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ON O-MINIMALITY FOR EXPANSIONS OF A DENSE MEET-TREE

This paper aims to define the notion of o-minimality for partially ordered sets. Originally, the
notion of o-minimality was introduced for linearly ordered sets in the following way: A linearly
ordered structure is said to be o-minimal if any definable subset is a finite union of intervals and
points. For partially ordered sets, this definition does not work. One of the main reasons for this
is that the complement of an interval need not be a finite union of intervals, as happens in linearly
ordered sets. Here we suggest a notion of a generalized interval which makes possible defining o-
minimality for such a partial case of partially ordered sets as a dense meet-tree in a classical way:
an expansion of a dense meet-tree is said to be o-minimal if any definable subset is a finite union
of generalized interval and points. We think that this approach allows us to transfer the machinery
for investigating o-minimality for linearly ordered structures to partially ordered structures.

Key words: Ehrenfeucht’s theory, small theory, linearly ordered set, partially ordered set, o-
minimality.
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e-mail: d_aigera95@mail.ru
Troirpi3 Ke34ecy arallbIHbIH, KEHEUTIINeH KYPbLIBIMIAPBIHIAFBI O-MUHUMAJAbLIBIFBI TYPAJIbI

Byt 2KyMBICTBIH MaKCaThl 2KapThIJIail PeTTEJIeH »KUBIHIAD YIIiH O-MUHUMAJIBLIIBIK TYCIHITIH aHbI-
Kray 6oJiblll TabbLIabl. O-MUHUMAJIBLUIBIK, TYCIHIN OACTAIKBIIA ChI3BIKTHI PETTEJINEH JKUBIHIAD
VIIiH KeJjiecifieil eHrisiired 6oJIaThIH: erep ChI3BIKTHI PETTETeH KYPBLIBIMHBIH opOip dhopMysibii
imKi >KUBIHBI WHTEPBAJIAD MEH HYKTEJEPiH aKbIPJbl Oipiryi 6osica, OHIA OCHI CBHI3BIKTBI PET-
TeJINeH KYPBLJIBIM O-MUHUMAJIIBI JI€N aTaJabl. Byl aHbIKTaMa KapThLIANl PETTeJIreH KUBIHIAD
yITiH opbeiHAaaMaiabl. MyHBIH 6acTbl cebenrepinin 6ipi MHTEPBAJIBIH, TOTBIKTAYBIIIBI CHI3BIKTHI
peTTeJITeH >KUBIHIAP/IAFbl CUAKTHI MHTEPBAJIAP/IBIH aKbIPJIbI Oipiryi peTinge op/aiibiM 6071a 6ep-
meiiai. Mynga 613 K/IacCHKAJIBIK, >KOJIMEH YKAPThLIAN peTTeIreH >KUBIHIAP/IBIH MbICAJIbl PETiHJIe
TBIFBI3 KE3/IeCy AFalllbl VIMH O-MUHAMAJILIIBIFBIH aHBIKTayFa MYMKIHIIK OepeTiH »KaJllbLIaHFaH
MHTEPBAJI TYCIHITIH yChIHAMBI3: erep 9pbip OPMyIIbIl iMKi KUBIH KAJMBLUIAHFAH HHTEPBAJI MEH
HYKTeJEPiH aKbIpJbl Oipiryi 60sca, OH/a THIFBI3 KE3JIeCy AFaIbIHBIH KEHEI01 O-MUHUMAJIIBI el
aTaaibl. BYJI TOCLT CHI3BIKTHI PETTETeH KYPBLIBIMIAP YITH O-MUHUMAJIIBLIBIKTHI 36PTTEY alllla-
PATBIH KapThLIail PETTETEH KYPBLIBIMIAPFa aybICThIPYFa MYMKIHJIIK Oepeii Jiern ecenTeimis.
Tyitia ce3aep: dpeHdoiXT TEOPUSCHI, IAFBIH TEOPHsl, CHI3BIKTHIK, PETTEJINeH YKUBIH, YKaPThLIai
pPeTTeJNITeH YKUBIH, O-MUHAMAJIBLIBIK.
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06 o-MUHMMAaJIBHOCTHU [Jisi OGOraIeHnil MJIOTHOTO JepeBa BCTped

esbio maHmO# CTATHY SABJISETCS ONPEIEICHIE MOHATHSI O-MUHUMAIBHOCTH JIJI YaCTUIHO YIOPSI-
JIOYEHHBIX MHOXKeCTB. IlepBOHAYAIBLHO MOHATHE O-MUHUMAJIBLHOCTU OBLIO BBEJIEHO I JIMTHEWHO
VIIOPSIIOYEHHBIX MHOXKECTB CJISYIONINM 00pa30M: JTUHEHHO yIOPsI0UeHHasT CTPYKTYpa Ha3bIBaeT-
cs O-MUHUMAJIBHOM, ecyin Jitoboe (popMyIbHOE MTOIMHOXKECTBO SBJISIETCS KOHEYHBIM O0'be ITMHEeHNEeM
MHTEPBAJIOB U TO4YeK. J[Jisi 9acTUYHO yIOPSIIOYEHHBIX MHOXKECTB 3TO OIpejiesieHne He paboTaer.
OpnHOit U3 TIABHBIX IIPUYUH ITOTO SIBJISIETCS TO, UTO JOMOTHEHNE HHTEPBAJIA He 00A3aTETbHO JTOJIK-
HO OBITH KOHEYHBIM O0bEINHEHNEM HHTEPBAJIOB, KAK 9TO IIPOUCXOIUT B JIMHEHHO yIOPSIOIEHHBIX
MHOKECTBax.
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3/ech MBI IIpejjiaraeM IOHsTHE O0OOOIIEHHOIO0 WHTEPBaJa, KOTOPOE IT03BOJISIET OIPEJEC/IUTh O-
MHUHUMAJBbHOCTD JJIsI TAKOT'O YaCTUYHOI'O CJIydas YaCTHUYHO YIOPSIOYEHHBIX MHOXKECTB KaK IIJIOT-
HOE JIEPEBO BCTPEY KJIACCHIECKUM CIIOCOOOM: OOOTAIlEeHrE TJIOTHOTO JePeBa BCTPEY HA3BIBAETCS
O-MUHUMAJIHHBIM, €CJid JiI000e (POPMYJIHHOE TOIMHOXKECTBO SIBJISIETCS KOHEYHBIM O0bEeIUHEHIEM
0000ITIeHHOr0 UHTepBaJa 1 TodeK. MBI canTaeM, YTO 3TOT HOIXO/L ITO3BOJIET HAM IEPEHECTH all-
rapaTr MCCJEJIOBAHUS O-MHUHUMAJBHOCTU IS JIMHEWHO YIIOPSJIOYEHHBIX CTPYKTYD HA YaCTUYHO
YIIOpsJ0O9EHHbIE CTPYKTYPBHI.

KitroueBsbie ciioBa: 3peH(OINXTOBaA TeOpHsi, MaJjiasi TEOPUsl, TUHEHNHO yIOPsTOYeHHOE MHOYXKECTBO,
YaCTUYHO YIIOPAOYEHHOE MHOXKECTBO, O-MUHUMAJIbHOCTD.

1 Introduction

This article aims to apply the notion of o-minimality to partially ordered structures. We start
with the dense meet tree |2,|4] as a sufficiently tame partial order to examine our approach,
where a dense meet-tree means a lower semilinear order < in which each pair of elements a, b
has a greatest common lower bound, their meet a b without the least and greatest elements
such that:

(a) for each pair of incomparable elements, their join does not exist;

(b) for each pair of distinct comparable elements, there is an element between them;

(c) for each element a there exist infinitely many pairwise incomparable elements greater
than a, whose infimum is equal to a.

The first paper on o-minimality for partially ordered sets was by Carlo Toffalori 6], who
gave the following definition. A partially ordered structure is o-minimal if each its definable
over some set X subset is a finite Boolean combination of sets defined by formulae z < a
or x > b, where these a and b are in the algebraic closure of X. As we know, all other
notions of o-minimality and weak o-minimality of partially ordered structures are based on
this definition, for instance, |3]. We suggest another approach, which was first discovered by
S. Sudoplatov and V. Verbovskiy in |5] for weak o-minimality of partially ordered structures.

The standard notion of o-minimality for totally ordered structures is not convenient for
partially ordered structures because of the following reasons. In a totally ordered set the
complement of an interval is just a union of at most two intervals, while in partially ordered
sets this is no more true. That is why Toffalori suggested using a Boolean combination of
intervals in place of a finite union of intervals. Here we suggest another approach: we do
not change “a finite union”, but we change the notion of an interval, and we introduce the
notion of a generalized interval. So, our definition of an o-minimal partially ordered set is the
following.

Definition 1 A partially ordered structure is said to be o-minimal if each of its definable
subsets is a finite union of generalized intervals and points.

In the rest of the paper, we discuss the notion of a generalized interval.

The aim of this paper is to find a way of extending the notion of o-minimality to partially
ordered structure, because the notion of o-minimality and its generalizations, as o-stability
[1,8,9] already proved its own fruitfulness. Perhaps, it will be complicated to extend the
notion of stability in a direct way to partially ordered structures, but we can also use a
more general notion of relative stability |7], where the scheme of creating different classes of
theories was suggested.
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2 Definable subsets of DMT

This section introduces the concept of generalized intervals, which extends the classical
representation of intervals. This concept allows us to work with our structure, namely the
dense meet-tree.

To begin with, we give a definition below.

Definition 2 (V. V. Verbovskiy) Let (M, <,M) be a model of the DMT theory. A subset
of M s said to be a generalized interval if it is either an interval or is equal to

U (a,+00)
acA

for some definable with parameters in the signature {<,M} subset A of M on one of the
following forms:

1. A = (¢,4+00) \ ([a1]e U -+ U ap,), for positive integer n and some elements ay, ...,
an € (¢, +00);
2. A= (c,a);

3. A={(b,c) : b€ (—o0,a), c€ (b+00)}

For our reasoning, we need the following definition.

Definition 3 An element b is said to be a partial infimum of a set A if there exists a partition
of A into sets A" and A° such that A" # (), b = inf AT and b || ap whenever ay € A°.

Observe that the elementary theory of a dense meet tree admits quantifier elimination,
so in the above definition we can use just subsets which are definable by a quantifier-free
formula with parameters.

Let M = (M;<,M) be a dense meet-tree. For every ¢ € M it is possible to define an
equivalence relation above ¢, that is, on the set (¢, +00):

a~.bsallb>c.

We call an equivalence class of this equivalence relation an open cone above c.

Lemma 1 An equivalence class for the equivalence relation ~. is expressible as written below:

[ale = | (d,+o0).

de(c,a)

Proof. Assume that b € [a].. By definition, aMb > c. Since the order is dense, there exists
do € (¢,amb). Then b > amb > dy and b € (do, +00). Hence, [a]c C e (.0 (d; +00).

Let b € Uje(ea)(d; +00). Then b € (d, +00) for some element d € (c,a). It means that
d<bandd<a,soc<d<alb, thatis, a ~.b. We proved the inverse inclusion and, thus,
the equality of two sets. O

Note that for each class [a]. there exists its infimum.

The difference between a total ordering and a partial one is the existence of incomparable
elements. So, we express the set of incomparable to a elements as a union of intervals.
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Lemma 2 For any element a the following holds:

allzexe U U (¢, 4+00)

be(—o00,a) ce(b,+o0)\[alp

Proof. First, we show the necessary condition. Let b = x M a. It means that x ¢ [a]s,
namely x is outside the class a over b. Then there is an element ¢ between b and x such that
b < ¢ < z. Note that ¢ ¢ [a]p. So, z € (¢,+00) and this interval is one of the intervals of the
union.

Now we show the sufficient condition. Let = € (¢, +00) for some ¢ € (b, +00) \ [a], where
b < a. Assume the contrary, that = and a are comparable. If a < z, then a and c¢ are
comparable, because both are less than x. Then alMe¢ = min(a, ¢) > b. It means that ¢ € [a,,
for a contradiction. Let x < a. Since ¢ < x we obtain that ¢ < a and alM¢ = ¢ > b, for a
contradiction. ([l

Note that the set of all incomparable elements to some element does not have infimum.

Thus, using the notations about the class of equivalence relations and incomparable
elements, we can express the complements of the equivalence class above c.

Below we use the following notation. Let ¢(z) be a formula. Then

(@)™ ={a € M : M= y(a)}.

Lemma 3 For any elements a and ¢ with ¢ < a the following holds:

[, = (—oo,du(@|e™u |J (d+o0).
de(ertoo) e

In particular,

[a], N (¢, +00) = U (d, +00).
de(c,+00)\[alc

In particular, the set [a], does not have infimum and ¢ = mc N (¢, +00).

Proof. Let b ¢ [a],.. Then we have the following possibilities:
—~(bMNa>c)< (bNa=c)V(bMNa<c)V(bMal c)

We consider each disjunct separately:
1.IfbMa=cthen b > ¢ and b ¢ [a].. Now we write the set of all such b’s as follows:

e, +00) \[ale ={c}U | J (d +)

de(c,+o0)\[a]e

Let b € (¢, +00) \ [al.. Since the order is dense, there exists d € (¢, b). Note that d € [b]. #
[a]e, then d ¢ [a]. and b € (d, 4+00).
Conversely, let
be{ctu |J (d+x)

de(e,+o0)\[a]e
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If b=c, then b € [¢, +00] \ [a].. Assume that b # ¢. We choose d € (¢, +00) \ [a]. so that
b€ (d,+00). Then b > d > ¢ implies b > ¢ and b € [d]. # [a].. That is why b ¢ [a]..

2. Since bMa < ¢ and a > ¢, this implies bMa =bMcand bMc < c¢,sob<corb | c
The set of all b’s such that b < ¢ is an interval (—oo, ¢). The set of all b’s such that b || ¢ is a
generalized interval. So, the set of all b’s such that bMa < ¢ is a union of an interval and a
generalized interval.

3. Since a > ¢ and a > bMa, then ¢ and bMMa are comparable, so bMa || ¢ is inconsistent.
O

Now, we describe definable subsets of DMT. It is well-known that the theory of DMT
admits quantifier elimination [4], so any formula in one free variable z is a Boolean
combination of formulae of the following kinds:

(1) t(x,u) = t(x,v) (5) t(z,u) # t(z,0)
(2) t(z,u) < t(z,0) (6) t(z,u) £ t(z,0)
(3) t(x,u) > t(x,v) (7) t(x,u) # t(z,0)

(4) t(z,w) || t(x,v) (8) t(z,w) ft(x,v)

The formulae with negation can be transformed by the following equivalences:

t(x,u) # t(z,0) & [t(z,u) <t(zx,v)]V[t(z,q)>t(x,0)]V[t(z,a) | t(z,0)];
t(x,u) £ t(x,0) < [tx,u) > t(z,0)]V [t(z,u) = t(z,0)] V [t(z,7) || t(z,0)];
t(x,u) # t(z,0) & [t(z,a) <t(z,v)]V[t(z,q)=t(x,0)]V[t(z,a) | t(z,0)];
t(z,u) ft(z,0) & [tx,u) <t(z,0)]V [txz,a)>t(x,0)]V [z, 1) =tz,0)].

So, we can assume that any formula is a disjunction of conjunctions of formulae of the kinds
(1)—(4).

The operation M is idempotent, commutative, and associative. That is why any term
t(x,u) is equal to = M t(u) for some term ¢. So, we obtain the following types of atomic
formulae:
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(1.1) z=w (3.1) z>w

(1.2) zNu==z (3.2) zMNu >z
(1.3) zMu=w (3.3) xMu>w
(14) zNu=zMNwv (3.4) zMu>zxMwv
(2.1) z <w (4.1) z || v

(22) zMNu<zx (4.2) zMNu |z
(2.3) zMNu<w (4.3) zMNu|lv
(24) xNu<zMNuo (44) xNu | zNv

We consider each case separately and show that each formula can be described as a point,
an interval, or a generalized interval.

Cases (2.2), (3.2), (4.2), and (4.4) are false. For Case (1.1) we have a point, Cases (2.1)
and (3.1) give the intervals. Also, Case (1.2) is equivalent to z < wu, and Case (4.1) is the
generalized interval.

Now we look at the remaining cases in more detail.

Case (1.3). We obtain the following

rNu=veu=vAz>v|Vu>vAz=v]Vu>vAz>vA-(r~,u)

Here, the first disjunct u = v A z > v defines an interval and the second disjunct defines
a single point. From Lemma [3]it follows that the third disjunct define a generalized interval.
Case (2.3). We see that = belongs either to the interval or to the generalized interval

rlu<v & [u<v]Vu>vA(z<ovVz|v)]V
Vu||[vA(z<ulNoVz|ufoV(z>ullvA(z ~ym u)))]

Obviously, each disjunct defines an interval or a generalized interval.
Case (3.3). Since u < v is impossible in this case, we can see that

rNu>v & [u>vAx~,ul
Case (4.3). This case is possible only under the condition u || v:
zNullv < [ullvAz~yn, u

Case (1.4). Here we have two possibilities: x Mu < uMv and 2 Mu = uMv. The first case
is similar to Case (2.3). So, we consider z Mu=xMv =ullv.
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This case is written as follows

rMNu=xzMNv=vllusrz=ullvV
Vi(z>ulovA(r ~yme w) A (2 ~ymp v))

Case (2.4). It is certain that u > v is false, then we get the following
rNu<zNue [u<vAT ~ 0 Vu| oAz~ vl
Case (3.4). Similar to Case (2.4).

Theorem 1 Notion of o-minimality for an expansion of the DMT theory is correct, that is,
any Boolean combination of sets which are either a point or a generalized interval can be
expressed as a finite union of points and generalized intervals.

For any definable set there exist at most finitely many partials infima.

Proof. We prove both statements of this theorem by the simultaneous induction in the
complexity of the construction of a Boolean combination.

Note that any set defined by an atomic formula has at most one infimum because it is
either a point, or an interval, or a generalized interval. Because of quantifier elimination, it
is sufficient to consider just an arbitrary Boolean combination of atomic formulas.

1. It is obvious that the union of generalized intervals and points is a finite union of
generalized intervals and points. Obviously, any finite union of sets that have at most finitely
many partial infima also has at most finitely many infima.

2. We consider the intersection of two finite unions of generalized intervals and points.

Since
UA mUB JinB))
irj

it is sufficient to consider the intersection of generalized intervals and points.

The intersection of generalized intervals with a point either is empty or a point. The
intersection of generalized intervals with an interval of the form (a,b), where a € M U
{—o0},b € M is a subset of a linearly ordered set (a,b), and in linearly ordered sets the
intersection of intervals either is empty or an interval.

We consider an intersection of the form: (a,+o00) N (b, +00). If @ and b are comparable,
then this is (max(a,b), +00), otherwise it is empty. We can see that in these two cases the
intersection of two sets has at most one infimum.

We consider the intersection of generalized intervals:

(U(a,+oo)>m<Ub+oo> U U ((a,+00) N (b, +00)) = | (e, +0)

acA beB a€EA beB ceC

where C = {¢ € AU B | ¢ = max(a,b) for some (a,b) € A x B such that a and b are
comparable}. Therefore, the intersection of two generalized intervals is itself a generalized
interval.

Note that if both A and B have at most finitely many partial infima, then C also has at
most finitely many partial infima, then | J .. (c, +00) has at most finitely many infima.
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We consider the intersection of a generalized interval with an interval of the form (b, +00),
but the last interval can be written as (Jyc g, (b, +00), thus we get into the previous case.

3. Now we consider the complements of the finite union of generalized intervals and
points. m = A;, therefore, it is sufficient to consider only the complement of a point,
an interval, and a generalized interval.

We should also consider the complement of intervals since we know that the complement
of intervals is a finite union of intervals, which is what the below states.

(—0a) = [n,+00) U(x | a)"
(4,7%) = (~o0,0]U (x| a)™
(@8) = (~00,a]U[b,+00) U (x || ) Uf(a, +00) U (b | 2)"]

Note that the complements of a point a is z <aUx >aUz || a.
As one can see, any of the above sets has at most one infimum.
So, we consider the complement of a generalized interval:

U (@, +00) = [ (a,+00) = () ((=oe,a] U (z || )™) =
= ((=ee,aqlu (& | &)™)

acA a€A

Note that (—oo,a] N (—o0,b] = (—o00,a Mb] for any a and b. Since A is definable in
(M, <,M) and Th(M) admits quantifier elimination, there exists ¢ = inf{a M b : a,b € A}
or (Nyea(—00,a] = 0. So, ,c4(—00, a] being non-empty is equal to (—oo, c), provided that
c=min{aMb:a,be A}, and to (—oo, c) otherwise.

Now we consider [, 4( || @)™). Observe that

(@l )™n (@ o)™ = (2|l o)™

a€A

for any pair a < b. So, if A contains the least element, say, ¢, we obtain [, ,(z || @)™ =
(z || ). If A is not bounded below, we obtain (,.,(z || @)™ = 0. So, we assume that A
is bounded below. By induction hypothesis A has at most finitely many partial infima, say
c1, ..., Cp. Let Ay, ..., A, be a partition of A such that ¢; = inf A; for each 7. As we have
noticed, if ¢; € A;, then (o, (z || )™ = (2 || ¢;)™.

Assume that ¢; ¢ A;. Then obviously, (,c 4. (2 | @)™ 2 (z || ¢;)™. Indeed, if an element
is comparable with some a, then it is comparable to ¢. Now we consider an element d that
is comparable to c. If d < ¢, then by transitivity d < a for each a € A;. So, we consider only
those d, that d > ¢. We denote D ={d >c:d ¢ A;}.

By the quantifier elimination result it holds that either D is contained in finitely many
~-classes or D contains cofinitely many ~.-classes. Also, at most finitely many ~.-classes
intersect D but not subsets of D. Let D; consist of those ~.-classes, that are subsets of D
and Dy = D\ Dy. Then (e, (z | @)™ 2 (2 || ¢)™ U D;.

Let d € Dy and d = inf(—o0,d’) N Dy. If d > ¢; then we obtain a similar situation as
before, we consider ~4-classes. So, we assume that d = ¢;. We obtain (¢;, d'| C Dy, this means
that (¢;,d'] N A; = 0. By the definition of Dy, we have [d']., € Ds.

In order to obtain A; from (c¢;,+00) we remove finitely many subsets definable by a
conjunction of atomic formulas. We can remove
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1. an equivalence class [u], for some v > ¢; and wu,

2. an interval of the form (v,4o00) for some v > ¢;,

3. an interval of the form (v,u) for some u > v > ¢;,

4. the set of all elements that are not comparable with v for some v > ¢;.

We have already described the way to deal with Case (1).
Assume we have removed an interval of the form (v, +00) for some v > ¢;. Since the order
is dense, there exists u € (c;,v). Then (z || )™ D (2 || u)™ whenever ¢ > u. Then

NeloM= [ (@l

acA; a€A;U(v,00)

Assume that we have removed an interval of the form (v, u) for some u > v > ¢;. If v > ¢
we proceed as above just replacing (v,00) with (v, u). So, we assume that v = ¢;, that is,
we have removed an interval of the form (c¢;,u). Let b be the supreme of all ¢ > u such that
(ciyt) € Dy and (w,4+00) N A; # () for each w € (¢;,t). So, we have removed an interval of
the form (¢;,b) or (¢;,b] and this set is a maximal connected set that contains u, is a subset
of Dy and any element of D, that is comparable with some element of (¢;,b) (or (¢;,b]) then
this element is comparable with all elements of (¢;,b) (or (¢;, b]). In this case we obtain

(@ )™ 2 (@ | e)™ U (Bl \ b, +o0))

acA;

or MNyea, (@ | &)™ 2 (2 || ¢;)™ U ([b]. \ (b, +00)) depending which kind of an interval do we
have: (¢;, b) or (¢, b].

Now we consider the last case: we have removed from (¢, +00) the set of all elements that
are not comparable with v for some v > ¢;. Note that

(¢, +00) \ (z || V)M = (c,v) U{v} U (v, +00)
Also we observe that

N G@loM= ) @la™=(r]e)u((e+00)\ [u])

a€(c,v)U[v,+00) a€(e,w)

Since we can make only finitely many removals from (c, +00), we end with finitely many
steps describing (4 (= || a)™.

Also we can see that this operation cannot give a definable set with infinitely many partial
infima. O

So, the next is clear.

Theorem 2 (M, <,M) is o-minimal, that is, any of its definable subsets is a finite union of
generalized intervals and points.
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