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There is a wealth of interesting results comparing between Dirichlet and Neumann
eigenvalues. In this paper we compare the eigenvalues of the Newton potential with the
Dirichlet eigenvalues and the Neumann eigenvalues in a bounded domain in RY. First we
show that the spectral problem of the Newton potential is equivalent to a spectral problem
of a non-local boundary value problem of the Laplace operator then it is proved that the
nth eigenvalue of the Laplacian with the non-local boundary condition is between the
nth eigenvalue of Neumann Laplacian and the nth eigenvalue of Dirichlet Laplacian in a
bounded domain of any dimensional euclidian space.
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/1. Cyparax
HpoTOH MOTEeHIMAIBIHBIH, MEHIIIKTI MOH/IEPiH CAJIBICTHIPY TEOpPEMAChI

By makasaia HpioToH OoTEHIIMAIBIHBIH, MEHIITIKTI MOH/IEPIiH CAJIBICTBIPY TEOPEeMaChl 161
nennl. EBKimMI KeHicTirimmaeri aliblK IIeHeEJreH oObLIbicTa HBIOTOH HOTEHITMAJIBLIHBIH, 1-IITl
MeHmikTi MoHi Jlamnac oneparopbiia Koitblaran Heliman ecebiHiH n-1Ti MEHINKTI MOHIHEH
VJIKEH eKeHJIr »KoeHele cojl HbIoToH moTeHIInaJIbIHBIH, N-1I MEHIIKTI MoHi Jlaiac onepaTo-
pbiHa KoitbLiran upuxie ecebiHiH n-1i MEHITIKTI MOHIHEH Killli eMec eKeHIIr JoJIe/IIeH .

Tytitn cosdep: cuekTpaJibablk ecern, Jlupuxite ecebi, Jlamracuan menmmkTi MorAepi, Heii-
MaH ecebi, HbIOTOH ITOTeHIINAJIbL.

. Cyparan
Teopema cpaBHeHHsI i COOCTBEHHBIX 3HavYeHNii HbIOTOHOrO moreHaga

B »10it pabote moxkazaHo ojiHa TeOpPeMbl CpaBHEHUsI COOCTBEHHBIX 3HadeHnit HbroToHOrO
IIOTEHIHAIa B OTPAHIIEHHON 06IaCTH eBKJIN/I0Ba ITpocTpancTBa RY ¢ cobcTBenHbIMET 3HAMC-
HusgMu 3aga4an upuxie s ypasaenus Jlamnaca u 3agaan Heitmana s ypasaenus Jla-
IJ1aca B TOW Ke OrpaHMYeHHOI 00JacTH eBKJINI0Ba IpocTpaHcTBa. Jlokazano, 4To n-Hoe
cobcTBennoe 3HaveHne HboTOHOBA MOTEHIMAIA B OrPpAHUYEHHON O0JIACTH €BKJIMJIOBA IIPO-
crpancTBa RP Gosbmre, geMm n-noe cobcTBeHHOE 3HadeHne 3a1aun Heitvana 11 ypaBHeHus
Jlanjaca B TOil »Ke OorpaHMYeHHON 00JIaCTH eBKJIMI0BA MPOCTPAHCTBA. A TakyKe JIOKa3aHo,
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YTO n-Hoe cobcrBenHoe 3Hadenne HbioTonosa norenimasa B OrpaHMdeHHONl 00JIaCTH €BKJIN-
nosa npocTpancTsa RY me Gosbire gem n-Hoe cobcTBeHHOE 3HadeHme 3ajadu Jupuxie s
ypaBHeHud Jlammaca B TOI yKe OrpaHMYEHHON €BKJINI0Ba ITPOCTPAHCTBA.

Karouesvie caosa:ciekTpasibHas 3ajada, 3a1a4da upuxie, cobcrBennbie 3uadenus Jla-
acuana, 3aja4da Hefimana, moreHIaa HbIOTOHA.

Introduction. There are vast inequalities comparing the eigenvalues AP < AP < A\D < ..
of the Dirichlet Laplacian and those of the Neumann Laplacian denoted by AY < A} <
A < ...,(enumerate their eigenvalues in increasing order) each time repeated according to
multiplicity. The Mini-Max Theorem asserts that AY < AP n € N. In 1952-1954, Polya [14]
and Szego [12| proved that there exists a v > 0 independent of  such that A < AP

Shortly after, in 1955, Payne [13] showed that

A L <A nen, (1)

whenever ) is a convex, planar domain with C%-boundary. Developing an idea used in [13],
Levine and Weinberger’86 [9] proved inequality (1) for arbitrary bounded convex domains in
R® without any regularity assumption. They also showed that (1) remains true if convexity is
replaced by more general conditions on the mean curvature of the boundary (which is assumed
to be C?~%). However, without any geometric condition, in dimension 2, it may happen that
MY > AP for Q € R?, (see [1]). It was only in 1991 that Friedlander |5] proved the inequality
M, < AP n e N for arbitrary domains in R? of class C' without any restriction on the
geometry. However, his assumption on the Cl-regularity of the boundary is crucial for his
arguments (which are actually given for C*° -domains, referring to a general approximation
result of C'-domains by C* -domains with convergence of the corresponding eigenvalues in
[2]). In view of the preceding diverse results involving geometric and regularity assumptions
one may wonder whether the C'! -assumption is optimal in Friedlander’s, even though some
hypothesis on € is needed to guarantee that the Neumann Laplacian has compact resolvent.
Mazzeo’91 proved that the analogue of Friedlander’s result is valid for all compact domains
in a symmetric space of non-compact type [11]. A more recent result is taken by Filonov [3]
that d > 2, a domain  C R is such that the embedding H*(2) C Ly(£2) is compact, and the
measure of { is finite, || < oo, then AY,; < AY,n € N, in 2010 Frank and Laptev proved
that the analogue of Filonov’s result is valid for the sub-Laplacian for any domain in the
Heisenberg group [4]. Gesztesy and Mitrea [6] extended Friedlander’s inequalities between
Neumann and Dirichlet Laplacian eigenvalues to those between one type of nonlocal Robin
and Dirichlet Laplacian eigenvalues associated with bounded Lipschitz domains, following an
approach introduced by Filonov for this type of problems.

Let consider the spectral problem on eigenvalues of the Newton potential in a bounded
domain Q C R d > 1 with a boundary 92 € C?%,a € (0,1)

u() = A / eal — y)uly)dy, 2)

where
—%ln|m—y|,d: 2,

€a\r —Y) = 1 —d
( ) {m’ﬂi—w ,d >3,
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is a fundamental solution of the Laplace equation i.e., —Agy(x—y) = §(x—y) in R?, § is the

J 1/2
delta-function, |z —y| = [Z (xg — yk)ﬂ is the distance between two points x = (1, ..., z4)
k=1
d
and y = (y1,...,94) in d-dimensional Euclidean space R?, 04 = 13’{;) is the area of the unit
2

sphere in R? and T is the Gamma function.

In work [7] we explicitly computed the eigenvalues of the Newton potential (2) in the
2-disk and the 3-disk.

We denote eigenvalues of the Newton potential (2) by A¥ n € N and enumerate their
eigenvalues in increasing order (with multiplicity taken into account). By using eigenvalue
counting functions and some important lemmas for the Newton potential, now we shall
compare the eigenvalues of the Newton potential with the Dirichlet eigenvalues and the
Neumann eigenvalues in a bounded domain 2 in R? with a boundary 9Q € C** a € (0,1).
We obtain the following main result.

Teopema 1 In a bounded domain Q2 C R, d > 2 with a boundary 0 € C**,a € (0,1) we
have

AV < AP < AP neN, (3)

where AP, NN and ANT are the eigenvalues of the Dirichlet problem, the Neumann problem
and the Newton potential, respectively.

In the preliminaries section 2, there are proved some important lemmas and we will use
these in the proof section 3. In the section 2 we also consider the one-dimensional case in
(0,1).

1. Preliminaries

Jlemma 1 For any function f € Ly(QY), suppf C 2 the Newton potential

"= / calz — ) F(y)dy, (4)

Q

satisfies the boundary condition

B Deq(x — y) _ / _ ou(y) .
u(z) + 2 / “on, u(y)dSy, —2 | 4z —y) an, dS, =0,z € 0L (5)
B o0

Conversely, if a function u € H*(Q) satisfies
—Au=f,xe (6)

and the boundary condition (5), then it determines the Newton potential (4), where 2 €
R d > 1 is a bounded domain with boundary 0Q € C** o € (0,1) and % denotes the outer
normal derivative on the boundary.
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First, we assume that u € C%(Q) (N C*(Q).
A direct calculation shows that, for any x € €2, we have

ulz) = / ol — ) fy)dy = — / eal — y)Ayu(y)dy =

Q Q

/ ( @ y)ﬁgg) * agdg;y_ y)“@’)) dSy — / Ayea(z —y)uly)dy =

o)+ [ (Z= ) eute - 0 5 Y s,

o0

9
OYn

o)

where -2 = nla%l—i—...—l—nn is the outer normal derivative and n, ..., n,, are the components
Y

on
of the unit normal.

This implies

/ (Mu(y) ez — y)agg)>dsy =0, ve. (7)

ony
a0

Applying properties of the double-layer potential and single-layer potential to (7) with z —
012, we obtain

_@ * / (%ny_y)u(y) —calz —y) agg))dsy — 0,z €00 s)

o0

i.e. (8) is a boundary condition for the Newton potential (4). Next, it is easy to show by
passing to the limit that relation (8) remains valid for all u € H?*(2). Thus, the Newton
potential (4) satisfies boundary condition (5).

Conversely, if a function u; € H?*(f) satisfies the equation —Au; = f and boundary
condition (5), then it coincides with the Newton potential (4). Indeed, if this is not so,
then the function v = u — u; € H?*(Q), where u is the Newton potential (4), satisfies the
homogeneous equation Av = 0 and the boundary condition

_v(2m) +/ (%ﬂy‘y)wy) gz — y)a;g))dSy 0.z o0, o)

89
As above, applying the Green formula to v € H?*(Q2), we see that [eq(x — y)Ayv(y)dy =
Q

—v(x) +a{z (%xy_y)v(y) —eq(r — y)%@) ds, =0, Yz e Q.

Passing to the limit as x — 00, we obtain

o) - 4 [ (ZHEZ W) et - ) G s, =0

on,
a0
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Here from (9) we get

V(2)|zean = 0. (10)

By virtue of the uniqueness of a solution to the Dirichlet problem for the Laplace equation,
we have v(x) = u(z) — uy(x) = 0 for any = € Q, i.e. u;1 = u, u; coincides with the Newton
potential. This completes the proof of Lemma 1.

It follows from Lemma 1, the spectral problem on eigenvalues of the Newton potential (2)
is equivalent to the boundary value spectral problem

—Au = du,x € Q) (11)
—u(z)+2 / % =Y) yas, — 2 / cale— 29 4s — 0 2 e o0 (12)
on, on,
oN oN

Remark 1. The operator (11)-(12) is self-adjoint as its inverse (2) is self-adjoint operator.
Hereafter, we denote the self-adjoint operator (11)-(12) by —A&T.

Remark 2. It is easy to check the nonlocal boundary value problem (11), (12) is not
equivalent to another regular boundary value problem for Laplacian such as Neumann, Robin
and so on. For example if the nonlocal boundary value problem (11), (12) is equivalent a
Robin-type boundary value problem then at least the following inequalities are known [see,
for example, 2, also cf. 6] AN <\, < AP n € N but we consider completely different case.

Jlemma 2 Let d > 2. If u is the Newton potential (4) then

TU5ds < o. (13)
/5

From (4) we have

Au(z) =0,z € R\ Q, (14)

u(z) =0 (#) o] = oo, d > 2. (15)
x| 2

We can then compute by using (14) and the Green’s first formula

0= / Au-udr = — / |Vul?dz + a—ufﬂdeL lim a—ualS
on on

T—00
RI\Q RA\Q o9 9%,

where 09, = {z € R?, |z| =r} 1s a d-sphere and 57— denotes the inner normal derivative on
the boundary 0f2 i.e. % = 8n.
From (15), we have
lim —udS =0.

=00
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It follows 9
TUads = — / Vu|%dz < 0.
on
o0 RO
Remark 3. In the case d = 2 in a disk by using explicit formula of eigenvalues [see 7| we
see that (3) is valid then we prove Theorem 1 with help of the conform mapping.
Jlemma 3 We have that
Hyp(2) Nker(=Ag — 1) = {0}, 11> 0, (16)

where Hyp(Q) is a set of functions u € H'(Q) which satisfy the boundary condition (5) of
the Newton potential, —AY is the Neumann operator.

if u € Hyp(Q) Nker(—AY — 1) then it follows from Lemma 1

u(z) + 2 / %™ =) yas, — 0,z € o9, (17)
on,
o0

Hence (17) is the second-kind Fredholm equation, it has the unique solution [see 10]

u(z) =0,z € 00N. (18)
As H} () Nker(—=AY — 1) = {0}, [see 3 or 8] > 0, we get u = 0.
Jlemma 4 [see 10/ We have

ou(z) OU 20

where U = 28{2 %ﬂ”y_y)u(y)dsy — 28{2 ca(r — y)aa“T(Zy’)dSy and u is the Newton potential (2).
And (19) is solvable according to

ou(x)
on,

=V(z,u),x € 09,
function V' is defined on x and u on OS).

d=1
Consider the spectral problem for the one-dimensional Newton potential (d = 1)

1

() = A / —%m — tlut)dt. (20)

0

And we have
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Integrating by part, we obtain

1

1
1
u(x) :)\/——|a:’—t|u /5 — t|u" (t)dt
0

0

= % /(:c — t)u (t)dt — /(x — t)u"(t)dt
_ () — 220 (M) —(1) 4 u(0) + u(l)
u(z) —x 5 5 :

Thus,
z(u'(0) + u'(1)) + (—u'(1) + u(0) + u(1)) = 0,Vz € (0,1).

Therefore, the boundary conditions for the one-dimensional Newton potential are u'(0) +
v (1) =0, —u'(1) + u(0) + u(1) = 0.

So the spectral problem for the one-dimensional Newton potential is equivalent to the
following boundary value spectral problem

Pu

with boundary conditions
u'(0) +u'(1) =0, —u'(1) + u(0) + u(1) = 0. (22)
Solving the boundary value spectral problem (21), (22) we find two series of eigenvalues
MNP = ((2k — 1)7)? and A\)F = 422 where cotzy, = —2;,k € N
We enumerate these eigenvalues in increasing order and denote by A¥" n € N.
Teopema 2 Ifd =1, we have
M NP < NP pe N, (23)

clearly
M=M=\ n=2-11€N,

AP < AN =P n=21€N.

Corollary 1. Theorem 1 is also valid for the one-dimensional case.
Short proof of Theorem 2. a) Dirichlet boundary conditions:

—" = \Pv,x € (0,1), (24)
with v(0) =0 = v(1). (24) has eigenvalues

NP = (nm)%,n € N,

n
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b) Neumann boundary conditions:
—w” = \w,x € (0,1), (25)
with w'(0) = 0 = w'(1). (25) has eigenvalues
M= ((n—-1m)? neN,
c) Newton potential boundary conditions:
—u" = MPu,z € (0,1), (26)
with «/(0) + /(1) = 0, —u/(1) + w(0) + u(1) = 0. (26) has eigenvalues

NP _ - _ 2 4.2
Ay —%él]{[l(((Qk 1)m)*, 42;),

)\NP —

. min (((2k — 1)7)?,423), cotzy, = —2zp,n > 1.

{((k=1)m)2 dz) NAN Pyt

Fourier analysis shows that the eigenfunctions form a basis. Furthermore, all eigenvalues A2,
AN and ANP are positive and AP, AN AVEP — o0 and the whole spectrum is discrete. From

ni)» nr’n

a), b) and c) it is easy to check (23).

2. Proof of Theorem 1.

Now we are in the position to prove Theorem 1 when n > 2 (see Remark 3 and Theorem
2). We introduce the following counting function for the self-adjoint boundary value problem
(11)-(12) i.e., for the Newton potential (2)

Nyp(N) = N\, —AJ")

=max(dim L : L C Hyp(9), / |Vul*dz — / ?ﬂds < /\/ |u|?dz,u € L) (27)
n
Q B) Q

and we also introduce the counting function for the Neumann Laplacian

Ny(A) = N\, —AY) = max(dim L : L ¢ HY(Q), / Vul2de < A/ uPdz,u e L) (28)
Q Q
Let Q be the subspace of Hxp(f2) (see Lemma 3) such that
. 2 2 Ou_
dim Q = Nyp(p), [ |Vul*de < p | |u]*dx + %uds
Q Q o0
for u € @, u > 0. Consider the following direct sum
P = Q+ker(—AY —p).

Clearly P C H*(Q). Next, we take a vector u+v € P, where u € Q and v € ker(—AY — ).
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We can then compute

/ IV (u+v)|*de = /(|Vu|2 + |Vv|*)dz + 2Re(/ VuVudr) = I + L.
Q Q Q

According to Lemma 2

0
fo= [(Val  (VoP)de < g [(u + Pydn+ [ Srads < [l + o),
Q Q o0 Q

Hence,

I, = 2Re(/ VuVudr) = 2Re(/(—Au)ﬂd:€ + / ?ﬂdS) = ZMRe(/ vudzx).
n
0

Q o0 Q
Thus, altogether,
/|V(u ) < u/ lu + v|2dz.

Q

Q
It means

Ny(p) > dim P

Since @ is a subspace of Hxp(€2), Lemma 3 asserts that @ and ker(—AX — u) are disjoint,
thus
Ny(p) > dim P = Nyp(p) + dim ker(—AY — p).

If we set ;1 = A\ then we see that
Nn(AY) = Nyp(AT) +1,

what means A < AP,
According to Lemma 4, we can also introduce the following counting function for the
self-adjoint boundary value problem (11)-(12) (see [6], Lemma 1)

Nnp(A) = N(A, _Agp) =

max(dim L : L ¢ H'(9), / |Vul*dz — /V(m,u)u(m)dS’x < )\/ lul*dz,u € L) (29)
Q 9 Q
and we introduce the counting function for the Dirichlet Laplacian

Np(A) = N(A\, —Af) = max(dim L : L C Hy(Q), / |Vul*dz < )\/ lu|*dz,u € L) (30)
Q Q

From (29) and (30) we can see that AN < \D.

Theorem 1 is completely proved.

Conclusion.We proved the eigenvalues of the Newton potential with the Dirichlet eigenvalues
and the Neumann eigenvalues in a bounded domain in R?. First we show that the spectral
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problem of the Newton potential is equivalent to a spectral problem of a non-local boundary
value problem of the Laplace operator then it is proved that the nth eigenvalue of the
Laplacian with the non-local boundary condition is between the nth eigenvalue of Neumann
Laplacian and the nth eigenvalue of Dirichlet Laplacian in a bounded domain of any dimensional
euclidian space.
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