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ON O-MINIMALITY FOR EXPANSIONS OF A DENSE MEET-TREE
This paper aims to define the notion of o-minimality for partially ordered sets. Originally, the
notion of o-minimality was introduced for linearly ordered sets in the following way: A linearly
ordered structure is said to be o-minimal if any definable subset is a finite union of intervals and
points. For partially ordered sets, this definition does not work. One of the main reasons for this
is that the complement of an interval need not be a finite union of intervals, as happens in linearly
ordered sets. Here we suggest a notion of a generalized interval which makes possible defining o-
minimality for such a partial case of partially ordered sets as a dense meet-tree in a classical way:
an expansion of a dense meet-tree is said to be o-minimal if any definable subset is a finite union
of generalized interval and points. We think that this approach allows us to transfer the machinery
for investigating o-minimality for linearly ordered structures to partially ordered structures.
Key words: Ehrenfeucht’s theory, small theory, linearly ordered set, partially ordered set, o-
minimality.
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Тығыз кездесу ағашының кеңейтiлген құрылымдарындағы o-минималдылығы туралы

Бұл жұмыстың мақсаты жартылай реттелген жиындар үшiн o-минималдылық түсiнiгiн аны-
қтау болып табылады. O-минималдылық түсiнiгi бастапқыда сызықты реттелген жиындар
үшiн келесiдей енгiзiлген болатын: егер сызықты реттелген құрылымның әрбiр формульдi
iшкi жиыны интервалдар мен нүктелердiң ақырлы бiрiгуi болса, онда осы сызықты рет-
телген құрылым o-минималды деп аталады. Бұл анықтама жартылай реттелген жиындар
үшiн орындалмайды. Мұның басты себептерiнiң бiрi интервалдың толықтауышы сызықты
реттелген жиындардағы сияқты интервалдардың ақырлы бiрiгуi ретiнде әрдайым бола бер-
мейдi. Мұнда бiз классикалық жолмен жартылай реттелген жиындардың мысалы ретiнде
тығыз кездесу ағашы үшiн o-минималдылығын анықтауға мүмкiндiк беретiн жалпыланған
интервал түсiнiгiн ұсынамыз: егер әрбiр формульдi iшкi жиын жалпыланған интервал мен
нүктелердiң ақырлы бiрiгуi болса, онда тығыз кездесу ағашының кеңеюi o-минималды деп
аталады. Бұл тәсiл сызықты реттелген құрылымдар үшiн o-минималдылықты зерттеу аппа-
ратын жартылай реттелген құрылымдарға ауыстыруға мүмкiндiк бередi деп есептеймiз.
Түйiн сөздер: Эренфойхт теориясы, шағын теория, сызықтық реттелген жиын, жартылай
реттелген жиын, o-минималдылық.

Айгерим Даулетиярова
Университет СДУ, Каскелен, Казахстан

e-mail: d aigera95@mail.ru
Об o-минимальности для обогащений плотного дерева встреч

Целью данной статьи является определение понятия o-минимальности для частично упоря-
доченных множеств. Первоначально понятие o-минимальности было введено для линейно
упорядоченных множеств следующим образом: линейно упорядоченная структура называет-
ся o-минимальной, если любое формульное подмножество является конечным объединением
интервалов и точек. Для частично упорядоченных множеств это определение не работает.
Одной из главных причин этого является то, что дополнение интервала не обязательно долж-
но быть конечным объединением интервалов, как это происходит в линейно упорядоченных
множествах.
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Здесь мы предлагаем понятие обобщенного интервала, которое позволяет определить o-
минимальность для такого частичного случая частично упорядоченных множеств как плот-
ное дерево встреч классическим способом: обогащение плотного дерева встреч называется
o-минимальным, если любое формульное подмножество является конечным объединением
обобщенного интервала и точек. Мы считаем, что этот подход позволяет нам перенести ап-
парат исследования o-минимальности для линейно упорядоченных структур на частично
упорядоченные структуры.
Ключевые слова: эренфойхтова теория, малая теория, линейно упорядоченное множество,
частично упорядоченное множество, о-минимальность.

1 Introduction

This article aims to apply the notion of o-minimality to partially ordered structures. We start
with the dense meet tree [2, 4] as a sufficiently tame partial order to examine our approach,
where a dense meet-tree means a lower semilinear order < in which each pair of elements a, b
has a greatest common lower bound, their meet au b without the least and greatest elements
such that:

(a) for each pair of incomparable elements, their join does not exist;
(b) for each pair of distinct comparable elements, there is an element between them;
(c) for each element a there exist infinitely many pairwise incomparable elements greater

than a, whose infimum is equal to a.
The first paper on o-minimality for partially ordered sets was by Carlo Toffalori [6], who

gave the following definition. A partially ordered structure is o-minimal if each its definable
over some set X subset is a finite Boolean combination of sets defined by formulae x ≤ a
or x ≥ b, where these a and b are in the algebraic closure of X. As we know, all other
notions of o-minimality and weak o-minimality of partially ordered structures are based on
this definition, for instance, [3]. We suggest another approach, which was first discovered by
S. Sudoplatov and V. Verbovskiy in [5] for weak o-minimality of partially ordered structures.

The standard notion of o-minimality for totally ordered structures is not convenient for
partially ordered structures because of the following reasons. In a totally ordered set the
complement of an interval is just a union of at most two intervals, while in partially ordered
sets this is no more true. That is why Toffalori suggested using a Boolean combination of
intervals in place of a finite union of intervals. Here we suggest another approach: we do
not change “a finite union”, but we change the notion of an interval, and we introduce the
notion of a generalized interval. So, our definition of an o-minimal partially ordered set is the
following.

Definition 1 A partially ordered structure is said to be o-minimal if each of its definable
subsets is a finite union of generalized intervals and points.

In the rest of the paper, we discuss the notion of a generalized interval.
The aim of this paper is to find a way of extending the notion of o-minimality to partially

ordered structure, because the notion of o-minimality and its generalizations, as o-stability
[1, 8, 9] already proved its own fruitfulness. Perhaps, it will be complicated to extend the
notion of stability in a direct way to partially ordered structures, but we can also use a
more general notion of relative stability [7], where the scheme of creating different classes of
theories was suggested.
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2 Definable subsets of DMT

This section introduces the concept of generalized intervals, which extends the classical
representation of intervals. This concept allows us to work with our structure, namely the
dense meet-tree.

To begin with, we give a definition below.

Definition 2 (V. V. Verbovskiy) Let (M,<,u) be a model of the DMT theory. A subset
of M is said to be a generalized interval if it is either an interval or is equal to⋃

a∈A

(a,+∞)

for some definable with parameters in the signature {<,u} subset A of M on one of the
following forms:

1. A = (c,+∞) \ ([a1]c ∪ · · · ∪ anc), for positive integer n and some elements a1, . . . ,
an ∈ (c,+∞);

2. A = (c, a);

3. A = {(b, c) : b ∈ (−∞, a), c ∈ (b,+∞)}

For our reasoning, we need the following definition.

Definition 3 An element b is said to be a partial infimum of a set A if there exists a partition
of A into sets A+ and A0 such that A+ 6= ∅, b = inf A+ and b ‖ a0 whenever a0 ∈ A0.

Observe that the elementary theory of a dense meet tree admits quantifier elimination,
so in the above definition we can use just subsets which are definable by a quantifier-free
formula with parameters.

Let M = (M ;<,u) be a dense meet-tree. For every c ∈ M it is possible to define an
equivalence relation above c, that is, on the set (c,+∞):

a ∼c b⇔ a u b > c.

We call an equivalence class of this equivalence relation an open cone above c.

Lemma 1 An equivalence class for the equivalence relation ∼c is expressible as written below:

[a]c =
⋃

d∈(c,a)

(d,+∞).

Proof. Assume that b ∈ [a]c. By definition, au b > c. Since the order is dense, there exists
d0 ∈ (c, a u b). Then b ≥ a u b > d0 and b ∈ (d0,+∞). Hence, [a]c ⊆

⋃
d∈(c,a)(d,+∞).

Let b ∈
⋃

d∈(c,a)(d,+∞). Then b ∈ (d,+∞) for some element d ∈ (c, a). It means that
d < b and d < a, so c < d ≤ au b, that is, a ∼c b. We proved the inverse inclusion and, thus,
the equality of two sets. �

Note that for each class [a]c there exists its infimum.
The difference between a total ordering and a partial one is the existence of incomparable

elements. So, we express the set of incomparable to a elements as a union of intervals.
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Lemma 2 For any element a the following holds:

a ‖ x⇔ x ∈
⋃

b∈(−∞,a)

⋃
c∈(b,+∞)\[a]b

(c,+∞)

Proof. First, we show the necessary condition. Let b = x u a. It means that x 6∈ [a]b,
namely x is outside the class a over b. Then there is an element c between b and x such that
b < c < x. Note that c /∈ [a]b. So, x ∈ (c,+∞) and this interval is one of the intervals of the
union.

Now we show the sufficient condition. Let x ∈ (c,+∞) for some c ∈ (b,+∞) \ [a]b where
b < a. Assume the contrary, that x and a are comparable. If a ≤ x, then a and c are
comparable, because both are less than x. Then au c = min(a, c) > b. It means that c ∈ [a]b,
for a contradiction. Let x < a. Since c < x we obtain that c < a and a u c = c > b, for a
contradiction. �

Note that the set of all incomparable elements to some element does not have infimum.
Thus, using the notations about the class of equivalence relations and incomparable

elements, we can express the complements of the equivalence class above c.
Below we use the following notation. Let ψ(x) be a formula. Then

(ψ(x))M = {a ∈M :M |= ψ(a)}.

Lemma 3 For any elements a and c with c < a the following holds:

[a]c = (−∞, c] ∪ (x ‖ c)M ∪
⋃

d∈(c,+∞)\[a]c

(d,+∞).

In particular,
[a]c ∩ (c,+∞) =

⋃
d∈(c,+∞)\[a]c

(d,+∞).

In particular, the set [a]c does not have infimum and c = [a]c ∩ (c,+∞).

Proof. Let b 6∈ [a]c. Then we have the following possibilities:

¬(b u a > c)⇔ (b u a = c) ∨ (b u a < c) ∨ (b u a ‖ c)

We consider each disjunct separately:
1. If b u a = c then b ≥ c and b 6∈ [a]c. Now we write the set of all such b’s as follows:

[c,+∞) \ [a]c = {c} ∪
⋃

d∈(c,+∞)\[a]c

(d,+∞)

Let b ∈ (c,+∞)\ [a]c. Since the order is dense, there exists d ∈ (c, b). Note that d ∈ [b]c 6=
[a]c, then d /∈ [a]c and b ∈ (d,+∞).

Conversely, let
b ∈ {c} ∪

⋃
d∈(c,+∞)\[a]c

(d,+∞)
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If b = c, then b ∈ [c,+∞] \ [a]c. Assume that b 6= c. We choose d ∈ (c,+∞) \ [a]c so that
b ∈ (d,+∞). Then b > d > c implies b > c and b ∈ [d]c 6= [a]c. That is why b /∈ [a]c.

2. Since b u a < c and a > c, this implies b u a = b u c and b u c < c, so b < c or b ‖ c.
The set of all b’s such that b < c is an interval (−∞, c). The set of all b’s such that b ‖ c is a
generalized interval. So, the set of all b’s such that b u a < c is a union of an interval and a
generalized interval.

3. Since a > c and a ≥ bu a, then c and bu a are comparable, so bu a ‖ c is inconsistent.
�

Now, we describe definable subsets of DMT. It is well-known that the theory of DMT
admits quantifier elimination [4], so any formula in one free variable x is a Boolean
combination of formulae of the following kinds:

(1) t(x, u) = t(x, v)

(2) t(x, u) < t(x, v)

(3) t(x, u) > t(x, v)

(4) t(x, u) ‖ t(x, v)

(5) t(x, u) 6= t(x, v)

(6) t(x, u) 6< t(x, v)

(7) t(x, u) 6> t(x, v)

(8) t(x, u) 6‖ t(x, v)

The formulae with negation can be transformed by the following equivalences:

t(x, u) 6= t(x, v) ⇔ [t(x, u) < t(x, v)] ∨ [t(x, u) > t(x, v)] ∨ [t(x, u) ‖ t(x, v)];

t(x, u) 6< t(x, v) ⇔ [t(x, u) > t(x, v)] ∨ [t(x, u) = t(x, v)] ∨ [t(x, u) ‖ t(x, v)];

t(x, u) 6> t(x, v) ⇔ [t(x, u) < t(x, v)] ∨ [t(x, u) = t(x, v)] ∨ [t(x, u) ‖ t(x, v)];

t(x, u) 6 ‖ t(x, v) ⇔ [t(x, u) < t(x, v)] ∨ [t(x, u) > t(x, v)] ∨ [t(x, u) = t(x, v)].

So, we can assume that any formula is a disjunction of conjunctions of formulae of the kinds
(1)–(4).

The operation u is idempotent, commutative, and associative. That is why any term
t(x, ū) is equal to x u t̃(ū) for some term t̃. So, we obtain the following types of atomic
formulae:
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(1.1) x = v

(1.2) x u u = x

(1.3) x u u = v

(1.4) x u u = x u v

(2.1) x < v

(2.2) x u u < x

(2.3) x u u < v

(2.4) x u u < x u v

(3.1) x > v

(3.2) x u u > x

(3.3) x u u > v

(3.4) x u u > x u v

(4.1) x ‖ v

(4.2) x u u ‖ x

(4.3) x u u ‖ v

(4.4) x u u ‖ x u v

We consider each case separately and show that each formula can be described as a point,
an interval, or a generalized interval.

Cases (2.2), (3.2), (4.2), and (4.4) are false. For Case (1.1) we have a point, Cases (2.1)
and (3.1) give the intervals. Also, Case (1.2) is equivalent to x ≤ u, and Case (4.1) is the
generalized interval.

Now we look at the remaining cases in more detail.
Case (1.3). We obtain the following

x u u = v ⇔ [u = v ∧ x ≥ v] ∨ [u > v ∧ x = v] ∨ [u > v ∧ x > v ∧ ¬(x ∼v u)]

Here, the first disjunct u = v ∧ x ≥ v defines an interval and the second disjunct defines
a single point. From Lemma 3 it follows that the third disjunct define a generalized interval.

Case (2.3). We see that x belongs either to the interval or to the generalized interval

x u u < v ⇔ [u < v] ∨ [u ≥ v ∧ (x < v ∨ x ‖ v)] ∨
∨ [u ‖ v ∧ (x ≤ u u v ∨ x ‖ u u v ∨ (x > u u v ∧ ¬(x ∼uuv u)))]

Obviously, each disjunct defines an interval or a generalized interval.
Case (3.3). Since u ≤ v is impossible in this case, we can see that

x u u > v ⇔ [u > v ∧ x ∼v u]

Case (4.3). This case is possible only under the condition u ‖ v:

x u u ‖ v ⇔ [u ‖ v ∧ x ∼uuv u]

Case (1.4). Here we have two possibilities: xu u < uu v and xu u = uu v. The first case
is similar to Case (2.3). So, we consider x u u = x u v = u u v.
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This case is written as follows

x u u = x u v = v u u⇔ x = u u v ∨
∨ (x > u u v ∧ ¬(x ∼uuv u) ∧ ¬(x ∼uuv v))

Case (2.4). It is certain that u ≥ v is false, then we get the following

x u u < x u v ⇔ [u < v ∧ x ∼u v] ∨ [u ‖ v ∧ x ∼uuv v]

Case (3.4). Similar to Case (2.4).

Theorem 1 Notion of o-minimality for an expansion of the DMT theory is correct, that is,
any Boolean combination of sets which are either a point or a generalized interval can be
expressed as a finite union of points and generalized intervals.

For any definable set there exist at most finitely many partials infima.

Proof. We prove both statements of this theorem by the simultaneous induction in the
complexity of the construction of a Boolean combination.

Note that any set defined by an atomic formula has at most one infimum because it is
either a point, or an interval, or a generalized interval. Because of quantifier elimination, it
is sufficient to consider just an arbitrary Boolean combination of atomic formulas.

1. It is obvious that the union of generalized intervals and points is a finite union of
generalized intervals and points. Obviously, any finite union of sets that have at most finitely
many partial infima also has at most finitely many infima.

2. We consider the intersection of two finite unions of generalized intervals and points.
Since ⋃

i

Ai ∩
⋃
j

Bj =
⋃
i,j

(Ai ∩Bj)

it is sufficient to consider the intersection of generalized intervals and points.
The intersection of generalized intervals with a point either is empty or a point. The

intersection of generalized intervals with an interval of the form (a, b), where a ∈ M ∪
{−∞}, b ∈ M is a subset of a linearly ordered set (a, b), and in linearly ordered sets the
intersection of intervals either is empty or an interval.

We consider an intersection of the form: (a,+∞) ∩ (b,+∞). If a and b are comparable,
then this is (max(a, b),+∞), otherwise it is empty. We can see that in these two cases the
intersection of two sets has at most one infimum.

We consider the intersection of generalized intervals:(⋃
a∈A

(a,+∞)

)
∩

(⋃
b∈B

(b,+∞)

)
=
⋃
a∈A

⋃
b∈B

((a,+∞) ∩ (b,+∞)) =
⋃
c∈C

(c,+∞)

where C = {c ∈ A ∪ B | c = max(a, b) for some (a, b) ∈ A × B such that a and b are
comparable}. Therefore, the intersection of two generalized intervals is itself a generalized
interval.

Note that if both A and B have at most finitely many partial infima, then C also has at
most finitely many partial infima, then

⋃
c∈C(c,+∞) has at most finitely many infima.
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We consider the intersection of a generalized interval with an interval of the form (b,+∞),
but the last interval can be written as

⋃
b∈{b}(b,+∞), thus we get into the previous case.

3. Now we consider the complements of the finite union of generalized intervals and
points.

⋃
iAi =

⋂
iAi, therefore, it is sufficient to consider only the complement of a point,

an interval, and a generalized interval.
We should also consider the complement of intervals since we know that the complement

of intervals is a finite union of intervals, which is what the below states.

(−∞, a) = [a,+∞) ∪ (x ‖ a)M

(a,+∞) = (−∞, a] ∪ (x ‖ a)M

(a, b) = (−∞, a] ∪ [b,+∞) ∪ (x ‖ a)M ∪ [(a,+∞) ∪ (b ‖ x)M]

Note that the complements of a point a is x < a ∪ x > a ∪ x ‖ a.
As one can see, any of the above sets has at most one infimum.
So, we consider the complement of a generalized interval:⋃

a∈A

(a,+∞) =
⋂
a∈A

(a,+∞) =
⋂
a∈A

((−∞, a] ∪ (x ‖ a)M) =

=
⋂
a∈A

(−∞, a] ∪
⋂
a∈A

(x ‖ a)M)

Note that (−∞, a] ∩ (−∞, b] = (−∞, a u b] for any a and b. Since A is definable in
(M,≤,u) and Th(M) admits quantifier elimination, there exists c = inf{a u b : a, b ∈ A}
or
⋂

a∈A(−∞, a] = ∅. So,
⋂

a∈A(−∞, a] being non-empty is equal to (−∞, c), provided that
c = min{a u b : a, b ∈ A}, and to (−∞, c) otherwise.

Now we consider
⋂

a∈A(x ‖ a)M). Observe that

(x ‖ a)M ∩ (x ‖ b)M = (x ‖ a)M

for any pair a < b. So, if A contains the least element, say, c, we obtain
⋂

a∈A(x ‖ a)M =
(x ‖ c)M. If A is not bounded below, we obtain

⋂
a∈A(x ‖ a)M = ∅. So, we assume that A

is bounded below. By induction hypothesis A has at most finitely many partial infima, say
c1, . . . , cn. Let A1, . . . , An be a partition of A such that ci = inf Ai for each i. As we have
noticed, if ci ∈ Ai, then

⋂
a∈Ai

(x ‖ a)M = (x ‖ ci)M.
Assume that ci /∈ Ai. Then obviously,

⋂
a∈Ai

(x ‖ a)M ⊇ (x ‖ ci)M. Indeed, if an element
is comparable with some a, then it is comparable to c. Now we consider an element d that
is comparable to c. If d ≤ c, then by transitivity d < a for each a ∈ Ai. So, we consider only
those d, that d > c. We denote D = {d > c : d /∈ Ai}.

By the quantifier elimination result it holds that either D is contained in finitely many
∼c-classes or D contains cofinitely many ∼c-classes. Also, at most finitely many ∼c-classes
intersect D but not subsets of D. Let D1 consist of those ∼c-classes, that are subsets of D
and D2 = D \D1. Then

⋂
a∈Ai

(x ‖ a)M ⊇ (x ‖ ci)M ∪D1.
Let d′ ∈ D2 and d = inf(−∞, d′) ∩ D2. If d > ci then we obtain a similar situation as

before, we consider ∼d-classes. So, we assume that d = ci. We obtain (ci, d
′] ⊆ D2, this means

that (ci, d
′] ∩ Ai = ∅. By the definition of D2, we have [d′]ci 6⊆ D2.

In order to obtain Ai from (ci,+∞) we remove finitely many subsets definable by a
conjunction of atomic formulas. We can remove
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1. an equivalence class [u]v for some v ≥ ci and u,

2. an interval of the form (v,+∞) for some v > ci,

3. an interval of the form (v, u) for some u > v ≥ ci,

4. the set of all elements that are not comparable with v for some v > ci.

We have already described the way to deal with Case (1).
Assume we have removed an interval of the form (v,+∞) for some v > ci. Since the order

is dense, there exists u ∈ (ci, v). Then (x ‖ t)M ⊇ (x ‖ u)M whenever t > u. Then⋂
a∈Ai

(x ‖ a)M =
⋂

a∈Ai∪(v,∞)

(x ‖ a)M

Assume that we have removed an interval of the form (v, u) for some u > v ≥ ci. If v > c
we proceed as above just replacing (v,∞) with (v, u). So, we assume that v = ci, that is,
we have removed an interval of the form (ci, u). Let b be the supreme of all t > u such that
(ci, t) ⊆ D2 and (w,+∞) ∩ Ai 6= ∅ for each w ∈ (ci, t). So, we have removed an interval of
the form (ci, b) or (ci, b] and this set is a maximal connected set that contains u, is a subset
of D2 and any element of D2 that is comparable with some element of (ci, b) (or (ci, b]) then
this element is comparable with all elements of (ci, b) (or (ci, b]). In this case we obtain⋂

a∈Ai

(x ‖ a)M ⊇ (x ‖ ci)M ∪
(
[b]c \ [b,+∞)

)
or
⋂

a∈Ai
(x ‖ a)M ⊇ (x ‖ ci)M ∪

(
[b]c \ (b,+∞)

)
depending which kind of an interval do we

have: (ci, b) or (ci, b].
Now we consider the last case: we have removed from (c,+∞) the set of all elements that

are not comparable with v for some v > ci. Note that

(c,+∞) \ (x ‖ v)M = (c, v) ∪ {v} ∪ (v,+∞)

Also we observe that⋂
a∈(c,v)∪[v,+∞)

(x ‖ a)M =
⋂

a∈(c,v)

(x ‖ a)M = (x ‖ ci)M ∪
(
(c,+∞) \ [v]c

)
Since we can make only finitely many removals from (c,+∞), we end with finitely many

steps describing
⋂

a∈Ai
(x ‖ a)M.

Also we can see that this operation cannot give a definable set with infinitely many partial
infima. �

So, the next is clear.

Theorem 2 (M,<,u) is o-minimal, that is, any of its definable subsets is a finite union of
generalized intervals and points.
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