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3D-SIMULATION OF IMMISCIBLE TERNARY FLUIDS BY
PHASE-FIELD-BASED FREE ENERGY LBM

This paper discusses the use of the Lattice Boltzmann equations method with free energy based
on the phase field approach and implemented in the D3Q27 scheme for modeling the dynamics of
a three-component fluid flow in a three-dimensional cavity. Based on this method, a program has
been created and it has been verified using a test problem that includes modeling the separation
of a ternary liquid mixture. The results demonstrate the dependence of the mixture separation
on time, the influence of surface tension and gravity. For example, at a high surface tension, the
separation of the components occurs faster. Data on the average kinetic energy of the flow and the
rate of energy dissipation under various conditions are also presented. In addition, an analysis of
the performance of the developed software is performed, including a comparison of the serial and
parallel versions of the program. Particular attention is paid to the physical aspects of the model:
the transition regions between the components are described using a phase parameter changing
according to the Cahn-Hilliard equation. The method allows one to model complex structures and
predict the time it takes for the system to reach a stable state. The results confirm the correctness
and efficiency of the proposed approach for studying the dynamics of multicomponent fluids.
Key words: Ternary fluid, fluid mixtures separation, Cahn-Hilliard equation, phase-field based
lattice Boltzmann equations method.
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19s-®apabu areiHgarel Kazak yaITTeIK yHuBepcuTeri, AIMaTs K., Kazakcran
2X aJIBIKApAJIBIK, HHKEHEPJIiK-TeXHOJIOTUAIBIK, yHIBepcuTeT, AMaTs! K., KasakcTan
3Xumus-6uosorust 6arbIThiHIarsl Hazapbaes 3usarkepiik MexTebi, AaMars! K., Kazakcran
*e-mail: ainura.z89@gmail.com
Dasasnbik epic Heriziuzeri 6oc sHeprusigaslt LBM onici apkbuibl apajiacnaliThlH YINTIK
CYUBIKTBIKTApAbl 3D-Mogenbaey

Bya xxymMbIc yimn esmmem i 06JIbICTa, YIII KOMIIOHEHT] 6ap CYHBIKTHIK, aFbIHBIHBIH, JUHAMAKACHIH MO-
Jlesibliey YImiH (as3aliblk epic Tociiine HerizmenreH xkoue D3Q27 cxeMachbIiHIa Ky3ere achbIpbLIFaH
6oc sneprusicel 6ap TopJbl Bosbuman Tengeysepi oaicin (Lattice Boltzmann equations method)
KOJIIAHYIbI KapacThipaabl. OChl oic HeriziHniae CyRbIKTHIKTAPIbIH YIITIK KOCIIACHIH 06JIy 1 MOJIe/Ib-
JleyJli KAMTUTBIH ChIHAK, ecebiHiH KeMeriMeH TekcepiareH barmapiaMa KypbLLibl. AJIBIHFAH HOTHU-
JKeJlep CYMBIKTBHIK KOCIIACHIHBIH OOJIHYIHIH yaKbITKA TOYEJJIIriH, OETTIK Kepioy MeH aybIPJIbIK,
KYIIIHIH ocepiHe Toye IiIirin kepcerei. Mbicasibl, 6eTTiK Kepiay KYIIiHIH KOFapbl MOHJIEP] Ke3iH-
Jie KOMIIOHEHTTEP/IiH OoJtinyi empyip Tesipek xkypemi. CoHmail-ak, aFbIHHBIH OPTAIla KHHETUKAJIBIK,
SHEPTUSCHI KOHE 9P TYPJI Karaijap/ia SHEPTUSHBIH TapaJy KbLIIAMIIBIFBI TypPaJabl MOJIIMETTED
oepiyirern. CoHbIMEH KaTap, OarmapiaMaHblH CEPUSIIbIK, YKOHE MapaJsljIesibli HYCKAJAPBIH CaJIbICThI-
PY/IbI KAMTUTBIH 93ipJIeHreH OarIap/IaMalibiK KAMTaMAChI3 eTY/IiH OHIMIIIIriHe Taaaay Kyprisiimii.
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Moyenb/iiH, (hU3UKAIBIK, aCIEKTLIepiHe epeKIle Ha3ap ayJIapbLIajbl: KOMIIOHEHTTED apaChIHIATbI
aybicy aiiMakTapbl Kann-Xujumap TeHeyine coiikec e3reperin ¢a3aliblK, mapaMerp apKbLIbl CH-
maTTaaaIbl. OJIIC Kyp/aeil KyPhLIbIMIAPILI MOJEIbIEYTe KOHE KYIHeHIH TYpaKThl Kyiire keTyiHe
KeTeTiH yaKbITThI OoJrKayra MYMKIHIIK Oepermi. Hormxkesnep KOIKOMIIOHEHTTI CYMBIKTBIKTAPIBIH,
JIMHAMUKACHIH 3€PTTEY VIIH YChIHBLIFAH TOCIJIIH, JYPBICTBIFBI MEH THIMJIJIINH pacTaiIbl.
Tyitin ce3aep: Y11 KOMIIOHEHTTI CYHBIKTBIK, CyibIKTap Kocmackid 6oy, Kan-Xurapa Teneyi,
dazasibIk epic HeriziHgeri BoJibIMaHHBIH TOPJIBI TEHJIEY1 9JTiCl.
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3D-MogempoBaHEe HE CMEIUBAIOINNXCS TPOMHBIX YKUAKOCTEN METOIO0M PEIIeTOYHBIX
ypaBHeHnuii BosbiiMana co cBobOgHOIT sHeprueii Ha ocHOBe (hPa30BOr0 IOJISA

B mammoit pabore paccMaTpuBaeTCsi UCIOJIb30BAHIE METOIA PEIIeTOYHbIX ypaBHeHuit Boabnmana
(Lattice Boltzmann equations method) co cBobozanoit sHeprueii, ocHOBAaHHOTrO Ha 10AX0E Ha30BO-
'O TI0JIsl U PEAJIM30BAHHOTO Ha, cxeme D3Q27, ist MOIeIMpOBaHUs IMHAMUKI TPEXKOMIIOHEHTHOTO
[IOTOKA KUJKOCTH B TpexMepHOil mosioctu. Ha 6a3ze sToro meroma cosjgaHa mporpaMma, KOTO-
pas BepudHUIUPOBAHA C IIOMOIIBIO TECTOBOW 3a/a4M, BKJIOYAIONIEH MOJIEIUPOBAHNE Pa3/IeJIeHUs
TpoiiHO# cMecu KumkocTeil. [loyaentbie pe3ybTaThl JeMOHCTPUPYIOT 3aBUCUMOCTD Pa3/IeICHUST
CMeCcH OT BPEMEHH, BJIMSIHUSI TIOBEPXHOCTHOTO HATSXKEHUS U CUJIBI TsizKecTH. Hampumep, pu BbICO-
KOM 3HAYEHUU MMOBEPXHOCTHOIO HATSXKEHUS pasjiesieHne KOMIIOHEHTOB ITPOUCXoUT ObicTpee. Tak-
JKe IPeJICTaBJIeHbl JAHHBIE O CPEJHe KUHETHYECKOW SHEpruu IIOTOKA U CKOPOCTU JIMCCHUIIAIH
SHEPIUU IPHU PA3JIMYHBIX yCJIOBUsX. Kpome TOro, mpoBejieH aHaJN3 TPOU3BOINTE/IBHOCTHA pa3pa-
6OTAHHOTO TTPOrPAMMHOIO 00ECIIeIeHNUs, BK/II0Uasi CPABHEHHUE TOCJIEIOBATEILHON U MAaPaJLICTbHON
Bepcuii mporpammbl. Ocoboe BHUMaHWE YeIeHO (PUNIECKUM ACIIEKTAM MOJIEIH: MEPEXOIHBIE 00-
JIACTH MEXKJIy KOMIIOHEHTAMH OIHUCHIBAIOTCSA C MOMOIIBIO (ha30BOro mapamerpa, M3MEeHSIONErocst
coryiacHO ypapHenuto Kanna-Xwuummapaa. MeTor 103BoJIsieT MOJIEIUPOBATE CJIOYKHBIE CTPYKTYPbI
¥ [IPOI'HO3UPOBATH BPEMs JIOCTUXKEHUSI CHCTEMOIl CTaOUJILHOI'O COCTOSIHMS. Pe3ysibraThl MoATBep-
KJIAI0T KOPPEKTHOCTH U 3 (PEKTUBHOCTD MPEJJIOKEHHOTO MOAX0/IA It U3YIeHUs] TUHAMUAKA MHO-
POKOMITOHEHTHBIX YKUJIKOCTEH.

Kurouessbie ciioBa: TpoitHast cMech KUIKOCTEH, pa3iesieHre CMeCH JKUJIKOCTel, ypaBHenne Kana-
Xuamapaa, MeTOJT PeIeTOYHbIX ypaBHeHuit bosbiiMana Ha ocHoBe (Ha30BOTO TIOJIS.

1 Introduction

The dynamics of interfaces in multicomponent immiscible fluids are commonly observed in
various processes and technologies. Examples include petrochemical industry, food processing,
pharmaceutical industry, cosmetic industry, environmental technology, nanotechnology, etc.

In scientific research, two numerical approaches are developed to describe the dynamics
of a complex interface: the diffuse interface method [1] and the sharp interface method |2].
Our paper uses the diffuse interface method. Compared to sharp interface method, the diffuse
interface method uses thin transition regions of nonzero thickness. The key concept involves
introducing an order parameter that changes continuously across these layers while remaining
mostly uniform within the bulk phases. The change over time of this parameter is determined
by the Cahn-Hilliard equation |3].

In recent years, the lattice Boltzmann equations method (LBM) has become a widely
used diffuse interface method for modeling complex multiphase and multicomponent flows.
In particular, various force modeling of the interfaces between components were built: color-

gradient LBM [4], Shan-Chen LBM |[5], free-energy LBM [6], and phase-field-based LBM [7].
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Among the above-mentioned methods, phase-field-based LBM should be highlighted, which
has been used in a number of scientific studies over the past few years due to its application
simplicity and efficiency [8].

To date, the authors behind this study have carried out 2D numerical simulations to
analyze the devision process of a three-component fluid mixture [9]. This work introduces
a three-dimensional mathematical model for incompressible ternary fluids. The proposed
numerical model is built upon a phase-field approach using the free energy lattice Boltzmann
method with the D3Q27 scheme. The efficiency and accuracy of the method used are tested on
the basis of the results presented, include the separation of a three-component fluid mixture as
a function of time with and without gravity, the change in average kinetic energy and energy
dissipation rate at different surface tension values. The paper describes the parallelization of
the algorithm using MPI technology, and also examines the performance analysis of sequential
and parallel programs. The findings confirm the accuracy of the utilized 3-D model for a
ternary fluid system.

2 Problem statement and numerical method

To study the process, a limited cavity in the shape of a cube with dimensions [0, L] x [0, L] X
[0, L] (Figure)1) is taken. The cavity is filled with fluid, the components of which have different
densities: p; > py > ps3. Fluid with the lowest density is blue, fluid with the medium density
is white, and fluid with the highest density is red.

rho
[ 1000
900
— 800

— 700

[ 600
500

[ %3

Figure 1: Scheme of the computational domain.

The LBM approach in the Bhatnagar-Gross-Krook approximation of the collision operator
with the D3Q27 model is applied to numerical realization of the problem:

WE 0= [1@ )

Tf

Fi(T 4+ AL+ A) — f(T,t) = At |—

Fi|,
(1)

4T+ P+ A — g (T 6) = S g (78) - ()

where m = 1,2, 3 — fluid components, f;, g" — velocity and phase field distribution functions,

e; — discrete lattice velocity, 74 = %—i—cl (7’1 — %) +co (7’2 - %) +(1—c1—c) (7'3 - %) s Tm = 0.8
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— relaxation times, F; — force component, At — lattice time step, fi?, ¢;"“? — equilibrium
distribution functions for velocity field and phase field, respectively.
The equilibrium distribution functions are determined by the following formulas [11]

p- YA =0
S = 7 Con Cialla . Ualg (€in€is — C204p)
wZ 1+ mHm + oo + (6% 11 s~ , Z O
”( Z e T 23 ) 7

m,e p_
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w; (Fmﬂm + Cm€ialn + CmUqUq (eiaeiﬁ - Cgo—aﬁ)) : i 7§ 0

2 2 2
s cs 2cz

where ¢; = ¢/ V3 is the lattice speed of sound, ¢ = Ax/At, Az and At are the lattice space
and time steps, which are equal to unity, and A,, is the phase field for the fluid components:

Zcm = 1. (3)

In the D3Q27 scheme (Figure 2) the discrete velocities are defined using the formulas

(0,0,0)c, 1 =0,
s = (:i:l,0,0)c, (O, :I:l,O)c, (0,0,:I:l)c, 1=1-—6,
b (+£1,£1,0)c, (0, +1, j:l)c, (il,O7 il)c, 1=17—18,
(1,41, £1)c, 1 =19 — 26,
19 13 22
3 F //
15 5 //1’2
u N VY
= X 126
- A3 —
2 )( { 1
8 4 b ‘ L o
AT 5 | 16
/. \
21 20

Figure 2: D3Q27 scheme.
The weighting coefficients values are defined by:
8/27, =0,
2/27, i=1-6,

1/54, i=7-18,
1/216, =19 — 26,
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i in equation [2] is the chemical potential, which is obtained by varying the bulk free
energy function with respect to the concentration ratio of the fluids. For a multicomponent
fluid flow the free energy functional F' can be determined based on the concentrations of the

3\
Fo (C) -+ Z %VQ’CJ' dQ)

fluid components [10]:
F(e,Ve) = /
ij=1

where Fy(c) = Zijzl Bijla(e) — g(c;) — glei + ¢;)] is the bulk free energy, g(c) = (1 — ¢)?,

3 ) .
Bij = w04 and \;; = _TUU are the constants, where o0;; is the surface tension between

the fluid components and D is the transition layer thickness. Then, the chemical potential
[t takes the form:

H1 = ].2[/\1(31(1—C1)(1—201)—2)\TC102(1—01—C2)—QATCng(l—Cl—Cg)]/D—(3D/4))\1A01

M2 = 12[)\262(1—CQ>(1—262)—2)\T0162(1—61—Cg)—2)\T6263(1—62—63)]/D—(3D/4))\2A62
M3 = 12[/\303(1—C3>(1—203)—2)\T6103(1—Cl—63)—2)\T6203(1—02—03)]/D—(3D/4))\3A03

where A\; = 019+013+023, Ao = 012+093+013, A3 = O13+023+012, A\ = 3/(1/ A1 +1/X0+1/X3).
To obtain the correct governing equations, we incorporate the force term F; in the LB
evolution equation by using the scheme proposed by Guo et al. [12]

At A1) -
E:M(l ){ 2u+€(e ? - F,
CS

27y ct

where ? =F; + ?b = Zle wive; + p7 is the total force of surface tension and gravity.
The collision and streaming stages are used to update the distribution functions:

fi(?7t) - fieq(77 t)
s
g™ (T, t) — g (T, 1)
(T + AL+ At) = fﬁ(?,;)
G(T + €L+ AL) = g7 (T t)

Then the macro variables (density, velocity, phase field) are found:

26 26 At 26
P:Zfi, P7=Zfi?i+7?, cm:Zme, m=1,2.
i=0 i=0 i=0

The parameter Az can be found from the formula (3]).
The second order isotropic differences are used to calculate derivatives of macro variable
C; [10]

FAT ) = fi(T, 1) + At(— + F)

g™ (T 1) = g™ (T 1) + At(—

)

26

ilem (T + €A ) —
cm ? t) = Z AL
i=0 s
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3 Simulation results

We consider the dynamics of the ternary fluid mixture in a rectangular computational domain
with dimensions: N; x Ny x N, N, = 80, N, = 80, N, = 80. The physical length is L = 0.01 m.

L
The time and space steps are Ax = N - 0,000125, At = 0.000117188, N; = 80000 —

maximum number of time iterations. The iter parameter in the figures denotes the number
of iterations. Also dimensionless time is used in the figures — time = iter /Nt.

kg kg

Values of physical quantities: the density of fluids — p; = 1000—, ps = 750—, p3 =
m m

k
500—g3 and the viscosity — 7, = 172 = n3 = 0.01 Paxs, the acceleration of gravity — g = 9.8%.
m s

The initial conditions for the phase field are as follows:
a(7,0) =7 + o x rand(T)

c(7,0) =G 4 a x rand(7)
e3(7,0) =1 — 1 (7,0) — eo(7,0)

Numerical simulation by the LBM is performed in lattice units. Transformation
coefficients Cu = 1.06667, C'g = 9102.22 are used to obtain the lattice analogues of physical
parameters: the density — p; = 1.33, po = 1, p3 = 0.67, relaxation times — 71 = 75 = 73 = 0.8,
the surface thickness — D = 2, the acceleration of gravity — ¢ = 0.00107666, and Uy, =
0.293484. The values of the concentration fractions are (¢;,¢s,¢3) = (%, %, %)

When gravity is not taken into account, spinodal decomposition of the three-component
fluid (Figure 3) occurs due to surface tension forces.

a) iter=2000; b) iter=10000; ¢) iter=20000; d) iter=40000;
time=0.025 time=0.125 time=0.25 time=0.5

Figure 3: Spinodal decomposition of the fluid mixture with concentration fractions (¢;,¢z,¢3) = (%, %,
depending on time for (a)-(d) 012 = 013 = 023 = 0.01.

)

W=

Figure 4 presents the illustrations of the dynamic variation of fluid components,
highlighting the separation of immiscible fluids under the influence of gravitational forces.
One can see that surface tension affects the rate of fluid separation. With a higher value of
surface tension, the separation of fluid components occurs faster.

At an early stage the fluid with the lowest density moves up, while the fluid with the
highest density moves down. Due to the acceleration of gravity, three stable layers of fluid
components are formed.
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a) iter=1000; b) iter=5000; ¢) iter=10000; d) iter=20000;
time=0.0125 time—0.0625 time=0.125 time=0.25

e) iter=2000; f) iter=10000; g) iter=20000; h) iter=40000;
time=0.025 time=0.125 time=0.25 time=0.5

i) iter=20000; j) iter=30000; k) iter=40000; 1) iter=80000;
time=0.25 time=0.375 time=0.5 time=1
Figure 4: Ternary fluid separation with concentration fractions (¢;,¢2,¢3) = (1, 1, 1) depending on time for

(a)—(d) 0192 = 013 = 023 = 002, (e)—(h) 012 = 013 = 023 = 001, (1)—(1) 0192 = 013 = 023 = 0.001.

Figure 5 shows the time evolution of (a) the average kinetic energy and (b) the energy
dissipation rate at three values of surface tension. Average kinetic energy computed in physical
space:

B — u%—i—uzg—kug

The energy dissipation rate is given by:
1 ou,  ou
E = —7.9 d J / — P iy
22 <awj " 6) WS

where u; — actual velocity, ¥ — kinematic viscosity.

In the Figure 5, the average kinetic energy and dissipation rate for o195 = 013 = 093 = 0.02
are shown in black, for 019 = 013 = 093 = 0.01 in red, and for 015 = 013 = 093 = 0.001 in blue.
Among them, the largest value is taken at o195 = 013 = 093 = 0.02, which corresponds to the
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highest level of turbulent activity. The decay process is slower at o195 = 013 = 093 = 0.001.
One can see that the obtained results demonstrate the suitability of the proposed model for
a ternary fluid.

T T T T
1) sigma=0.020 —— 1) sigma=0.020 ——
2) sigma=0.010 —— 2) sigma=0.010 ——
3) sigma=0.001 —— 3) sigma=0.001 ——

Average Kinetic Energy
Energy Dissipation Rate

0.1 02 03 04 05 06 07 08 09 1

time

b)

Figure 5: Time evolutions of (a) the average kinetic energy and (b) the energy dissipation rate at different o.

The implementation of the numerical algorithm for modeling the dynamics of a three-
component fluid flow in a three-dimensional cavity taking into account surface tension forces
is performed in the Fortran 2008 programming language. Parallelization uses the method of
three-dimensional decomposition of the computational domain and is performed using the
Cartesian decomposition function of the MPI library [15]. Synchronization between the cores
and nodes of the computing platform is performed by introducing an additional layer of
intermediate cells (halo layer). The code is compiled by calling the make command, which
will generate the executable file main. To call the code in parallel mode, it is necessary to
specify the necessary parameters in the config.nml file. Then call the main command using
nohup numactl — membind=1 mpirun - np 256./main &.

The characteristics and theoretical performance of the computing platform used are shown
in Table 1.

Table 1: Characteristics of the computing system

Number of | Number of | Total number | Cache Processor Performance

nodes processors in | of cores memory | frequency (theoretical)
one node

5 2 280 42 Mb 2.6 GHz 8.9 TFlops

Parallel performance measurements of the numerical implementation were carried out on
a computer system with 280 cores. The value of the running time of the numerical algorithm
on the grid 803, calculations were carried out for 500 iterations:
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Table 2: Time taken to perform 500 steps of the LBM algorithm

3D decomposition | Number of CPU cores | Computational time Speedup
1x1x1 1 7574,39 1
2x1x1 2 4324,71 1,751421
2x2x1 4 1670,77 4,533473
2Xx2x2 8 838,33 9,035094
4x2x2 16 400,81 18,89771
4x4x2 32 226,91 33,38059
4x4x4 64 146,55 51,68468
8 x4 x4 128 99,94 75,78937
8 x 8 x4 256 74,02 102,329

Computational time, sec.

2000
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Figure 6: Reduction in program execution time with an increase in the number of involved computing cores
based on the 3D decomposition method of the computational domain.
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Figure 7: Acceleration of computation with an increase in the number of involved computing cores and a
fixed size of the original problem.
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Figure 6 shows the trend of decreasing program execution time with increasing number
of cores used, the abscissa corresponds to the activated processor topology. Figure 7 presents
the acceleration data obtained as a result of this computational experiment. It is evident that
the acceleration of the used implementation is less than ideal, however, the calculation time
can be reduced when using up to 256 cores.

4 Conclusion

Our paper discusses the development and application of a three-dimensional numerical
simulation model to study the dynamics of immiscible ternary fluids. We utilize the phase-
field-based free energy LBM with a D3Q27 lattice scheme to simulate the separation process
in a cubic cavity. This method demonstrates flexibility in modeling different surface tension
values and concentration fractions. This work has potential applications in fields requiring
an understanding of fluid mixtures, such as petrochemical processes, pharmaceuticals, and
environmental technology. For further insight, the work is supported by references to key
studies and validated through prior research on 2D ternary fluid separation. The availability
of an adaptable software package ensures its utility in diverse scientific and industrial
applications.

It can be concluded that the proposed numerical algorithm is ideal for operation on
modern multiprocessor computing systems, allowing to significantly reduce the waiting time
for 3D modeling results. The performance analysis of the code used suggests that a further
increase in the number of nodes involved will require additional optimization of the MPI
library data exchange process, or a transition to reducing the memory load by adapting a
discrete speed model with a smaller number of nodes (for example, D3Q19 or D3Q13) will
be required.
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