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METHOD OF LINES FOR A LOADED PARABOLIC EQUATION

Loaded parabolic equations belong to a complex yet important class of differential equations and
are widely applied in various scientific and engineering problems, as well as in ecology, epidemic
propagation modeling, and biological systems. Special analytical and numerical methods are used
to solve these equations, taking into account the influence of integral and functional loads. This
article examines a two-point boundary value problem for loaded parabolic equations, defined in a
closed domain. The solution is approached using the method of lines with respect to the variable x.
As a result of this method, a discretized problem is formulated. The obtained discretized problem
is represented in a vector-matrix form and is reduced to a two-point boundary value problem for
a loaded system of differential equations. The parameterization method proposed by Professor
Dzhumabaev is used to solve the boundary value problem. The efficiency of this method lies in the
high accuracy of the numerical-analytical solution compared to the exact solution, as well as in the
possibility of formulating the solvability conditions of the problem. As a theoretical justification
of the method, an additional theorem is proven, based on which the solvability conditions of
the problem are determined. The study explores the relationship between the original boundary
value problem and its discretized form for the loaded parabolic equation. This relationship is
substantiated using an additional theorem derived from the parameterization method.

Key words: loaded parabolic equations, two-point boundary value problem, method of lines,
convergence, parameterization method.
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2KyKTeJyireH mapadoJiajiblK TEeHJIey YIIiH ChIHBIKTApP d/IicCi

2Kykresren mapaboJiajiblK TeHIeyIep Kypaesi, 6ipak, MaHbI3bl TEHEYJIep KJIACBIHA XKATa(bl 2KOHEe
oJ1ap OPTYPJIi FHUIBIME 9PI HHKEHEPJIK KoJIaHbaIapa, SKOJOTAsIIA, SN IEMUSIAD/IBIH TapaIybiH
MOJIEJIBJIEYIE 2KOHE OMOJIOTHSIIBIK JKyiiesepae KeHiHeH KOIIaubLIa bl MyHIai TeHaeyaepil mermry
VITiH WHTErPAIILIK, KoHe (DYHKIMOHAIBIK YKYKTEMEIEPIiH OCepiH eCKepeTiH apHaibl aHAJIUTH-
KAJIBIK, KOHE CAHJIBIK, 9/IiCTep KOJJAHbLIaAbl. MaKaaa bl TYWBIK aiiMakTa KYKTeJITreH mapaboJia-
JIBIK, TEHJEYJIEP VIIMiH €Ki HYKTeJ IEeTTIK ecell KapacThIPbLIa bl. Bys ecenTi mrenry MakcaTbIHIA
KEHICTIK T afHBIMAJIBICHI OOMBIHINA CHIHBIKTAP 9IiCi KOMTAHBLIAILI. OIIC HOTUXKECIHIE JUCKPET-
TEJITEH eCell aJbIHaJbl. AJIBIHFAH JUCKPETTENTeH eCell BEKTOP-MATPUIAJIBIK, TYPJe OPHEKTEJI,
KYKTeareH auddepeHImaIabk TeHaeyaIep YIMH eKi HyKTedl IMeTTikK ecenke kenripimemi. ITler-
TiK ecernTi mremnty ymria mpodeccop 2KymMabaeBThIH TapaMeTpJiey 9/Iici KomaaubLIaabl. Byt oicTin
TUIMJIIT — €CeNnTiH CaHIbIK-aHAJIUTUKAJIBIK, IENIMIHIH J9JI IIeNIMre XKybIKTay J2JIIITIHIH 2KOoFa-
PbI OOJIyBIHIA KOHE eCENTiH MEeMIMIIK apTTAPbIHBIH AJBIHYbI OOJIBIT TAaOBLIAILI. OJIICTIH,
TEOPHUAIBIK, HETi3/IeMeci PeTiHie KOCBIMINIA, TeOpeMa JIDJICJIAEHII, eCEITiH MeNMIMITIK IapTTaphbl
AHBIKTAJIAbI.
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4 Method of lines for a loaded parabolic equation

3eprrey OapbIChIHIA KYKTEJreH MapaboJIa/iblK TeHJey VIIiH OacTalKbl IIEeTTI eCcell IIeH OHbIH
JIMCKPETTEJINeH ecell apachIHIarbl DallJIaHbIC KAPACTHIPhLIA L. By OailjlaHbIC TTapaMeTpJiey 9Iici
HeTi3iH/le aJIbIHFaH KOCBIMIIIA TeopeMaMeH JI9JIeIIEHET].
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Meton npssMbIX [1JIsi HArpy2>KEHHOT'O Iapabo/IM4ecKoro ypaBHEHUsI

Harpyxennbie mapaboJsindeckne ypaBHEHUsI OTHOCATCHA K CJIOYKHOMY, HO BaXKHOMY KJaccy maud-
depeHINAIBHBIX YPABHEHUII W IIUPOKO NPUMEHHAIOTCH B PA3JIMYHBIX HAYYHBIX M WH2KEHEPHBIX
3ajlavax, & TaK»Ke B IKOJOTUH, MOJCTUPOBAHUU PACIPOCTPAHEHUs SMUIEMUN W OHOJIOTTIECKUX
cuctemax. i uxX pereHns MUCIOIb3YIOTCS CHEIUAIbHbIE AHAJIUTHICCKUE U TUCJIEHHBIE METOJIbI,
YUIUTHIBAIOIINE BIUSTHAE HHTEIPAJIBHBIX U (PYHKIIMOHAJIBHBIX HAIPY30K. B MaHHON cTaThe paccMaT-
pUBaeTCsd JIByXTOYEUHAsI KPaeBas 3a/1a4da JJIsi HAarPYy2KEHHbIX TapaboIMIecKuX ypaBHEHUH, 38/ 1aH-
Hasg B 3aMKHYTO# obsactu. /Iyt ee pelneHnsi NpuMeHsETCS MeTOJ IPSAMBIX II0 IepeMeHHoil . B
pe3ysabTaTe 3TOro MeTojia (POPMYIUPYETCs AUCKPETU3NPOBaHHAs 3a1a4a. [loydaeHHas IucKpeTn-
3UpPOBaHHASI 33/1a9a IPEICTABJIAETCS B BEKTOPHO-MATPUIHON (bOpPME M CBOJAMTCH K JIBYXTOUYEUHOMN
KpaeBoii 3a/1a4e It HarPy>KeHHOU cucTeMbl nuddepeHnaibHbIX ypaBaennii. [{iist pemrenust Kpae-
BOI 331491 MCIIOJIB3YeTCsl METOJ, ITapaMEeTPU3AIINHT, IPEJJIOKEHHBIH mpodeccopom 2KymadaeBbiM.
Db PEeKTUBHOCTD JAHHOTO METOJIA 3aKJIIOYAETCS B BBHICOKOH TOYHOCTH YUCJIEHHO-AHAJUTHIECKOTO
PpelIeHHsI [10 CPABHEHUIO C TOYHBIM PEIIeHHEM, a TAK2Ke B BO3MOXKHOCTH (DOPMYIMPOBAHUS YCIOBHI
pa3penmMocT 33/1a49i. B KadecTBe TeOpeTndecKoro 060CHOBaHHUS METO/Ia JIOKA3BbIBAETCS JIOIOJI-
HHATeJIbHAS TeopeMa, Ha OCHOBE KOTOPOI ONIPEIEIAIOTCs YCJIOBUS Pa3penInMOCTH 3a1a9u. B uccite-
JOBAHWHU M3YIaeTCs CBI3b MEXKLY MCXOIHOM KpaeBoil 3a1adeil n ee JUCKPETH3WPOBAHHON (hPOPMOit
JJIsT HAUPY?KEHHOTO [1apaboIMIecKoro ypasHenus. Jlannas ¢BsA3b 0O0OCHOBBIBAETCS C IOMOIIBIO J0-
IIOJIHUTEJILHOI TeopeMbl, IIOJIy4eHHOII Ha OCHOBE MeTO/la IlapaMeTpU3alliu.

KuroueBble ciioBa: Harpy:KeHHbIE TTAPAOOJIMIECKUEe YPABHEHUSI, IBYXTOUETHAS KpaeBas 3a/1a4a.,
METOJI, IPAMBIX, CXOAUMOCTb, METO/I ITapaMeTPU3allui.

1 Introduction and preliminaries

The essence of the method of lines, which explains its name, is as follows: for example,
in the case of a partial differential equation with respect to a function of two variables,
constant values are assigned to one of these variables, and transforming the problem into
an ordinary differential equation. Therefore, when addressing boundary and initial-boundary
value problems for partial differential equations, existing methods for solving initial and
boundary value problems for ordinary differential equations can be effectively applied. In
this study, the problem for loaded parabolic equations is transformed into a problem for
LDE.

A family of linear and nonlinear parabolic boundary value problems with the first
boundary condition are addressed using the method of lines in [1]. It is demonstrated that
there is a certain order of error in the approximate solutions produced by this method. The
ease of solving the heat conduction equation receives special attention.

A thorough theoretical investigation aimed at proving the convergence and stability
of solutions to one-dimensional parabolic equations with Dirichlet boundary conditions is
presented in work |2| using the method of lines.
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The work [3] approach the method of lines to solve certain quasilinear boundary value
problems of parabolic type and establishes theorems proving the convergence and stability
of the method.

The work |4] investigates boundary value problems for ordinary and partial differential
equations with loading. Estimates for the solutions to both the differential and difference
equations are established. These estimates ensure the stability and convergence of the
difference schemes for the equations under consideration.

The work [5] analyzes the convergence of one-step schemes of the method of lines (MOL).
The primary goal is to establish a general framework for convergence analysis applicable to
nonlinear problems. The stability concepts used in this framework are based on the theory of
nonlinear stiff ordinary differential equations. In this context, key notions include the norm of
the logarithmic matrix and C-stability. To illustrate the proposed ideas, a nonlinear parabolic
equation and the cubic Schredinger equation are considered.

The work [6] proposes a parameterization method for finding solutions to a system of
ordinary differential equations. The work [7] examines a mixed boundary value problem for a
linear parabolic equation with two independent variables. Using the method of lines, estimates
for the solutions and their derivatives are obtained in terms of the equation’s coefficients and
the boundary conditions.

Loaded parabolic equations are widely encountered in mathematical biology, particularly
in the mathematical modeling of transfer phenomena in living systems [8], [9]. Different types
of boundary value problems for parabolic equations with loading have been explored in the
works of T. Yuldashev, M.T. Dzhenaliev, M. I. Ramazanov, V.M. Abdullaev, K.R. Aida-zade
and M. Dehghan [10]- [17].

This paper considers the following two-point boundary value problem for a loaded
parabolic equation in ©Q = [0,7] x [0, w]

% = a(t,x)%—l—b(t,x)u(t,x)—l—z ki(t, x)u(t;, )+ f(t,x), (t,x) € Q=(0,T)x(0,w), (1)
B(z)u(0,z) + C(x)u(T, z) = p(z), z € [0,w], (2)
u(t7 0) = w0<t)7 u(ta w) = ?/h(f% te [07 T]: (3)

where a(t,z) > p > 0, b(t,z) <0, k;(t,z), f(t,z) - are continuous in ¢ and Holder continuous
in . We assume that the functions ¢(x), ¥y (t), 11 (t) are fully smooth and satisfy the following
conditions: B(0)¢o(0) + C(0)1ho(T) = ¢(0), B(w)¥1(0) + Clw)y(T) = p(w).

The task is to find a function w(t,z) which is continuously differentiable with respect to
t € [0, T] and twice continuously differentiable with respect to = € [0,w], such that it satisfies
equation () along with the conditions (2), (3).

By discretizing with respect to the spatial variable x, the problem — is transformed
into a problem of LDE. The second derivative is approximated using the finite difference
method. The finite difference methods are discussed in works [18]- [20]. An auxiliary problem
for this system will be investigated, focusing on a two-point boundary value problem for
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LDE employing the parameterization method with loaded interval partition points in [0, 7]
[21]- [25]. A method for determining an approximate solution is proposed, together with
sufficient conditions ensuring its convergence to the problem’s unique solution. A method for
numerically solving the problem in systems of LDE is presented [26]- [34].

2 Materials and methods

We consider Vz and discretize by setting z; = i7, i = 0, N, N7 = w, with u;(t) = u(t,i7),
a;(t) = a(t,ir), bi(t) = b(t,i7), k! (t;) = k;(t,i7) and f;(t) = f(t,47). The problem — is

then reformulated in the following form:

‘Zj = q;(t) LT 277“; T (s + ; K(Ow(t) + fit), i=LN-1, (4)
Biu;(0) + Ciu(T) = i, i =1,N—1, (5)
up(t) =o(t), un(t) =(t). (6)

The solution to the discretized problem ([))-(6)) is {u1(¢), ua(t), ..., un—1(t)} system, where
is u;(t) an approximation to the value of the solution u(¢,x) at the spatial grid points x;. It
satisfies the system of equations , derived from using finite difference approximations
for the spatial derivatives. The conditions , @ ensure that u;(t) adheres to the physical
constraints of the problem.

Caused by the linear of the system, for every 7 > 0, there exists solution to problem
([@)-(6) defined over the interval [0, T : {ui(t), u2(t), ..., un—1(t)}.

The following statement holds true.

Theorem 1. Let a(t,x) > p > 0, b(t,xz) < 0, k;(t,z), f(t,z) - are continuous in (2,
the functions o(x), ¥o(t), Y¥1(t) are completely smooth and satisfy the matching conditions.
Then the solution of the discretized problem —@ converges at a rate of O(7?) as 7 —
0 approaches the solution of the two-point boundary value problem for a loaded parabolic
equation (1))-(3).

The main goal of this Theorem is to determine the solution to —@. Thus, we search
the conditions for the existence of a solution to problem —@.

To do this, we write the discretized problem —@ in matrix-vector form:

dU - N-1
—r =AMU® + le M;(0)U(t;) + F(t), Ue RV, (7)
BU(0)+CU(T)=®, te[0,T], ®ec RN (8)

Here, the A(t), M;(t), where j = 1,...,m are matrices of size (N — 1) x (N — 1) and
F(t) is a vector function of size (N — 1) that remains continuous on the interval [0, T7]; the
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B, C are matrices of size (N — 1) x (N — 1), where

=200 4 by (1) wi 0 . 0
aj—(Qt) —ng(t) + b2 (t) a2(t) 0
Alt) = 0 wh ey + (0 0 ,
0 0 0 N ()
a@yo® 1 (¢) Kt 0 0 ... 0
falt) 0 K@t o0 ... 0
F(t) = f5(t) . Mty=1| 0 0 K@) 0 ,
a0 4 py () 0 0 0 ... K@
Bl 0 e 0 Cl 0 Ce 0 ©®1
0 B ... 0 0 Cy ... 0
- . .2 . . 9 C - . .2 . . 9 @ - QO.Q
0 0 BN_1 0 0 CN_1 YN-1

The solution to the problem (7),(8) is a vector function U(¢) that is continuously
differentiable on [0, 7] that fulfills the system of LDE and possesses values U(0), and
U(T) at the points t = 0, t = T respectively, for which the equality holds.

We define C([0, T], RV ~Y) as the space of continuous functions U : [0, 7] — RN~ with
10l = max (U], 8] = max_|g,

t€[0,T] i=T,N—1

Fll, < F(t)|| =
| Hl_trerfg%H ()]l

Al - 1) -
— mae (L0, mae o 2= My o) <
) (D] -
< tg}% (Hal( )7|_‘2 ’WOH’L lan 1(7_)2” M’l”) +tre%%¥] m%%IHHfZ( )|

The parametrization method developed by professor Dzhumabaev [21] is applied to solve
problem ,.

The given interval [0 T is divided by loading points as follows:

[O,T)ZU:L—El[tT 1,1 ) O=th<ti <ty <. <tm+1:T.

We define C([0,T),t,, RN-DmHD) a5 the space of function systems U[t] =
(Uy(t),...,Uny1(t)), where the functions U, : [t,_1,t,] — RM~! are continuous and
have finite left-hand limits, i.e., t—l}tI}l—o U.(t) exists for all 7 = 1,m+ 1, with ||U[]|ls =

max_ sup U]
=TT (et tr)
The restriction of the function U(t) to the r — th interval t € [t,_y,t,.) is denoted as
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U.(t) =U(t), r=1,m + 1. Consequently, we have

m

dU,

i =AW+ S0Vt FO, ¢ =TT )
BUL(0) +C lim Upia(t) = @, (10)
tﬁlitHlO Us(t) = Us+1(ts)7 §= L_m (11)

By introducing parameters A\, = U,.(t,_1), 7 = I,m+ 1, Api2 = th%nOUerl(t) and by
gl
replacing U, (t) = u,(t) + A, in each interval [t,_1,t,), r = 1,m + 1, we obtain problem with
parameters

m

du,

=A@ + ) + ; M;(t)Aj1 + F(t), t€ [t,_1,t,), (12)
u(t,_1) =0, r=1,m+1, (13)
BA1 + Cpis = @, (14)
A + lim () = A1, s=1,m+1. (15)

t—ts—

The solution of the problem - is the pair (A, u[t]) with the elements:

A= (A, Ame) € RV=DOH2) 9] = (0 (t), . . ., U (1) € C([0, T), t,, RN-D0mH1)
here the functions @, (t) are continuously differentiable on the [t,_1,¢.), r = 1,m + 1, and the
A, satisfy the system of ordinary differential equations along with the conditions (13| —
=)

If the pair (), u[t]), where A = (A1, ..., Apyo)’ € RNV 0] = (01 (t), ..., Umsi (1)) €
C([0,T),t,, RN=Dm+1)) is a solution to the problem 1) 1.} then the function U(t)
defined by the equalities U,.(t) = u,(t) + A\, t € [tr—1,t.), ¥ = Lm+ 1, U(T) = Apio, 18
the solution to the problem (7)), (8). On the other hand, if U*(¢) is the solution to problem
. then the pair (\*,u*[t]), where \* = (U*(to),U*(t1),...,U*(tms1)), u*[t] = (U*(t) —
U*(to), U*(t) = U*(t1),...,U*(t) = U*(tn)) will serve as a solution to the problem (12)) — (17).

The emergence of the initial conditions u,(t,_1) =0, r = 1,m + 1, enables us to ascertain
the functions u,(t), r = 1,m+ 1, for constant X = (A1, g, ..., Api2) derived from the
Volterra integral equations of the second type:

7(t) = / A(E) (@ (6)+ A )dé + / >~ My(€)dEN 1+ / F&)de, r=T,m 1. (16)
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In equation , by replacing u,(€), r = 1, m + 1, with the appropriate right-hand side,
and by iterating this procedure v, (v = 1,2, ...) times, we acquire a depiction of the function
ur(t), r =1,m+ 1, expressed in the form below:

Up(t) = Dyp(t) Ay + ij Hyp(t, M) A1 + Gon(t,5) + Fop(t) 7 =T,m+1, (17)
g
where
Do) = | | A6 + | " a@). /:”1"",4@,,1) /5 AE)dE, .. de,
Hoo (1, M;) = / My(6)d6 + /tle@l)--- /:VIQA@V_l) 5 My(,)dg, ... g,
Gon(t,,) = / A | 5”12 Al ) /:_"11A<§V>ar<su>dfy...dsh
Fr(t) :/tT o d£1+/ A(&) . /j_ A(g,,_l)/til F(6,)dE, . .. 1.

From ((17)) we find
1im0ﬂr(t) = DW’(tT))‘T + Z Hw<tr7 Mj)Aj-‘rl + Gur(tra ar) + ﬁl/r(tr)a r=1m+L

t—str— —
]:

Substituting the appropriate right-hand side from into the conditions , and
multiplying by | = max(ts —ts_1), s = 1,m + 1, we obtain the following:

B\ L4 Chpgn 1 =D - 1, (18)

(14 Dos(t) A+ > Hyslts, M) A1 = A1 = —Galts, ) = Fua(ts), s =T,m+ 1. (19)
j=1

where [ is an identity matrix size of ((N — 1) x (N — 1)). Let Q,(l) represent the matrix
relating to the left-hand side of the system , , we obtain

Qu(l))‘ - _ﬁu<l> - Gu(ﬁv l)? (20)

where F,(1) = (=®l, F,1(t1), . .., Fym1(T)),

G,,(ﬂ, l) - (0, GV1(ﬁ1, tl), ey Gym+1(am+1, T))

Therefore, to identify the unknown pairs (A, u(t)) that solve the problem —([15)
we possess a self-contained set of equations (16), (20). The pairs (), u(t)) that solves the
problem - results in sequences of pairs (A\*, u*(t)),k = 0,1,2,..., determined by
the subsequent algorithm:

Step 0: a) Supposing that for the selected [ € R, v € N, the matrix @, (1) is invertible,
we establish the initial approximation concerning the parametersA(®) = ()\go), N )\7(212)

RWN=D+2) from the equation Q,()A© = —F, (1), producing A = —[Q, ()] F,(I).
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b) Utilizing the elements of the vector A(® € RW=1(m+2) and solving the Cauchy problems
. . with A, = A\ on the [t [tr—1,t.], we determine the functions m (t),r=1,m+ 1.

Step 1: a) By inserting the obtained . ( ) r = 1,m+ 1, into the right-hand side of
(R0), we establish A® = (AL, AL, ) € RV-Dm+2 from Q. ( W = —F, (1) — G, (@, 1).
b) On the [t,._1,t,], we address the Cauchy problems , by using A, = A and
determine the functions ﬂ,(ﬂl)(t), r=1,m+ 1, etc.

Proceeding with the procedure, at the k - th step, we obtain a system of pairs (A, 7*)[¢]),
k=0,1,2,.... Observe that in point b), for constant values of the parameter \,, the solution
to the Cauchy problem is determined individually for each interval t € [t,_y,t,], r = 1,m + 1.

3 Conditions for Convergence of Algorithms and Unique Solution of the Problem

@ @

Suppose ||A(t)|| < a = const, |M;(t)|| < B; = const, j =1,...,m. The requirement for the
algorithm’s convergence and the uniqueness of the solution to problem , lead to the
following statement.

Theorem 2. Let the matriz Q,(I) : RN=Dm+2) o RIN-DM+2) pe ingyertible, for
l € RY v e N, and let the following conditions be satisfied:

a) (@M < e (D),
b) gu(l) = gu(l) ' [eal -

AN
AN
|
—_
—~
Q
~
~—
bl

(et =30 )] <

j=0 J: j=1 k=0

Consequently, the two-point boundary value problem for the LDE (@, (@) has a unique
solution U*(t) and the evaluation is just for its:

U1y < K, (1) max(||F |, @),

S R
Ku(l)={<el—1+el;5y‘l>'1_gy(l)'(1/! +1—g,,)(l)'(V! +1}><

X { (eal_1+€al.; ﬁjl)ey(l) -max (1,

v—1 ; v—1

Y
a,'> )—l—eal}l—l—% -max <1, >
j! — J-

=0

<.
<.

Proof. Under the assumptions of the theorem from step zero of the algorithm, we define
and estimate A(©)

IO = max A7) < QDI 1RO < e - IEO],

r=1m+1
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1E (D] < max((|fl1, max_|[ £, (4,)]),

r=T,m+1
| ()] < H /ttrl F(&)dé& || + H /:1 A(&) /:11 F(&2)d&2dE:

+H/ / A(&) . /j_l F(ﬁy)dgy...dle <

al)v~t 2 ()
<IFI + all P+ o+ o2 P = 3 SR P

Then

I
—

v

J
INOI < 2, (1) - max (1, (ad)

J!

) max(llo], |7l (21)

<.
Il
o

Functions a\" (t) we determine from the following integral systems equations

@0l < [ al@ae+ [ gyl + / > el + / IF©)lde,

trljl tr—1

adding H)\(O) |, = 1,m + 1, and using the Gronwall-Bellman inequality, we obtain:

O+ I < e mas (7S sagifhi+ [ E@ee+ 1601),

-1 7=1 —

Tl = max s G0 < (= DIA|+
r=1m+1tc[t,_1,t,)

e I?i‘fil/ Z@]HAJH\HHF( )Il)dﬁ)

r tr—1 521

Now we get

O < (e =1 e 3 B IO+ el 22)
j=1

from where, taking into account we obtain:
[ZOL 2 < Ko (1) max([| @[], [ F]|),

K, (1) = <eo‘l — 140l iﬁjz)@(w . max (1 Z (a ] 04 )z +eol],

§=0

Using the first step of the algorithm, we determine A" and estimate the norm of the
difference ||)\(1) - 2\OJ;

A = XN < 9, (1) - |Go(t, T )|| »

G, (tmuo))H < max |G (t, @) < S [EO]l2,

r= m+
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XD = 2O < e (1) - S [aO 2 < (1) - S, (1) max(|[ ], | F]).

Substituting A = A1) to the right side of and solving the Cauchy problem we
determine aM[t] = @ (¢), @V (@), ..., @l (1) € C([0,T], t,, RN-Dm+1)),

By persisting with the iterative process at the k—th step, we derive a pair (A® , a®[t]), k =
0,1,2,....

A®] = (@ (1), @80 (1), ..., u, (1) € C([0, T, t,, RNV,

AR = (AP AW ) e RIV-D0ma2),

Since A#tD \*®) are solutions to equation with the corresponding right-hand sides,
then their difference holds the following inequality:

A = A < e, (1) - |Gy (t:, TW) = G (ty, WD),

G (b, a0 — =1y =

r

[ [ A [ @) (96) - 86 ) s (9

tr—1 tr—1 tr—1
Using the Gronwall-Bellman inequality again, we estimate the difference in solutions of
the Cauchy problems through the difference in parameters:

Haﬁ“(w—ask*”(t)us<ea<HH>— 1) - A® — AED||4
4ottt / S8l — AED) =TT ()
tr 1 j 1

Substituting into the right side of and calculating the repeated integrals, we obtain:

tr §v—2 &
|G (b, @) — TRV < / O[_“/ a/ a[(easu 1) A — A
tr 1 tr—1

o). / Z,Bjdfﬂ/\JH NI e, - der =

71'—]_

l
N PP S R G alZﬁ]z—ZW— Zﬁj }W — A=
v—1 (al L
A 2] <0 [e -5 1 (e = 30 ) JIA® - A7) =
j=0 1=0 H:
= gu( ) IAD = AED k=12, (25)
v v—1
)M
() = =0)- ¢! - (-]
e J —
IACHD — A(’“)H < g () v(1) - IM I < <g@)- A0 = A0,
(k+p) _ < ||IAEFP) _ \(ktp—1) (ktp=1) _ \(k+p=2) (k1) _ (B <
1A Ol < Ix A [ A [+ A [ A<

< gi’(l)-lM XD gb =t (0 ATD=AB g, (1) ATFY A A 2B =
= (g0 + g7 (D) + o+ g (D) + DA — AW,
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Due to the condition g,(I) < 1 and inequalities , as p — oo the sequence
() converges to M*, sequence of systems of function w®)[t] by the norm of the space
c([o,7),t,, R m+1)) converges to u*[t] and the following estimates are valid:

[A" = A® < A = = i (D7) - S K (1) max((| ], |11

1- gulH

~(k ~(k— a —
@7 () =@ )] < e 1+6’Zﬁ )N = AL

[a*[-) = a®[ ]2 <
_(al 1+ea125]) V) (l)e,,(l)(crjl!)yKy(l)max(||<1>||,||F||1) k=1,2,...

Using these inequalities for £ = 0 and taking into account the established estimates ,
(22) we obtain:

IV = MO < Le, ()@ K, (1) max(|[ ] ]| ).

agv (1) V!

Tl = IV + @[l < IV = MO+ @[] = @Ol + AP ] + @]l <

<1 ' Y gy max(e], | FI) +

1—g.() v
+ (e - 1+ealzﬁj)1 e 0 S K max( ], 1#1)+
— (al)

+&,(1) max (1, . ) max(|||[, | Fl|) + K, (1) max((|]], [|F[lr) = K,(0).

J!

<
I
)

Uniqueness. Let U*(t), U**(t) two solutions to problem ([7]),(8)). Then the corresponding
systems of pairs (A", a*[t]) , (A, u™*[t]), where \* = (U*(ty), U*(t1),...,U*(tms1)), 0*[t] =
(U*(t) — U*(to), U*(t) — U*(tl) SU) = U (tm)), X = U (to), U (t1), ..., U (tms1)),
u*[t] = (U(t)=U**(ty), U™ (t)—U**(t1), ..., U™ (t)=U**(t,,)) are solutions to the boundary
value problem with parameters - and satisfy relations , . Similar to estimates
, the following estimates are established:

7j=1

A" = A < g (DA = A

Since g,(I) < 1 these estimates imply \* = A**, u*[t] = u™[t] i.e. U*(t) = U*™(t) when
t€[0,7].

The Theorem 2 is proved.

Let us now return to problem —@. Since there is a connection between problems —@
and —, the following theorem holds.

Theorem 3. Let U*(t) represent the solution to the problem (7)-(§) and u*(t) =

(ui(t),us(t), ..., uy_,(t)) represent the solution of the discretized problem ({)-(6). The
following conditions hold:
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a) The coefficients a(t, x), b(t, x), k;(t,z), f(t,x) are smooth and satisfy the constraints
a(t,z) > p >0, b(t,x) <0 and Holder continuity in z,
b) The functions o(t), ¥1(t), @(x) are sufficiently smooth and satisfy compatibility
conditions,
c) The requirements of Theorem 2 are met.
Thus, the discretized problem ([4))-(6) has a unique solution w*(t) =
(ui(t),us(t), ..., uy_1(t)) and the assessment is fair for its:
e () < 0@ < Koll) max(IF 1, 9], § = TN =1,
Now we can prove Theorem 1. Let u;(t) - the solution of the discretized problem —@
and u(t, ;) - the solution at the grid points problem ([))-(3).
The solution u(t, z) at x; satisfies:

(%gf") = a(t, xi)% + b(t, z;)ult, ;) + Z ki(t, xi)u(t;, x:) + f(t, z;)
=1

Using the finite difference approximation: 3271; = u(t’xi“)_u(i’f Dfultrion 4 O(72), we
get o
t ) t7 [ - t7 7 t7 i—
Qu(t, z:) = aft, :UZ)u( Tisr) = ult, 2) + ult, vin) + b(t, z;)ult, )+
ot T2
+ Z Ryt ai)u(ty, o) + f(t,2:) + O(7%), (26)
=1
B(zi)u(0, z;) + C(z)u(T, ;) = o(x;), i=1,N—1, (27)
up(t) = to(t), un(t)=1v1(t), te€(0,7T]. (28)

Subtracting the discretized problem —@ from — gives the error evolution
equation 0;(t) = u(t, ;) — u;(t) :

%‘i" — a(t, z) 2! _f; LS VP JZI kst 20)5(t;) + Ralt), (29)
B()8(0) + Cla)d(T) =0, i=T N=T, (30)
So(t) =0, On(t) =0, te[0.7]. (31)

R;(t) = O(7?) represents the truncation error from the finite difference approximation.

— equation is similar to —@. This means we can use the estimate from Theorem 2:
max [5,()]| < K, (D[R (1)), i = LN — 1.

So, we have proven Theorem 1.
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4 Conclusion

In this study, the method of lines is utilized to address the two-point boundary value problem
for loaded parabolic equations. Assuming that the solution is sufficiently smooth to the initial
problem, and according to Theorem 2, the interrelation between the two-point boundary
value problem for loaded parabolic equations — and the discretized problem —@ is
demonstrated. The stability and error of this problem will be studied in future works.

This research is funded by the Science Committee of the Ministry of Education and
Science of the Republic of Kazakhstan (grant no. AP23485618).
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