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ON CONDITIONS FOR THE FINITENESS OF THE SPECTRUM
OF A SECOND ORDER DIFFERENTIAL OPERATOR
WITH INTEGRAL BOUNDARY CONDITIONS

In this paper we study the question of the finiteness of the spectrum of a second-order differential
operator generated in the space H = L5(0,1) by integral boundary conditions. We have shown
that the spectrum of such an operator is either infinite or empty. Previously, this result was known
only in the case of two- or three-point boundary conditions. Next, we obtained a necessary and
sufficient condition for the spectrum to be empty in terms of a system of two equations for the
potential ¢ and the functions oy and o5 that define the integral boundary conditions. If we assume
that oo belongs to the space W}[0, 1], then the first equation is solvable with respect to o within
some neighborhood of the zero U of the space H>. This allows us to resolve the indicated equation
for o within a certain neighborhood of the zero U of the space H3. This scheme is not applicable
to the second equation, but it is possible to identify a fairly wide class of functions (¢, o102) € U,
on which this equation turns into an identity. The final part of the article is devoted to exploring
the question: can the operator in question have an empty spectrum if the functions o1, 09 are not
necessarily close to zero (in the space H?)? We have constructed a class of functions oy and o5 (in
the form of polynomials with arbitrarily large norms) such that the spectrum of the corresponding
operator is empty. The operating technique can be extended to the case when H = Ly(7y), where
7 is a curve with a limited slope (that is, the absolute value of the slope of any chord of this curve
does not exceed a certain number).

Key words: differential operator with integral boundary conditions, finiteness or infinity of the
spectrum, transformation operators, Volterra boundary value problems.
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NaTerpanaplk 1meKapasblK IMapTThl eKiHmr perti auddepeHnnaiabiK onepaTopabiH,
CNIeKTPiHiH MIEKTiJiK HIapTTapbl TYypPaJibl

ZKywmbicra H = Lo(0, 1) kenicriringe uHTErpasiIblK, IEKAPAJIBIK, IAPTHI APKBLIbI KYDPBLIFAH €KiH-
i perTi guddepeHIuaIbIK O1epaTop CIEKTPIHIH MEKTiIiri TypaJsl Mocesie 3epTreseai. Mynnait
OIepaTOP/IbIH CIIEKTPI He IIeKCi3, He 60c ekeHi KopceTiired. BypbiH Oyi1 HOTHXKe €Ki HeMece YIIT HyK-
TeNTIK IIeKapaJIbIK, apTTap XKaraaiibiaaa rada oesrit 6osmael. CriekTpain 60c¢ 00y bIHBIH, KAXKeTTi
JKoHE KETKIJIKTI MapThl ¢ MOTEHINAJIBI YKOHEe WHTETPAJJIBIK, MeKaPAJIBIK, MapTTapAbl aHbIKTal-
TBIH 0] YKoHe 09 YHKIMAIAPHI VIIH eKi Teryiey »yiieci TyproIchiHan asaasl. Erep oo W10, 1]
KeHicTirine »KaTapl Jen 60sKacak, ona 6ipinmm remmey H> kenicririnin U Heminin keitbip Manaii-
BIHJIA 01 KATBICTBI IIenTieai. by cxema eKiHIm TeHJey YIMiH KOJJIaHbIIMaiIbl, 6ipak OyJ1 TeH-
Jiey colikecrikke afinanareii (q,0109) € U GyHKIMAIADIBIH KETKUIIKTI KEH KJIACHIH aHBIKTAyFa
6ostager. MakaaHbIH COHFBI OeJiiMi Kejieci MoceseHI 3epTTeyre apHajfaH: 01,09 (OYHKIHMSIaAPHI
MIHZIETTi Typ/e Heqre KakbiH 6omvaca (H? KeHicTirine) KapacThIPBLIBIT OTBIPFaH OMePaTOPIbIH,
6oc crekTpi 6osybl MyMKiH 6e? Bi3 01 xoHe 0y QYHKIUsIAPBIHBIH KJaChlH (€PKiH Y/IKEH HOD-
MaJIapbl 6ap KeIMyIesep TypPiHje) cofikec OepaTopblH CeKTpi 60¢ GoaThIHAAN eTill KyP/BIK,.
Byt xxymbicTbin ogicin H = Lo (7) Gosran Karmaitra geiiin KeHefTyre 60s1a/ipl, MYH/A IEKTeJreH
KeJI0eyi 6ap KUCBIK, (SIFHU Ke3 KeJINeH XOPIAHbIH OYPBIINTLIK, Koy dunueninin Moyl 6earia 6ip
CaHHAH ACIaibl).

Tyiiin ce3aep: nHTErpaIbIK IIEKAPAJIBIK IapTTaphbl 6ap AuddepeHITnalIIbIK, OTepaTop, CIIeKTP-
JH MIEeKTLIIr HeMece TeKCi3/Iiri, TypJIeH ipy onepaTopaapbl, BogabTeppasibl MieKapablK ecernTep.
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06 ycoBUSAX KOHEYHOCTHU clieKTpa nuddpepeHInaIbHOTro oliepaTopa
BTOPOr'O MOPSI/IKA C MHTErPAJIbHBIMUA KPAEBbIMU YCJIOBUSMU

B pabore nzyuaercs BOIpoc 0 KOHEYHOCTH CIIEKTPa JuMDHEpeHnnajsbHoro oneparopa BToporo mo-
paKa, HOpoxkAeHHOro B npocrpancTse H = Lo(0, 1) unrerpajibabiMu KpaeBbiMu ycaoBusamMu. [To-
Ka3aHO, 9TO CIEKTP TAKOrO omeparopa Jmbo OecKoHedeH, jubOo ImycT. Pamee 3TOT pe3yabrar ObLI
MU3BECTEH TOJIBKO B CJIyUae JIBYX- WIN TPEXTOYEIHBIX KpaeBbix yciaosuiil. [lomydeno neobxomumoe u
JIOCTATOYHOE yCJIOBUE IIYCTOTHI CIEKTPA B TEPMUHAX CUCTEMBI U3 IBYX YPABHEHUH /15T TOTEHITNAIA
q 1 QYHKIWIT 01 U 09, 33/IAI0NINX UHTErPAJIbHbIE KPAEBble YCJIOBUs. FKC/IM PEIIIOIOKUTD, YTO 09
npunayiexkuT npocrpanctsy W0, 1], To neppoe ypasHeHHe pa3peruMo OTHOCUTEIBHO 01 B TIpe-
Jemax HeKOTOPOil OKpecTHOCTH HysIs U mpocTpancTsa H3. Ko BTopoMy ypaBHEHHIO TaKas cXeMa
HEIPUMEHUMA, OJJHAKO YIA€TCsl BBIIEIUTD JOCTATOYHO NIMPOKUi Kiace dyukuuii (¢, 0109) € U, Ha
KOTOPOM 3TO ypaBHEHHE IIPEBPAIIAETCS B TOXKJIECTBO. 3aKIIOUATE/bHAS YACTh CTAThU ITOCBSIIEHA,
HCCJIEJOBAHUIO BOIIPOCA: MOXKET JIM PACCMATPUBAEMbIi OIIEPATOP UMETh IIYCTOM CIEKTP, eCJIU (DYHK-
1uu 01, 0y He 0bA3aTebHO 6IM3KY K HyJTio (B mpoctpanctse H?)? Hamu nocrpoen kiace dyHKImit
01 1 09 (B BUJIE MHOIOWIEHOB CO CKOJIb YI'OJHO GOJIBITMMU HOPMAMHU ), TAKUX, YTO CIEKTP COOTBET-
CTBYIOIIErO orneparopa mycT. Meromaumka paboThl MOXKET OBITh PACIIPOCTPAHEHA Ha CJIydaii, KOTIa
H = Ly(7y), e v — KpuBasl ¢ O'PAHUYEHHBIM HAKJIOHOM (TO eCTh yryioBoii Koaddurment aoboii
XOPZBI 110 MOJIYJIIO He IIPEBOCXOIUT HEKOTOPOIO YHCJIA).

KuroueBbie cioBa: juddepeHnaabHblil 0IepaTop ¢ WHTErpajbHBIMUA KPAaeBBIMU YCJIOBHUSIMU,
KOHEYHOCTH Wi OECKOHEYHOCTDb CIIEKTPA, OIePATOPhI IPeodpa30BaHusi, BOJILTEPPOBLI KPAEBBIE 3a-
JTadm.

1 Introduction

One of the main questions in the theory of inverse spectral problems is the description
of spectral data necessary and sufficient (if possible) for the reconstruction of a particular
spectral characteristic of the operator [1]. In this regard, not only quantitative (localization,
asymptotics, etc.) information about the spectrum is important, but also qualitative
information — its finiteness or infinity. In the proposed work, we study the question of the
finiteness of the spectrum of the operator Ly, which is defined as follows. Let L be an operator
acting in L9(0, 1) according to the rule

Ly =1U(y) == —y" +ay,
D(L) =D :={y € Ly(0,1) : y,y € AC([0,1]),1(y) € L2(0,1)}.

Then Ly is a restriction of L defined by the conditions

Vi(y) = y"72(0) + ((y), 05) =0, j=0,1. (1)

Here ¢ € L'(0,1) and

1
(f.9) = [ fgdz,
/

01,09 — some functions from Ly(0,1).
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Operators of type Ly arise in the theory of turbulence [2| and in the theory of Markov
processes |3,|4]. Various spectral properties of differential operators (of arbitrary order) with
nonlocal boundary conditions of the form were studied by M. Picone [5,6], Ya. D.
Tamarkin [7], A. M. Krall [8], A. A. Shkalikov [9], V. A. Ilyin and E. I. Moiseev [10,[11],
B. E. Kanguzhin [12-14] and many others. A more detailed bibliography can be found in the
reviews |154|16].

As is known (see |16, Ch.III, § 1, Lemma6] and |17, Theorem 2]|), the integral conditions
give a complete description of all restrictions of the operator L that have a non-empty
resolvent set. Moreover, the operator L' is compact, o(Ly) = {N\2}_ (N < o), where
{A\r} are the zeros of the entire function

Vi(e) Va(s)

200=| 73 o | @)

s, ¢ are the solutions of the equation
l(y) =Ny, € [0,1], (3)

satisfying the conditions s(0, A) = ¢(0,A) =0, (0, A) = ¢(0,\) =1 (here and throughout
below ¢'(z, \) is the derivative with respect to z). Consequently, the spectrum of the operator
Ly consists of a finite or countable number of eigenvalues, each of which has a finite (algebraic)
multiplicity.

Let us pose the question: under what conditions on the functions o,0, and ¢ is the
spectrum of the operator Ly finite?

The following statements are true.

Theorem 1 The spectrum of the operator Ly is either infinite or empty.

Since L‘_/1 is Volterra for oy = 09 = 0, the spectrum of Ly is empty. The question arises:
can the spectrum of Ly be empty for nonzero functions o7 = 057 If so, how rich is the set of
such functions?

We have obtained a criterion for the emptiness of the spectrum of Ly, which allows us to
distinguish a fairly wide class of functions oy, oo for which the spectrum of Ly is empty.

Let us start with the case ¢ = 0. Introduce the function

Aolon, o) (z) = / 01 (H)oa(t — 2) — oa(t)or (t — )] dt, € [0, 1]. (4)

The function Ag is continuous and ||Ag[oy, o2]||co,1) < 2[|o1]|||o2|]-
Here and throughout, || - || is the norm in the space L(0,1).

Theorem 2 Let ¢ = 0. Then the spectrum of the operator Ly is empty if and only if the
functions o1, 09 satisfy the equation

Agloy, oo(x) + / o1 + (t — x)og]dt =0, =z €]0,1]. (5)
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Let 6 > 0 and

1
Bs = {f € W3 (0,1 : [|fllwpon = (/0 (I +1117) dt)

1/2

<0, f(1):0}.

Corollary 1 There is a unique function
F: Byjs — Ly(0,1),
such that
(a) F'is continuous on B3,

(b) for any pair (o1, 02) € La(0,1) x By the spectrum of the corresponding operator Ly is
empty if and only if o1 = F(03).

Let us now consider the general case g # 0. Let K(-,-) be the kernel of the transformation
operator for the solution e(z,A) of the equation (3) with initial conditions e(0,\) =
1, €(0,\) =X |18, Ch.1, §2]:

e(z,\) = e +/ K(z,t)e(t, \)dt.

The solutions s and ¢ of the equation (3| introduced above are represented in the form

in \ r in \t
s(a, \) = 2HAT / Koo (2, ) 222 a1, (6)
\ ; \
c(x, N :cos)\x—I—/ Ko(z,t) cos Atdt, (7)
0

Let F{ = K, + K_, F; = K, — K_, where K are operators acting in Ly(0,1) according to
the formulas

Ko f] (2) = / K(t, ) f(£)dt. (®)

Let’s introduce the functions

Blralte) = 3 ([ 06—~ st - aar+ [ fgte o). )

Ailo1,09,q)(x) = B[(I + Fi)o1, (I + F)oo)(x) — B[(I + Fi)oa, (I + Fy)o1](x),
[([+F1)01+(t—l‘)([+F2)02] dt, OSZL‘S 1,

I
—

Aslor, 02, q) ()

[(K_o1)(t)(1 + Ky )oa(z — 1)

-1

(K_oo)(t)(1+ Ky)oy(x —t)]dt, 1<az<2. (10)

Asloy, 09, q)(x)
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Theorem 3 The spectrum of the operator Ly is empty if and only if the functions q, 01,09
satisfy the system of equations on [0, 1]

0<x<l1, (11)
1<z<2. (12)

Ailoy, 09, q)(z) — Asoq, 02, q)(x) = 0,
Asloy, 09, q)(7) = 0,

Remark 1 If the functions o1, 09 belong to the kernel of the operator L, then the conditions
take the form of classical (two-point) boundary conditions:

aioy(O) + CLilyl(O) + bzgy(l) + bﬂy'(l) = O, 1= 1, 2.

In the paper [19] it is shown that in this situation the spectrum of the operator Ly is empty
if and only if

Cl) ai1 = biy = ago = bayg =0,  bigp = —aag, by = aag, where «a #0,00,%1;
b q()=a(l—2), wel0,1/2]
If 01,09 € W3 ([0,1]\{1/2}) and l(o}) =0 (k = 1,2), then the conditions (1)) are reduced
to three-point conditions:
aioy(0) + ainy'(0) + bioy (1) + by (1) + cioy(1/2) + ey (1/2) =0, i =1,2.
It was shown in [20] that the spectrum of the operator Ly is empty if

C) a1y = byy = ¢ = ag = by = co0 =0, big = —kyao,
c10 = ko(1 — k1)asg, bor = krag1, co1 = —ka(1 — ky)agy, where ky,ky # 0, 00;
d) q(z)=q(l—=) on [0,1/2] and q(z)=q(1/2—2) on [0,1/4].

Despite the cumbersome form of the system , , as in the case of ¢ = 0, it is
possible to locally resolve with respect to oy within a certain neighborhood of zero U of the
space Ly(0,1) x W1(0,1) x Ly(0,1).

Let Iy = {f € L2(0,1) : ||f]| < N} and II(M,0) (M,6 > 0) is the set of pairs
(02,q) € W3(0,1) X Ly(0, 1) satisfying the conditions:

) llall < M. loallwyon) < 8, oa(1) =0,

(ii) There exists a constant 0 < a < 1 (its own for each pair (o9, ¢)) such that supp(q) C
[0,(1]7 Supp(O'Q) - [a’ 1]'

Corollary 2 There exist I1 := IIy X Il 5 and a unique function
F: Iy — Iy,
such that
(a) F is continuous on s,

(b) for any triple (o1, 09,q) € 11 the spectrum of the corresponding operator Ly is empty if
and only if o1 = F(09,q).
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As noted above, for o1 = g9 = 0 the spectrum of the operator Ly is empty. According
to Corollaries (1] and [2] the spectrum of Ly is empty for all (o1,02) € Ly(0,1) x W3[0,1]
sufficiently close to the point (0,0) of the space Lo(0,1) x W20, 1]. It does not follow that
for other (o1, 05) the spectrum of Ly is not empty. We present one class of functions (o1, 09)
(in the form of polynomials) for which the spectrum of Ly is empty. To reduce the number
of the calculations, we restrict ourselves to the case ¢ = 0.

Theorem 4 Let ¢ =0,00 = p(1 —x), p#0,1, and

2/{32 1 1 L
=— (1 —2x) — = — 1
na) =~ [ saids- =)= [tis k= (13)
g(x) =K*(1 — 2+ 22/2) — k(1 — z). (14)
Then the spectrum of the operator Ly is empty.
2 Proofs of Theorems and Corollary
2.1 Proof of Theorem
According to and
AN) = MALN) + 22 ((c,00) + (5,09)) + 1, (15)
Al(/\) = <C7 01><S7 02) - <S7 01><C7 02>‘ (16)

From relations (@ and it is clear that A is an entire function of exponential type.
Therefore, if the spectrum of the operator Ly is finite, then

AN =™ P()N),

where k£ = const, P is a polynomial. Since the function A is even, then £ = 0 and P(\) =

%)\2’" + A2 4+ D oA+ Py (pr = const). According to equalities , and @,
we have

AN+ AP)™ € Li(R), (17)
therefore, m = 0, so that

A(N) = 1. (18)

Remark 2 One of the key points in the proof of Theorem |1| is the estimate (in fact,
<halfs of the estimate on +o0o or —oo is sufficient). If in the definition of the operator Ly the
segment is replaced by a piecewise smooth curve 7y, then the estimate (17) may be incorrect
even in the case when are the Dirichlet conditions [21,22]. However, if v has a bounded
slope (that is, the angular coefficients of all chords vy do not exceed some number in absolute
value), then there is a ray on which the estimate of type will hold. Therefore, the assertion
of Theorem remains valid for the operator Ly (with the conditions ) on any curve with
a bounded slope.

In the works (25,24, using a similar technique, the infinity of the spectrum of the Sturm-—
Liouwville operator on the half-axis with a complex potential is proved.
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2.2 Proof of Theorem

Since for ¢ = 0 s(z, \) =sinAx/\, c(x, A) = cos Az, then the equation ((18)) can be written
as

ND1(N) + APy (A) + P3(A) =0 (19)

where

By(N) = /01 o1 () (/01 oo (1) sin At — x)dt) iz,

1 1
Dy(N) = / o1(z) cos Axdx, Pz(A\) = / oo(x) sin Axdzx.
0 0

Assuming

fl(x):/ oy (t)dt, fQ(OC):/ (t — x)oy(t)dt,

we will have
1
d(N) = —/ Aplot, oo](x) sin Azdz,
0

1 1
dy(N) = f1(0) — X /0 fi(x)sin Awvdz,  ®3()\) = Afo(0) — A2 /0 fo(x) sin Azdz,

where the function Ag[o1, 0»] is defined by the formula (4). Then the equation takes the

form

1
)\/ {Ao|o1, 02](x) + fi(x) + fo(x)} sin Azdz — f1(0) — fo(0) = 0.

0
It is easy to verify that this equation is equivalent to the equation .

2.3 Proof of the Corollary

Let 03 € By/3. Then the left-hand side of the equation is differentiable almost everywhere
on [0,1] and |o(0)| < 1/3. Therefore, in the domain Ly(0,1) x B3, the equation () is
equivalent to the equation

o1+ Aoy =g, (20)

where

9(z) = / oa(t)dt/ (1 + 02(0)).

A is an operator acting in Ly(0, 1) according to the rule

1 1 ) 1—2 ,
Af)(2) o [ [ =oswa+ [ oo+,

:1+0'2
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Since

215
A1l < =2

and |02(0)| < [log]| < 1/3, then [|A|| < 1. Therefore, the pair (01,02) € L2(0,1) X By is
a solution of the equation if and only if oy = (I + A)~!g. For the function F(oy) :=
(I + A)~1g, both statements of Corollary [1] are obviously true.

3 Proofs of Theorem (3| and Corollary

3.1 Proof of Theorem

Let K, and K, be the integral operators on the right-hand sides of equalities @ and ,
respectively. According to (8)), we have

(Kof.g) = (f. Fig), (Kxf,9) =(f.F29), [f.g€ L2(0,1).
These relations allow the identity to be written in the form

AU (A) + AW (A) + U3(N) =0, (21)
where

W1(A) = {co, (I + F1)or)(so, (I + F2)o2) — (so, (I + F2)o1)(co, (I + F1)o2),
Ua(A) = {co, (I + Fi)or),  U3(A) = (s0, ({ + F2)02),

Co = COS AT, Sg = sin Ax.

Direct calculations show that

(o, F){50,9) (V) = / sinAzCf, g)(x)d.
Bf.g)(z) on [0,1],
Clf.gl(x)=¢ 1

5 71f(t)g(x—t)dt on [1,2],

where the shape B is defined by @D
Next, integrating by parts, we have

1
AU5(A) + Wy(A) = —N2 / sin Az As[o1, 02, q)(2)dz + Ms[o1, 72, ) (0).
0
Thus, the identity takes the form
2
)\/ sin \xD[oy, 09, q](x)dx + As[o1,02,¢](0) =0, X e C,
0

where

Doy, 09,q)(x) = {

Aqloy, 09, q)(z) — Asloy, 09, q](z) on [0,1],
Asloy,09,q)(z) by (1,2].

The obtained identity for A = 0 implies As[o1, 09, ¢](0) = 0, therefore it is equivalent to the
system , . The theorem is proved.
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3.2 Proof of the Corollary

We have
Ailor, 02, ¢)(x) = Ao[[(I + K)o, (I + K)o (z)— )
— A[K 01, K_o] () — C[(I + K)o, K] () +
+ C[K_ 01, (I + Ky)oo)(2), (22)

o= [ o |

From here and from the equality it is clear that if g € W}[0,1] and g(1) = 0, then the
function A,[f, g] is differentiable almost everywhere on [0, 1] and

%Ao[[f,g](w) /f (¢~ )t~ /ft—a:

' (23)

LO1.9)(x) = / Ft)/ (@~ 1)d
If ¢ € Ly(0,1), then the function K is absolutely continuous in both arguments |18, Chapter 1,
§2, Theorem 1.2.2| and

// ’8/C(m, t)
[—1,1]x[-1,1] Oz

Therefore, the function Aj[oy,09,¢q] is differentiable almost everywhere on [0,1] and
%Al[al, 02, q] S LQ(O, ]_)

Let ¢ € Ly(0,1) and let o, satisfy the condition (i) with some § > 0. Further, let the
functions ¢, 01, 09 satisfy the equation . According to what has been said, the left-hand
side of this equation is differentiable almost everywhere on [0, 1]. Differentiating it, we arrive
at the equation

2
K (z,t)
* ‘ ot

2
) dxdt < oo. (24)

01 + T[027 Q]Ul = R[UQJ Q]7

where
Rloa, ql(z) = —(1 + F)7! / (I + Fy)o(t)dt,

T'[o9,q| is an operator acting in Ly(0, 1) according to the rule

Tlos,alf =~ + F)™ - Ailf, o).

If (02, q) € s, then from the relations , and , taking into account the limited
invertibility of the operator I + F; (due to the Volterra property of Fy), we have

[ T]o2, gl fIl < CL(L+ M)SIF, - f € La(0, 1), (25)
[Rlo2, q]ll < Ca(1 + M)o, (26)
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where (', Cy are positive constants.
Let M,6 > 0 be such that

Let
Flos,ql = (I + Tlo2,q]) ' Rloz.q],  (02.q) € Mazs. (28)

According to estimates and

sup ||Flog, q]|| £ N := (1 — Ci (14 M)&)1Cyd.

Mass

If ¢ =0 ae. on (0,a), then K(z,t) = 0 for all |t| < |z| < a [18, Ch.1, §2|. Using (§),
it is easy to show that [K_os] (x) = 0 on [0, 1] for any function oy supported in [0, a]. By
(28)), if supp(oz) € [0,al, then the support of o7 = Flos,q| also lies in [0,a]. From this,
based on formula , we conclude that for any (o9,q) € Ilps, the triple of functions
(01 = Floa,q],09,q) satisfies equation (12)). Thus, we have shown that if inequality is
satisfied, then in order for the triple (oy,09,q) € IIy x Il to satisfy equation it is
necessary that

01 = F[O-Z) q]a (027 Q> € HM,5' (29)

Conversely, if is true, then equation is obtained by integrating over the interval
[z, 1] both parts of the equivalent identity

%Al[ol,ag,q](x) — (I + F1) (01 + Rlo2,q]) () =0, =z €][0,1].

4 Proof of Theorem

Let o9(z) = p(1 — ). Differentiating the left side of the equation ([5) and taking into account
the equalities o}, = u, 02(0) = p, we obtain

oi(z) + k (/ o1 (t)dt +/0 h al(t)dt) = k(1 —2)?/2. (30)
This equation is equivalent to the problem
ol(2) — k(o1(x) + o1 (1 — 2)) = k(1 - 2), (31)

From (30) we have

(1= )+ k (/11 o1 (H)dt + /0 o—l(t)dt) — k2. (33)

—X
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Adding equations and term by term, we obtain

o1(x) +o1(1 —x) = =2k /01 o1 (t)dt + g (2 -2z +27).

Therefore, the equation (31)) will take the form

ol () = —2k*co+ g(x), ¢ = /0 oi(t)dt, g(z) =K1 —x+2%/2) — k(1 —x).

Hence, taking into account , we have

o1(z) = 2K2co(1 — 7) — / o()dt, (34)

so that

o= (1— k) /01 vg(x)d.

Substituting this expression into (34)), we obtain ([13]).
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