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SPECTRUM OF THE GENERALIZED CESARO OPERATOR ON
LORENTZ SPACES

The aim of this paper is to investigate the boundedness and spectrum of generalized Cesaro
operators defined on Lorentz spaces over a finite interval and the positive half-line. When g =1,
these operators coincide with the classical Cesaro operator. In this paper, we extend the results
obtained for Sobolev spaces in [5| to Lorentz spaces. The primary tools employed in this work
are Cp-groups, Cy-semigroups, and their generators. Cy-groups and Cy-semigroups are used to
demonstrate the boundedness of the generalized Cesaro operator. Since the spectrum of the
bounded linear operators is non-empty, we investigate the spectrum of the generalized Cesaro
operator. The generators of these Cy-groups and Cy-semigroups are utilized to analyze the
spectral properties of the generalized Cesaro operator. We study the spectra of the generators and
determine the spectra of the generalized Cesaro operators using the spectral mapping theorem.
Additionally, we provide results on the point spectrum of generalized Cesaro operators defined on
Lorentz spaces over a finite interval.

Key words: Generalized Cesaro operator, spectrum, Lorentz L,, , spaces, Cop-group, Cp-semigroup.
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JIopeHI] KeHiCTiKTepiHe aHBIKTAJIFaH >KaJblIaHFaH de3apo onepaTopbIHBIH
CIIEKTPi

Byn makasiazia akbIpJibl apajbIKTa KoHEe OH KapThl ocinjge aHbikTaiaran JlopeHI KeHicTirinmgeri
KaJnbLiagral desapo omneparopJiapblHbIH, IIEHEIreHIiri MeH crekTpi seprreneni. S = 1 6oJsran
Karjaiiga, OyJ1 omeparopsap KJIACCUKAJBIK de3apo oneparopbiHa coiikec Kejedi. By 3eprreyne
6i3 |5]-marer Cobosies KenicrikTepine apHajran HoTHKeaepal JlopeHt Kericririne kereiiremis. By
JKYMBICTa Heri3ri KoamaubLiaThiH Kypaamap Co-tomrap, Cy-KapThliail TONTap KOHE OJIapIbIH
TYBIHJIATYIIBI olleparopiapbl 6osbin TabbLiaabl. Cy-ronrap MeH Cy-»KapThLiail TONTAp KaJIIlbl-
sanran de3apo orepaTOpbLIHBIH, ITEHE/ITeH ITH Toesey/1e Koanbuia bl [1leHeren ChI3bIKThIK,
OIIEepPaATOPJIAPILIH, CIIEKTPI OOC eMec OOJIFaHILIKTAH, 013 >KaJIIbLIaHFaH de3apo omepaTopLIHLIH
cuekTpin 3eprreiimis. Ocbr Cy-Torrrap Men Cy-2KapThLaail TOMTAP/IBIH TYBIHIATYIIBI OIIEPATOPJIa-
PBI XKaIMbLIaHTaH de3apo OmepaTOPBIHBIH CIIEKTPJIIK KAaCHEeTTEPIH Talayaa naiga anbuiaasl. bis
TYBIHATYIIBI OIIEPATOPJIAPALIH CIEKTPJIEPIH 3epPTTeI, CIEeKTPJIK OeifHesey TeopeMachl apKbIIbI
XKaJlllbLIaHFaH de3apo orepaTopJiapbIHbIH, CIIEKTPiH aHbIKTaiiMbl3. COHbIMEH KaTap, 013 aKbIPJIbI
apaJbIKTa aHbIKTaJFraH JIOpeHIl KeHICTiriHIe KajnblIaHrad de3apo ornepaTopJiapblHbIH HYKTEIiK
CIIEKTPi OOMBIHINA HOTUKEIEPIl YCHIHAMBI3.
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B nmannoit pabore HMCCIEAYIOTCS OTPAHUYEHHOCTH U CIEKTP OOOOINEHHBIX onepaTopoB Hesapo,
OIIpeJIeJIEHHBIX Ha IMPOCTPAHCTBAX JIOpeHIa Ha KOHEYHOM MHTEPBAJIE W MTOJOKUTEIBHON IOJIyOCH.
B caygae, xorma § = 1, 3Tu omepaTopbl COBIANAIOT C KJIACCHYECKMM orepaTopoM desapo. B
JIAHHOM WCCJIEJIOBAHUU MBI DACIIMPSAEM PE3YJIbTATBI, MMOJydeHHble g mpoctpancts CobosieBa
B [5|, ma mpocrpanctea Jlopenma. OCHOBHBIMH WHCTDYMEHTAMH, HCIOJIB3YeMBIMU B JAHHOL
pabore, sBisorcss Co-rpymnbl, Co-TIOIyTrPYNIbI U UX HOPOXKgafomue onepatopbl. Co-rpymibl 1
Co-TIOJIy TPy IIIBI  MCIIOJIB3YIOTCS It JIEMOHCTPAIUA OTPAHUYEHHOCTH OOOOIIEHHBIX OIEPATOPOB
Yezapo. [lockobKy CIEKTp OrpaHMYEHHBIX JIUHEHHBIX OIEpaTOPOB HE SIBJISIETCS ILYCTHIM, MbI
n3ydaeM CIekTp 0000mennoro omeparopa Jesapo. Ilopoxkmarormue omeparopsr stux Co-Tpyrm
u Cy-TIOJIyTPYII MPUMEHSIOTCS JIJIsl AHAJIM3a CIIEKTPAJIBHBIX CBOMCTB ODOBINEHHOTO OIlepaTropa
Yezapo. MbI u3ydaeM CHEKTPBI MOPOXK TAIOIIIX OMEPATOPOB M OIPEJIEIsIEM CIIEKTPBI 000OIIEHHBIX
orepaTopoB de3apo C IMOMOIIBI0 TEOPEMbI CIIEKTPAJIbHOIO oTobOpakeHus. Kpome TOro, Mbl Ipej-
CTaBJISIEM PE3YJILTATHI 110 TOYEYHOMY CHEKTPY ODODINEHHBIX OIEpPaTopoB e3apo, OlpeIesIeHHbIX
Ha IpocTpaHcTBax JIopeHIia Ha KOHEYHOM WHTEPBAJIE.

Kurouesbie ciosa: Obobiennslii oneparop deszapo, cnekrp, mpocrpancrsa Jlopenia Ly 4, Co-
rpymma, Co-Toayrpyia.

1 Introduction

Let Ry = (0,00). For >0, 1 < p < 00, and 1 < g < 00, the generalized Cesaro operators
C} and Cg° are defined on L, 4(0,1) and Ly, 4(R,), respectively, with the same formulas

(N0 =5 [(= 97 f()ds, 1€ 0,1 0

0

and
(C It :%/ (t —s)""1f(s)ds, t € Ry, (2)
0

The generalized Cesaro operator C3° was first studied in [5] on Sobolev spaces which are
contained in the Lebesgue spaces L,(Ry). This work demonstrated the boundedness and
spectral properties of the generalized Cesaro operator. Boundedness of the generalized Cesaro
operator in L, spaces confirmed by the following generalized Hardy inequality in |11]:

o'} t p % I 1 1
/ ti/(t—s)ﬁ Yf(s)ds| dt | < (’i—;—mw”%v (3)

for 1 < p < oo, where I' denotes the Gamma function. The discrete version of this operator
was studied in [10]. In the special case when § = 1, this operator coincides with the classical
Cesaro operator. For the boundedness and other properties such as spectrum of the Cesaro
operator in different spaces, we refer the reader to [8], |9], [12], [13], [14], [15], [17], [18], [19].
The aim of this paper is to study boundedness and the spectrum of the generalized Cesaro
operators C3° and C's on Lorentz spaces Ly (Ry) and Ly 4(0, 1), respectively. The main tools
are so-called the Cy-group and Cy-semigroup, which are denoted by {T'(¢) }1er and {S(t) }ier,
and given by
(T@)f)(s) = e

2
t

f (e_ts) ,teR (4)
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and

(S()f)(s) = €% fle™s), t € Ry (5)

The idea comes from the papers [5], [10], where authors studied similar problems in Sobolev
spaces.

The outline of the paper is as follows. In Section 2, we introduce a notion on the spectrum
of linear bounded operators in (quasi-)Banach spaces and give definitions of Lorentz spaces
as well as definitions of general Cy-group and C-semigroup with generators. In Section 3, we
study the spectrum of generators of the Cy-group and Cj -semigroup. Finally, in Section 4, we
present the main results that include the boundedness and the spectrum of the generalized
Cesaro operators on Lorentz spaces L, ,(Ry) and L, (0, 1), respectively.

2 Preliminaries

In this section, we give main definitions and properties of the spectral theory of linear
operators, Lorentz spaces and operator semigroups. Let R be the set of real numbers and R,
be the set of positive real numbers. As usual, C is the set of complex numbers, C, and C_
are sets of complex numbers with positive and negative real parts, respectively. Throughout
this paper, the closure of a set (2 is indicated by €.

2.1 Spectrum of linear operators and Lorentz spaces

Let X be a Banach space and B(X) be the algebra of all bounded linear operators on X.

Definition 1 [/ Let A € B(X). The resolvent set of A, denoted by p(A), is the set of all
A € C such that the operator \I — A has a bounded linear inverse. For each \ € p(A), the
resolvent operator is defined as

R\ A) = (M — A

The spectrum of A, denoted by o(A), is the set of all X\ € C such that the operator \I — A
does not have a bounded linear inverse.

One can define the different parts of the spectrum as follows:

Definition 2 /1] Let A € L(X) a linear operator. The point spectrum, continuous and
residual spectrum are defined as

o,(A) = {\ € C such that \I — A is not injective},
0.(A) = {\ € C such that \I — A is injective, Im(A] — A) = X, but Im(A\] — A) # X},
o.(A) = {\ € C such that \I — A is injective, Im(A] — A) # X }.

Clearly, 0,(A), 0.(A), and 0,(A) are disjoint, and

0(A) =0,(A)Uo.(A)Uao,.(A).
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In order to define the Lorentz spaces, we need the following notions of the distribution function
and the decreasing rearrangement of a given measurable function. Let f be a Lebesgue
measurable function defined on §2 with the Lebesgue measure v, where 2 is either R, or
(0,1).

Definition 3 The function s : [0;00) — [0; 00] defined by
prN) =v{t eR:|f{O)] > A}, A>0

is called the distribution function of f.

Definition 4 The function f*:[0;00) — [0; 00| defined by
o) = mf >0 pp(\) <t} £30

is called the decreasing rearrangement of f.

Definition 5 The function f** :(0,00) — [0,00] is defined as
t
sk 1 *
e = [ £
0

We now present the main objective of this paper, the Lorentz spaces L, ,(€2).

Definition 6 Let 1 < p < oo, 1 < g < oo. The Lorentz space L, ,(S2) is the set of all
Lebesgue measurable functions f such that the functional || f||1, ) < 0o, where

1

() , q q
[ (5rm) 2], f1<p<oo 1<g<oo,
£l 2,00 = 0

supts f*(t), if1<p<oo, g=oc.
t>0

Note that for finite ¢ the space Lo 4(2) is trivial. Furthermore, the Lorentz space L, ,(2)
is the generalization of the Lebesgue space L,(2), which is quasi-Banach in general, and
Banach for 1 < ¢ < p < 0o or p = ¢ = o0, see for example, |2, IV.Theorem 4.2]. If p = ¢,
then L, ,(€2) coincides with L,(€2) and

12y, = 1F NIy f € Lp(€2).

Definition 7 For any f € L, 4(2) the norm || - ||7 q) is defined by

0

1
v(Q) ) q dt q .
. f(tpf**(t)) T, fl<p<oo, 1<qg<oo,
||f||Lp,q(Q) =

sup v f**(t), if 0 <p < oo, ¢=o0.
t>0
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According to |2, if 1 < p < o0, 1 < g <oo0orp=qg= o0, then || - Hzm(m is a norm on
Ly 4(€2). This means that (Lpq(€2), [ - [|7, o)) is @ Banach space. Moreover, the quasi-norms
I NIz, and || - [|7 (o) are equivalent, as shown by the Hardy inequality:

* p
Hf”Lp,q S ”fHLp,q S pTl”fHLp,q'

If p = 0o, then we understand that p/(p — 1) = 1.
A measurable locally bounded function w : R — R is a weight if it satisfies w(¢) > 1 and
w(t+s) <w(t)w(s) for all t,s € R. The weight w(t) is called non-quasianalytic if

/lnw(t>dt < 00.

1+122

R

Definition 8 Letw be a non-quasianalytic weight function on R. The Beurling algebra L} (R)
is the space of all integrable functions f € L1(R) satisfying

[paip Z/If(t)|w(t)dt < .

2.2 Strongly continuous semigroup

Definition 9 A family T = {T(t)}er, tn B(X) is called a Cy-semigroup (or strongly
continuous semigroup) if the following properties are satisfied:

(i) T(0) = I, where I is the identity operator on X;
(i) T(t+s)=T()T(s), for everyt,s € R, ;
(iii) }fl_r)% |T(t)x — z|| = 0, for all x € X.
If s,t € R then T = {T'(t)}+er is called a Cy-group (or strongly continuous group).
The generator of T' = {T'(t) }ser, (or {T'(t)}icr) is the linear operator A defined by

Ar = lim M

lim h .o € D(A),

where D(A) is domain of operator .A.
Definition 10 Let A be the generator of T. The spectral bound of A is defined by
s(A) = sup{ReX : A € 0(A)}.

Definition 11 Let T' = {T'(t) }ier, ({T'(t) }ier) e the strongly continuous semigroup(group),
then

wo(T) := inf{w € R : IM,, > 1 such that ||T(t)|] < M,e** Vt € R, (R)}

1s called the growth bound of T'.
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The growth bound of the semigroup can also be determined by following formula

t—o00

Definition 12 The open sector of angle w is defined as

So={z€C:z#0and |argz| <w}, 0 <w <,
So = (0,00), w=0.

Definition 13 Let 0 < w < m, the operator A on a Banach space X is called sectorial of
angle w if o(A) C S, and

sup {JA = A) 71 s X ¢ T} < o0,
for allw < W' < .

The following lemma is a key role in the calculations in the study of the spectrum of
generators.

Lemma 1 If1 <p<oo,1<q< o0, then
(1) 17 ¢ Lpg(Ry) fory €C,
1
(it) (a+1t)"7 € L, ,(Ry) for Rey > — and o > 0,
p

1
(111) t7 € L, ,(0,1) for Rey > —-.
p

Proof. First, we prove (i). By using the property of decreasing rearrangement, we have

((@)7)7 = ([]7)" = ().

Since ¢ > 1, there are two possible cases for Rey, when Rey < 0 and Rey > 0. Let us consider
each situation separately. First, consider the case Rey < 0. In this case, the function 777 is
non-increasing. Its decreasing rearrangement is given by (t98¢7)* = ¢4R¢Y Then

HfHqu (R,) / tp tRe’Y /t—lthe'ydt / 7—1+qRe7dt - 50
0 0 0

It means that 8 ¢ L, ,(R.) with Rey < 0.
If Rey > 0, then t"¢7 is increasing and z17(A\) = oo for all A > 0. Therefore, %7 ¢ L, ,(R).
Now, let us prove (ii). Here we also consider two cases when Rey > 0 and Rey < 0. First,
let Rey > 0, then the function (a + t)~%¢7 is non-increasing and

(a0 = (I + 0719 = ((a+ )77 = (0 -+ )75,
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Moreover, one has

1718, = [t (@t ) Rt

O\H 0\8

tr a4+ )Rt + [t (o + 1)L,

The integral converges under certain conditions on the parameters p, ¢ and Rey. To determine
when it converges, let us to analyse the behaviour of integral at the endpoints.
First, let ¢ — 07, then near ¢t = 0, the term (a + t)"87 approaches to a 8¢, so the

integral behaves as [ tﬁfldt, and this integral converges if d > 0. Second, let ¢ — oo, then
0 p
for large t, the term (a + ¢)~%¢ behaves like t9%*7, so the integral behaves as [ ppLmaRey

1
This integral converges if T 49 gRey < —1, that is, Rey > —.
p p

In the case when Rey < 0, the function (a + ¢)™%7 is increasing and ;(\) = oo for all
A>0. Then (a+t) ™8 ¢ L,,(R,).

Finally, we need to prove (iii). We consider two cases: Rey < 0 and Rey > 0.

First, let again Rey < 0. Here, the function %7 is non-increasing, so (t8¢7)* = t®7 and
the integral

1 1

q a tg+qRe'y ! 1
/tpltRevdt — /tp1+qRe'vdt = W < 00, when Rey > ——.
= e
0 0 N Tlo P

Now, let Rey > 0. In this case the decreasing rearrangement of 87 is f*(t) = (1—t)R7 ¢ €
(0,1). Then holds

1

1
/tg‘l((tRBV)*)th = /tZ‘l(l — )Rt < 0.
0

0

1
Thus, the function t” belongs to L, ,(0,1) if and only if Rey > ——.
p

3 Spectrum of generators of the Cj-group and () -semigroup
The main result of this section is the following theorem.

Theorem 1 For 1 < p < oo and 1 < q < oo, the family of operators T = {T'(t) }1er is
Co-group of isometries on the space L, ,(Ry). The generator A of this Co-group is given by
the following form.:

Af(s) = —sf'(s) — %f(s),
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with the domain D(A) ={f € L,,(R;) :tf' € L,,(R;)}.
Similarly, the family S = {S(t)her, s Co- semigroup on the space Ly 4(0,1). The
generator B of this Cy-semigroup is given by

Bf(s) = —sf'(s) - %f(s),

with domain D(B) = {f € L,4(0,1) : tf' € L,,(0,1)}.

Proof. We begin with the checking that the operators {T'(t)},cr are isometries. The
following equation holds:

r 1 ds r 1t ds !
170 ey = | [FTO ) = | [she bty
/ )\ s
r 1 _s ., du !
| [t ir @t | =1l
0

In the case, when ¢ = oo, we have

[Tty et = S (T(5)F)(E) = suptie™ f(e7)

t>0

Lo
=supu? f*(u) = [[fll1, i)
u>0

To show that the family of operators {T'(¢)}icr forms a Cy-group, we have to show that
for each f € L, ,(Ry).
We first verify this property for C°(R,) by proving the next
i [7(0)5 — Sl = ipsup [ T(07) ) — )

= lim sup |67§f(e_tx) — f(z)] =0.

t—=0 >0
Since C2°(R,) is dense in L, ,(R;) [4, Theorem 3.3], it follows that
lgrol ||T(t)f - f||Lp,q(R+) = 0
By definition of generator of the Cy-group for every f € D(A) we get following
) — f(s)

t
1
b

»

Af(s) =lim L0

t—0

= —sf'(s) = —f(s),
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with D(A) = {f € Lyy(Ry) s £ € Lyy(R,)}.
Next, we will prove that the family of operators {S(t)}icr, is Co-semigroup. First, we
show that it is bounded for each ¢ in the following

15(t)f 1, s00) = / (sH(SO ) )2 = / (she s f(ets)) ™

qdu

— /((esu)ieif*(u)) | =l

0

Using a similar argument as above, it follows that this semigroup is a Cy-semigroup, and
its generator is given by

Bf(s) = —sf'(s) - %f(s),

with domain D(B) = {f € L,,(0,1) : ¢tf" € L,,(0,1)}.
In the following proposition, we find the spectrum of the generators of the Cyy-group and
Co-semigroup.

Proposition 1 Letl <p<oo and1l < g < oo, then
i) op(A) =0, o(A)=iR.
ii) 0,(B) ={A € C:ReX <0}, o(B) ={X € C:ReX <0}.
Proof. 1) Let A € C. The equation Af = Af is equivalent to the differential equation

tf'(t) + (N + %)f(t) =0.

Its non-zero solutions are given by f(t) = et~ O3 with ¢ # 0. According to Lemma , these
solutions do not belong to L, ,(R.). Therefore, A has no eigenvalues, and the point spectrum
is empty: 0,(A) = 0.

Since each T'(s) is an invertible isometry, its spectrum is confined to the unit circle:

o(T(t) C{zeC:|z|=1}.
By the spectral mapping theorem for C-group (see |6, IV. Theorem 3.6]), the relation e**4) C
o(T(t)) holds. Hence, if n € o(A), it follows that " € {z € C : |z| = 1}, implying o(A) C iR.
1
Assume £ € iR and that £ € p(A). Let n = £ + —. According to Lemma , the function
p

f(t) = (1 +¢)7" ! lies in L, (R, ). Since the resolvent operator R(&,.A) is bounded, the
function g(t) = R({,A)f(t) also belongs to L,,(R;). This implies that g(¢) satisfies the
differential equation

ng(t) +tg'(t) = f(t).
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Solving this equation yields the general solution

~ 1
g(t)=ct™"+ 5(1 +t)7"

where ¢ is a constant. However, as in Lemma [I] it can be confirmed that g(t) ¢ L,(Ry).
Thus £ € o(A).
ii) In this case, we first examine the equation Bf = Af. The solution to this equation is

given by f(s) = s~7%). We can see by Lemma |1| that the function f(s) = §~OF5) belongs
to L, 4(0,1) if and only if ReX < 0.
We know from |6, Corollary 1.13] that

—00 < 5(B) < wp(9) < 0.
By definition,

log [[S@

t—o00

Considering these facts, the spectrum is given by

o(B) ={A € C:ReX < 0}.

4 Spectrum of Generalized Cesaro operators on Lorentz spaces

In this section, we establish the spectrum of the generalized Cesaro operator on Lorentz
spaces.

4.1 The case R}

The following result shows the boundedness of the generalized Cesaro operator CF° on
L,,(R.) spaces.

Theorem 2 Let § > 0,1 <p < oo and 1 < q < oo, then the operator CZ° is bounded on

Lpq(Ry).
If f e L,,(Ry), then

ﬂzﬁ/ﬂ—éﬂ“%ﬂwbwﬁwﬁ- (6)

Proof. Let us first demonstrate the equality @ By changing the variable 7 = te™*, we obtain
the following

B

Crrn =1 @—TW{f<m—5/1—es-esﬂﬁﬂ@ﬂww
0
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Considering the density of simple functions in the L, ,(R ) space and utilizing the properties
of the Bochner integrable functions, we can observe that the operator C5° is well-defined and
bounded on L, ,(R;). When 1 < ¢ < p < oo, p # 1, then, we have

15 Il < B / (1 — )PP T(s) f1ds
0

o) 1

—s(1— 4 1-1du
- B”fHLm(RH /(1 - 678)6716 =3)ds = 5”f||Lp,q(R+) /(1 - u)ﬁ Lyt p;
0 0
1
: DG+ 1I(1 - 1)
— 1— B—1 1*;71(1 _ D
Bl fll . @) /( u)? w=11fllL,@) R

0

Here, the Beta function is applied to evaluate the integral. In general case, when 1 < p <
q < oo by [18|, we get that Cg° is bounded on Ly, ,(R) with respect to || - [|7 . Therefore,
we have

HCEof“LP’q(RJr) S CB,P||f||Lp,q(R+)7

where cg, > 0 is a constant depending only on 5 and p.
The first main result is the following theorem.

Theorem 3 Let 1 < p < oo, 1 < q < o0 and 8> 0. For the operator Cg° on Ly, 4(Ry) we
have

. LB+~ +it)
O'(Oﬁ):{ F(ﬁ+1—%+it) .tGR}.

Proof. In the previous theorem, we demonstrated that the operator C'5° can be expressed in
terms of the semigroup T'(t), i.e.,

CT (1) = p / (1 - e=)P e 0"DT(s) f(1)ds = / 95, (5)T() F(8)ds,

where gz ,(5) = X(0,00)(5)B(1 — 6_5)6_16_8(1_%) for s € R. According to |7], if the function gz,
belongs to the space LL(R), then it follows that

a(C5) = gsp(0(iA)),

where gg, is the Fourier transform of the function gs,. In our case, the non-quasianalytic
weight is equal to 1. Therefore, it is straightforward to verify that gz, € Li(R) due to the
properties of the Beta function.
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Then, for t € 0(iA) = R (see Proposition |1|) we have

9sp(N) = ﬁ/e_i’\s(l —e%)f s(1=3) Jg — @/ w)P Ly 1-dtit=1 g,
0

1 T@E+1r ﬂ—;+“)
=FBB 1= rit) = L(B+1-1+vit)

4.2 The case (0,1)

Let L,,(0,1). In contrast to the previous subsection, we now describe the spectrum of the
generalized Cesaro operator on L, ,(0,1). The main result of this section is given in the
following theorem.

Theorem 4 Let >0, 1 <p < o0 and 1 < g < oo, then the operator C’/‘} 15 bounded on
LP#](O? 1)
If feL,,(0,1), then

_5 / (1 — )10 8 () f(£)ds. (7)

Proof. We apply the change of variable 7 = te™® to obtain the following

g

Ot =5 (6= 7P f(rsdo = 9 / (1 — )71 0D S () f(t)ds.
0

It proves the equality .
Note that, due to this equality, C’é is well-defined and acts as a bounded operator on
L,,0,1) for 1 <g<p<oo,p#1, then

_s(1-1
IC3 o) < 8 [ (1= €2V 2 0D IS(5) o ds
0

% 1
—s\B—1,-s(1-3 4 1-rdu
SBHJCHLP,Q(OJ)/(I_G )ﬁ 16 a p)dS:ﬁHfHLp,q(O,l)/(l—U)ﬁ 1U1 10Z
0 0
1
1 LB+ 101 -1)
- BHfHLP,q(OJ) /(1 - u>ﬁ71u1_5_1du = HfHLp,q(O,l) 1 P
T(B+1-3)

0

As in Theorem [4], in general case when 1 < p < ¢ < oo, we have

||Oéf||Lp,q < CﬂvafHLp,q?

where cg, > 0 is a constant depending only on 8 and p.
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Theorem 5 Let 1 < p < oo, 1 < q < o0 and > 0. For the operator C’é on L,,(0,1) we
have

) F(ﬁ+1)F(A+1—%) .
ap(C’B):{ F(ﬁ—l—)ﬂ—l—%) .)\GC+}

and

. F(ﬂ+1)F(A+1—%) ‘ .
O'(CB):{ F(5+)\+1—§) .)\GC+UZR}.

Proof. Define the function
!

hw(t) - m>

The functions h., are eigenfunctions of the operator C}, it means that

~v e C.

t

3 / 1 I'(B+1I'(v)
Clh)(t) = =——— [ (t —s)P 1 lds = ———2 " p (1),
1
According to Lemma , the function h, belongs to L, ,(0,1) if and only if Rey —1 > ——. It
p
follows that the point spectrum of the operator C’é in L,,(0,1) is the set

) LB+ 1A +1-1)
ap(oﬁ)z{ CES TS .A6C+}.

Next, we consider the Hille-Phillips functional calculus for the generator B of the
semigroup S = {S(t)}+>0. According to Theorem , we can write Cy = L(g)(—B) that
is

Clf =5 / (1 - e=)P e 0D 5 (s) f(t)ds = / 95, (1)S(0)fdt = L{gs,) (—B) f.

where gg,(t) = B(1 — e*t)b’fle—t(l—%) and £ is the Laplace transform.
Llgan)(2) = 5 [ €21 =)t 0D
0

P+ Dl(z+1-12) -
- FB+z+1-12) = hgp(2), 2 € Cs.

By |10, p. 1458], the function hg, satisfies Spectral Mapping Theorem |16, Theorem 2.7.8].

Since —B is a sectorial operator of angle g and B is injective (0 ¢ 0,(B)), we have

F@B+DIA+1- )
PB+A+1-1)

o(Ch) = o(hap(—B)) = hgy(o(—B)) = { A eCyp U iR}.
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4.3 Conclusion

In this paper, we studied the boundedness and spectral properties of the generalized Cesaro
operators C’é and CF° defined on the Lorentz spaces L,,(0,1) and L,,(R,), respectively.
Using tools such as the Cy-group {7T'(¢)}icr and the Cy-semigroup {S(¢)}ier,, we analyzed
the boundedness and spectrum of these operators. The spectral properties of the generators
of these groups and semigroups were studied, which played a central role in determining
the spectrum of the generalized Cesaro operators. The main results demonstrated that
the generalized Cesaro operators are bounded on Lorentz spaces and provided a detailed
characterization of their spectra.
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