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ON A SPECTRAL PROBLEM FOR A FOURTH-ORDER DIFFERENTIAL
OPERATOR

This paper considers a generalized spectral problem for a fourth-order differential operator. The
primary goal of the research is to analyze the spectral properties of the operator arising in
boundary value problems for the Stokes and Navier-Stokes equations, as well as to utilize the
obtained eigenfunctions to construct a fundamental system in the space of solenoidal functions.
The work combines theoretical analysis with practical applications, making it relevant for numerical
modeling of hydrodynamic processes. The main methodology is based on the method of separation
of variables and the use of curl operators for different domain dimensions. In particular, the paper
proposes approaches to introducing curl operators for the three- and four-dimensional cases, which
generalize the problem formulation. The key results include proving the existence and distribution
of eigenvalues, as well as constructing an orthonormal basis in functional spaces. This study
contributes to the development of spectral analysis of high-order operators and can be useful
for developing efficient algorithms for solving hydrodynamic problems. The practical significance
of the results lies in their application to numerical modeling of fluid flows in various fields of science
and engineering.
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By xxymbicTa Teprinmi perTi qud depeHnnaabK, onepaTop YImiH KaIIblJIaHFAH CIIEKTPJIK ecer
KapacThIPbLIaIbl. 3epTTeyail Heridri makcaTsl — CToke xkone HaBbe-CToke TeHmeyepi yImmin meka-
PAJIBIK, ecenTep/ii merry OapbICHIHIA TYBIHIANTHIH OMEPATOPILIH, CIEKTPJIK KACHETTEPIH Taiay,
COHIAM-aK, AJbIHFAH MEHIMNKTI (QyHKIUATAPIbI COTEHOUIAIbI (DYHKIMAIAP KEHicTirinae ipresi
KyieHl Kypy yimiH nadiganany. 2KyMbIC TEOPHUSIJIBIK TaJIAay/Ibl MTPAKTUKAJBIK, KOJJAHYMEH Yii-
JlecTipeTiHiKTeH, OyJl OHbI TMIPOIMHAMUKAJIBIK VIEPICTEPIiH CAHJBIK MOIEIbIEYl YIIiH ©3eKTi
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HaJIaCybIH JIDJIEJIJIey, COHJIal-aK (DYHKITMOHAJIBIK, KEHICTIKTEep/Ie OPTOHOPMAJIaHFaH 0a3ucTi Kypy
KaTaapl. By 3epTTey 2Korapbl peTTi OnepaTop IapIblH, CHEKTPJIIK TaJJaybIHBIH JTIAMYbIHA, YJIEC KO-
CBIMl, TUAPOINHAMUKAJIBIK, €CeTepP Il IIEITY/IiH THIMI aJrOPUTMAEPIH 93ipJaeyre maimaabl 60TybI
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B nannoit pabore paccmarpuBaercss 0000INEHHAsT CIIEKTPaJIbHAsT 3a/a4da JIJisi OHOro JauddepeH-
[MAJILHOIO OIlepaTopa YeTBepToro mopsigaka. OCHOBHOI IEJIBI0 UCCJIeOBAHUSI SIBJISIETCS AHAJI3
CIIEKTPAJIBHBIX CBOICTB OIEpATOpa, BO3HUKAIOIIETO P PEIIEHNN KPAEBBIX 3aJa1 JJjIs yPABHEHMIA
Crokca m Haspe-CTOKCca, a TakKe HCIOJIH30BAHUE IIOJIYIEHHBIX COOCTBEHHBIX MYHKITHI [JIst
mocTpoennst HyHIAMEHTAIbHON CHCTEMBI B IMPOCTPAHCTBE COJEHOUJAIBHBIX (yHKImit. Pabora
COYETAET TEOPETUIECKUI aHAIN3 C MPAKTHIECKUM IIPUMEHEHNEM, 9TO JeJIaeT €€ aKTyaJIbHOM I
YUCJIEHHOTO MOJIEJIUPOBAHUS THJIPOAMHAMUYIEeCKUX IporieccoB. OCHOBHAsI METOOJIOTUs] OCHOBAHA
HA METOJNI€ pa3le/IeHUsl MEPEMEHHBIX W HCIOJIb30BAHUU POTOPHBIX OMEPATOPOB I PA3IUIHBIX
pasmepHocTeil obsactu. B gacTHOCTH, mpemiararoTcs CocoObl BBEIEHUsT ONEPATOPOB POTOD JIJIs
TPEX- U YETBIPEXMEPHOTO CJIydaeB, 9TO MO3BOJIsIET ODODOIMUTH MOCTAHOBKY 3amadn. OCHOBHBIMEU
pe3yJIbTaTaMi SIBJISIOTCS JIOKA3aTeJbCTBO CYIIECTBOBAHUSI W PACIOJIOXKEHUsI COOCTBEHHBIX 3HAa-
JeHUil, a TaKyKe IIOCTPOEHHe OPTOHOPMHUPOBAHHOIO 0a3uca B (PYHKIMOHAJIBHBIX ITPOCTPAHCTBAX.
JlaHHOE WCC/IEIOBaHNE BHOCUT BKJIAJ, B PA3BUTHE CIEKTPAJBHOIO aHAJM3a OMEPATOPOB BBICO-
KOI'O TOPSiIKA U MOXKeT OBbITh IOJIE3HO i pa3paboTku 3(DMEKTUBHBIX aJrOPUTMOB PEIICHUS
TUPOJIMHAMUYIECKUX 3a1a4. [IpakTudeckast 3HAUNMOCTh PE3yJIbTATOB 3aKJIIOYAETCS B UX IPHUMe-
HEHWH B YUCJIEHHOM MO/ICJIMPOBAHUH IOTOKOB YKUJKOCTH B PA3IUIHBIX 0OJACTIX HAYKN U TEXHUKH.

KonrodeBble ciioBa: cleKTpajbHAs 33/1a4a, OLEpaTOp POTOP, COOCTBEHHBIE 3HAYUEHUsI, COOCTBEH-
Hble QyHKINN.

Introduction

In this paper, we consider a generalized spectral problem for a fourth-order differential
operator.

By introducing a scalar or vector stream function, the spectral problem for the two-, three-
, and four-dimensional Stokes operators can be reduced to a generalized spectral problem for
the biharmonic operator.

Let us provide the mathematical formulations of the latter statement.

First, let us formulate the spectral problem for the d-dimensional Stokes operator. Let
r = (z1,..,29) € Q C R% d > 2, be an open bounded simply connected domain with
boundary 0f2. The goal is to find nontrivial solutions {w(z), pr(z), € Q, k € N} and the
corresponding values of the parameter {7, k € N} for the following boundary value problem
( [1], Chapter II, §4; |2|, Chapter I, § 6, Corollary 6.1; |3], Chapter I, § 2, Subsection 2.6):

—Aw(z) 4+ Vp(z) = Nw(z), z€Q,
div{@(z)} = 0, z €, (1)
w(x) = 0, x € 092.

Let dim{Q2} = 2, and consider the two-dimensional curl operator curl defined as follows:
{wy,wy} = curl{0,0,U(x)} = {0,,U, —0,,U}, (2)

where U(z) is a scalar function known as the stream function. From equation using the
formulas in , we can proceed as follows: first, by substituting the vector function w in
with curl U; second, by applying the operator curl, to the resulting expressions; and third,
by summing the results obtained after the second step. As a result, we obtain:

(=A2U(x) = N (=A)U(z), x€Q,
Ux) = 0, x € 09, (3)
8ﬁU($) = 0, x € 092,
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where 7 is the outward normal to the boundary 0f).

Since the differential equation in contains the operator —A on the right-hand side,
we will refer to problem as a generalized spectral problem for the biharmonic operator
(—A)2. Tt is evident that the key role in transforming problem into the spectral problem
is played by the curl operator given in ([2)).

Let dim{Q} = 3, and consider the three-dimensional curl operator defined as follows:

Curl[j(.ﬁﬂl,xg,ﬂfg) = W(xy, e, x3), divdi(zy,xe,23) =0, (T1,29,23) € €, (4)
where U = {Uy,Us,Us}, W = {wy, ws,ws} are three-dimensional vector functions,
@ = curlU = {8,,Us — 8,,Us, 0y, Uy — 8y, Us, 0y, Uy — 0y, U }. (5)

If we assume that all three components of the vector U are equal, i.e., Uy = Uy = Uz =
U(xy,z9,x3) in Q, then, similarly to the two-dimensional case, using equations f, we
can derive from (I)) the following:

—A(=A+S5U(z) = N(-A+9)U(x), x€Q,

Ux) = 0, x € 09, (6)
ozU(z) = 0, x € 08,
where S =92, +03,,,+ 02, . If we temporarily remove the operator S from the differential

equation in @, we once again obtain a spectral problem of the form , but now in the
three-dimensional case.
Let dim{Q} = 4, and consider the four-dimensional curl operator defined as follows:

Curl[j<$1,$2,$3,x4) = 717(1'1,.772,553,1'4), din(.fCl,xQ,xg,l'4) = 07 ($17x27x37x4> € Qa (7>
where [7 = {Ul7 U27 US) U47 U57 U6}7 W= {w17w27 ’LU3,’U)4},

0r, Uy + 0,,Us — 0,,Us
D0,Us + 00, Us — 03, U
0r,Us + 05, Uy — 0,,Us
0, Ur — Du,Us — DU

@ = curl U = , diveurl U = 0. (8)

Remark 1 The curl operator in equations f acts on a siz-dimensional vector function
U, which, in particular, corresponds to the following vector composed of the electric E and

magnetic H field intensity vectors: E = {E', E? E3}, H = {H', H? H?} ( [4], Chapter V,
§1, Chapter VII, §1; [5], Chapter III, §8 and §9; |6/, Chapter I, §5), namely,
U={E' E* E® H'H? H*}.
From equation , using formulas —, we can derive the following:
(=A)?2U(z) = 3N (=A)U(x), z€9,
Ux) = 0, x € 09, (9)
0:U(x) = 0, x € 0N.
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If we disregard the factor of 3 in front of the spectral parameter A2, the spectral problem
@D fully coincides with problem , but now in the four-dimensional case, i.e., dim ) = 4.

Once again, it is evident that the key role in transforming problem into the spectral
problem (9)) is played by the curl operator, which is defined by formulas (7))—(8).

The aim of this work is to construct a fundamental system in the space of solenoidal
functions. If we were able to solve spectral problems for the biharmonic operator in
domains of various dimensions dim{Q2} = d, d > 2, we would succeed in constructing such a
fundamental system, which is important not only from a theoretical point of view but also
for the development of computationally efficient algorithms for the approximate solution of
boundary value problems for the Stokes and Navier—Stokes systems [7]. In this work, we will
limit ourselves to solving a certain generalized spectral problem for a fourth-order differential
operator.

It is worth noting that spectral problems for the Stokes operator (but with periodic
boundary conditions) in a cubic domain have also been considered in the works [8], [9],
and [10].

In [8], the spectra of the curl and Stokes operators in a cube are studied for functions
satisfying periodic boundary conditions. The Cauchy problem for the 3D Navier-Stokes
equations with periodic conditions in the spatial variable was investigated in [10].

Since our approach actively utilizes the properties of the curl operator, which is closely
related to vortex theory, we refer to the foundational works on vortex theory [11], [12], [13],
[14], [15], |16], and others. Some ideas from these works have been used in establishing our
statements.

Let us introduce the main function spaces that will be used in this work. Let x =
(11,....,2q) € Q C R? where d > 2, be an open bounded simply connected domain with
a sufficiently smooth boundary 0f2, and let m > 0 be an integer,

xq?
Tj

d
0
W (Q) = {v] dlv € L*(Q), |a| <m}, where Ol =021..00, |o] = aj, Oy, = 5
j=1
V?/Q”(Q) = {v| v e WH(Q), FPv=0,j=0,1,2....,m—1, 7 is the outward normal to o0} .
For the notation of function spaces, we will follow the monographs [17], [18], [19], and [20].

1 Formulation of the Spectral Problem

Let us consider the following spectral problem for a fourth-order differential operator.

Problem 1
d
> 0k u(r) = N(-A)u(z), x€Q, (10)
k=1
u(z) = Ozu(z) =0, x € 0, (11)

where 11 1s the outward normal to 0f).
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Let us introduce the following spaces:

Definition 1 Let us denote by V() and Vo(Q2) the Hilbert spaces with the corresponding
mner products

(V, Vo) oy, Y, v €IVA(Q), (12)

(020, 040) s Vo SO, (13)

||&
M@“

and norms

d
lullvic) =\ IVUlZay Tullvae = 4| D 102, ulaq)- (14)
k=1

It is obvious that the norms , induced by the inner products f, define
equivalent norms in the spaces 1W/5(£2) and 17/3(f2), respectively..

Assumption 1 In the spectral problem f, the fourth-order operator is elliptic and
possesses the properties of symmetry and positive definiteness in the space Va(S2). Therefore,
the eigenvalues {\2, n € N} of this problem are real and located on the positive semi-azis.
Moreover, the smallest eigenvalue is bounded away from zero, i.e., Ay > 9 > 0.

The following statement holds true.

Assumption 2 The spectral problem (10)—(11) possesses a set of "generalized
eigenfunctions” {u,(x), n € N}, which belong to the space Va(§) and form an orthonormal
basis in the space V1(Q).

Let us formulate the main result of this work.
Theorem 1 (Main result) The spectral problem (|10] . ) has the following solution
Un(7) = X1p(21) Xon(22)... Xan(2q), N2, neN, (15)
where X1,(21) = Cn(Y) =21, Xon(®2) = Ppn(Y)jy=2s+ - Xan(Ta) = Pr(Y)jy=ay

: 2
Py, 1(y) = sin® —’\2"2*””, A3, =(E2)", neN,

Do (y) = [Nanl — sin Ay, [] sin? % sin? AQ” [Aony — sin Aany] , (16)

A, = (22)", neN,
and {v,, n € N} are the positive roots of the equation tanv = v, n € N.

The arrangement of the eigenvalues on the positive semi-axis is shown in Figure 1.1 (here
l=2).
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tan A

bn!-!

Figure 1.1. The positive roots of the equations (for [ = 2):
W

tanv, = v,, v, == Ap; sinA, =0, neN.

From Figure 1.1 we have:

3 D
0<)\1:7T<)\2:77T—51<)\3:27T<)\4:77T—€2

7
<)\5:37T<>\6:77T—€3<)\7:47T<...

Next, from Theorem [I], we obtain:

Corollary 1 The eigenvalues {\a,, n € N} are ordered as follows:

o, (2n+1

2vy, 2 1
ho = 2y BEUT o

where {v,, n € N} are the positive roots of the equation tanv = v.

, VneN,

2 Proof of Theorem
We will use the method of separation of variables. Substituting the expression u,(r) =
Xin(21)Xon(x2)... Xan(24) into the relations f for each n € N, we obtain:

(17)
X1n(0> = Xln(l) = X11n<0) = Xlln(l) =0,
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where k = 1,..,d, and {ag,, k = 1,...d} are arbitrarily chosen numbers for each n € N from
d

the set {ax, € R'\ {0}, > ai, = 0}; moreover, u, € C, n € N, are (in the general case)
k=1

unknown complex numbers.
Firstly, note that due to the positivity of the numbers A\? (as shown earlier in Proposition
, the parameter u, can only take real values. Let us separately consider the following cases:

(a) pn # 0, (b) pn = 0.
(a) pin, # 0. The general solutions of the equations from have the form

Xion (1) = Apy sinh 0op— 1), 2k + Bien, coSh 00— 1), Tk + Chyy 810 Oopn g + Do, €08 Oy, (18)

where {Agn, Bin, Cin, Dkny, K = 1,...,d} are constant values, and the constants {fy,, k =
1,...,d} must satisfy the equations:

20 (2%—1)nB2kn [1 — cosh (gk_1)nl - cos 92;ml] = (ng’n — 9(22k—1)n) sinh 0ok _1)nl - sin Oapnl, (19)

where k =1, ..., d, and they ensure the fulfillment of the boundary conditions from ({17)).
In terms of the original constants A2 and o, = agnfin, k = 1,...,d, the equations ((19))
take the following form:

—)\2 M 4 doyn, pY: M+ doy,
+4i\/ok, |1 — cosh l\/ n Tt 2”+ Tk - COS l\/ nt 2”+ Ok

—\2 AL+ 4o, A2 A2+ doy,
= A2 sinh l\/ nt 2"+ Ok - sin l\/ nt 2n+ Tk , k=1,..,d, (20)

where
H%Qk—l)negkn = Okn, egkn - 9(22k,_1)n = )\,2.“ k= 1, ceny d.

(al). Let ok, > 0 for some fixed index k. If u,, # 0, then such an index k always exists!
In this case, the relation (20)) is equivalent to the equation:

+i4 V Okn []- — cosh gkn CO8S nkn] - )‘i sinh gkn sin Nken, gkn 7& Mken gkny Niken € R}p

which cannot be satisfied, where the following notations are introduced:

—)\% + )\% + 40kn )\% + )\% + 40kn

2 2

Thus, the remaining case is when u, =0, i.e. o, =0, k=1, ....d.
(b). Let u, = 0. In this case, the boundary value problems take the following form:

XIV(g) + N2 X (1) =0, 2 € (0,1),
{ o () (1) t€ 0.0 k=1, ..d (21)

Xien(0) = X (1) = X, (0) = X, (1) = 0,
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The general solutions of the equations from are the following functions:
Xin(xk) = Akn + Beng + Chn sin \yxg + Dy cOS Ay, (22)
where the roots of the characteristic equations for are respectively given by:
Opn1 = 0, Opne = 0, Okpz = i\n, Opna = —iA,, k=1,...,d.
Moreover, the constant ), is a solution of the equation:

An {4 sin? % — [Anl = sin A, 0] sin Al } =0. (23)

The equation (23)) is equivalent to the following relations:

Non_1l 2mn \ >
sin n :Oa A%nflz (ﬂ> ’

2 [
A, 20, , neN, (24)
)\in )\in 2 21/n
tan = s A==,
2 2 l

where {v,,, n € N} are the positive roots of the equation tanv = v.
By ensuring the fulfillment of the boundary conditions from for the solutions
with the constants Ag,, Ben, Ckny Din, k =1, ...,d, we establish the statement of Theorem [I]

Conclusion

The paper solves the generalized spectral problem for a fourth-order differential operator in
a domain 2, which has dimension dim{Q2} = d > 2. In the future, it is assumed that the
eigenfunctions of the generalized spectral problem will be used to construct a fundamental
system in the space of solenoidal functions. It is worth noting that in the works 23| and [24], a
solution to the spectral problem for the biharmonic operator in the domain €2, represented
by a 3-D sphere, was found.
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