3420 - 1074 - 1.9240 - 104 -

1/20 | 2.3681-10* | 1.98 | 4.9110-107° | 1.97
1/40 | 6.0029-107° | 1.98 | 1.2449-107° | 1.98
1/80 | 1.5112-107° | 1.99 | 3.1557-107° | 1.98
1/160 | 3.7779-1075 | 2.00 | 7.9441-1077 | 1.99
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Table 4 Ly-errors and orders of convergence for Example |1| (for the cases a3 (z) and ay (x)),
with A = 1072

az(z) =1—2° ay(z) =e*

Error Rate Error Rate
1/10 [ 1.2587-1073 | — [1.2591-1072| -
1/20 | 3.2353-107* | 1.96 | 3.2362-107% | 1.96
1/40 | 8.2582-107° | 1.97 | 8.3181-10"% | 1.96
1/80 | 2.0934-1076 | 1.98 | 2.1232-10~* | 1.97
1/160 | 5.2698 -1075 | 1.99 | 5.3821-107° | 1.98

T

From the presented analysis, we can conclude that the empirical convergence order of the
constructed numerical scheme is O (72 + h?). Thus, the computational experiments carried
out confirmed that the proposed scheme has second-order convergence in both spatial and
temporal variables.

4 Conclusion

Thus, a numerical method for a fractional differential filtration equation with a variable
order of the fractional derivative is constructed in this paper. A priori estimates are obtained
which yield the convergence of the proposed numerical scheme. The results of computational
experiments carried out for a model problem with a known exact solution showed good
agreement between the empirical order of convergence and the theoretical order. In subsequent
works, the authors intend to apply the constructed numerical scheme to solving more realistic
filtration problems.
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