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ON THE LAPLACE-BELTRAMI OPERATOR IN STRATIFIED SETS
COMPOSED OF PUNCTURED CIRCLES AND SEGMENTS

This paper discusses the introduction of local coordinates on the circle S and the analysis of
various classes of functions defined on it. It is proved that every smooth function on the circle
corresponds to a smooth 27 -periodic function on the real axis. The Laplace-Beltrami operator
on S! is introduced using the apparatus of exterior differential forms and the Hodge operator. Its
explicit expression in local coordinates is calculated, and it is shown that it can be reduced to
the double differentiation operator. Then, the spectral analysis of the Laplace-Beltrami operator
is performed, its eigenvalues and the corresponding eigenfunctions expressed in terms of the
Chebyshev polynomials of the first and second kind are found. Well-solved problems for the
Laplace-Beltrami operator on a punctured circle are written out. In the final paragraph of the
article "On the Laplace-Beltrami operator on stratified sets composed of punctured circles and
segments"the eigenvalues and systems of eigenfunctions on one stratified set composed of two
punctured circles and a finite interval are written out.
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Oiibutran 1eHOepJep MeH KeCiHAijiepaeH TypaThbIH KabaTThl »KUbIHIap arbl
Jlanmac-BeabTpamu onepaTopsl TypaJibl

By makamaga S! menbepine JIOKaIbIi KOOPAMHATTAPIL €HIi3Y KoHEe OHJIA aHBIKTAIFAaH (DYHKIIH-
SLTAPIBIH OPTYPJI KJIACTAPBIH Tasaay KapacToipbliaaabl. [Ilenbepseri opbip Teric pyHKITNS HAKTHI
ochbTeri Teric 27m -MepUOATHIK, (DYHKIUSIFA COKec KejeTiHl JTosesaeHm. S I Goitprnarer Jlamiac-
Bemprpamu oneparopsl chIpTKbl quddepeHnuaiabk, hopMaiap anmnaparsl MEH XOMK OIepaTo-
Pl apKbLIbl eHriziiaren. OHBIH, JOKAJbAl KOOPAUHATTAPIAFLI AfiKbIH ©PHErl eCelTesIill, OHbI eKi
ecesii muddepennmaniay onepaTopbiHa Kearipyre GosaTeiabl Kepceriirern. Oman opi Jlamiac-
Benbrpamu omepaTOpBIHBIH CIEKTPJHK TaAIaybl 2KYPTi3iIin, OHBIH MEHIIKTI MoHIAEpi MeH OipiH-
mi koHe ekiHmm YeOblleB KOIMYyIleepl apKblIbl OPHEKTE/NEH COKeC MEHIKTI (DYyHKIUIIAP
tabbuiaapl. Ofibuiran meHbep Ooitbiamma Jlamaac-BenbrpamMu omepaTopblHa KUCHIHIBI MIENIIeTIH
ecernrrep kasburrad. "OHbLTFAH MIEeHOEpJIEP MEeH KEeCIHIIEp/IeH TYPAThIH KADATTHI JKUBIHIAD/IAFHI
Jlamtac-Besbrpamu omepaTopbl TypaJibl' MaKaJIaHBIH, COHFBI OOJIIMiHIE €Ki offblIraH meHOepIeH
JKOHE aKbIPJIbI MHTEPBAJIIAH TYPATHIH Oip KA0ATTHI XKUBIHIAFBI MEHITKTI MOHIED MEH MEHITIKTI
bYHKIUAIaAPALIH XKYiieaepi Ka3blIFaH.

Tyiiia ce3mep: Jlamnac-Benbrpamu oneparopsr, 6ip eJIemMal aybITKbIFaH cdepa, KUCHIHJIBL IIe-
ITJTETIH ecerr.
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006 omneparope Jlannaca-Beabrpamu Ha cTpaTudUIIMPOBAHHBIX MHOX>KECTBaX, COCTABJIEHHBIX U3
HPOKOJIOTBIX OKPY>KHOCTE U OTPE3KOB

B mammoit paboTe paccMaTpuBaeTcs BBEIEHHE JIOKATLHBIX KOOPANHAT Ha OKpysKHocTH S' u ama-
JIN3 Pa3JINYHBIX KJIACCOB (DYHKIMIA, OMpeIe/IeHHbIX Ha Hell. JJOKa3bIBAeTCs, 9TO KayKIas TIajIKast
GYHKIMST HA OKPYKHOCTH COOTBETCTBYET TUIAJIKON 27 -IIePUOAMIecKO (DYHKITUN Ha TUCIOBOH OCH.
Bromurcst oneparop Jlamiaca-Bessrpamu Ha S ¢ ucnosb3oBaHmeM ammapaTa BHeITHHX nudde-
peHIMaIbHBIX (OPM OIepaTopa XOoJ2Ka. BBIUNC/ISETCsT ero siBHOE BbIPaXKeHHE B JIOKAJIBHBIX KO-
OpJIMHATAX, OKA3bIBAETCH, UYTO OH CBOJUTCHA K ONEPATOPY JBYXKPATHOIO JIu(dEepeHIIMPOBaHNUS.
Jasiee mpoBOAUTCA CHEKTPAJIBHBIN anaaun3 omeparopa Jlammaca-Benbrpamu, Haxomsarcs ero cob-
CTBEHHBIE 3HAYEHUsI ¥ COOTBETCTBYIOIIE COOCTBEHHBIE (DYHKIIUU, BHIPAYKEHHBIE UePe3 TIOJTUHOMBI
YebbImieBa MepBOTO U BTOPOTO POJOB. BhIMMCaHbl KOPPEKTHO pa3pelmnMble 3aJIa4u I Olepa-
topa Jlamiaca-BesibrpaMu Ha IPOKOJIOTON OKPYXKHOCTU. B 3ak/ounTe IbHOM Haparpade craTbu
"O6 omeparope Jlamnaca-BenbTpaMn Ha cTpaTUUIIMPOBAHHBIX MHOXKECTBAaX, COCTABJICHHBIX U3
IIPOKOJIOTBIX OKPYXKHOCTE M OTPE3KOB"BBIMMCAHBI COOCTBEHHBIE 3HAUEHUS] U CHCTEMbI COOCTBEH-
HBIX (DYHKIMHA HA OJHOM CTPATU(MUINPOBAHHOM MHOXKECTBE, COCTABJIEHHBIX U3 JIBYX ITPOKOJIOTHIX
OKPY?KHOCTSIX ¥ KOHEYHOTO HHTEPBAJIA.

Kumrouessie cioBa: Oneparop Jlamiaca-Benbrpamu, Bo3MmylieHHast oJfHOMepHast cdepa, KOPPeKT-
HO pa3peliuMble 3a1a4M.

1 Introduction

The circle S* is one of the simplest examples of manifolds studied in differential geometry
and analysis. Despite its simplicity, it plays a key role in many areas of mathematics and
physics, including spectral theory, harmonic analysis, and quantum mechanics.

One of the fundamental objects of study on manifolds is the Laplace-Beltrami operator,
which generalizes the classical Laplace operator on Euclidean spaces. In the case of a circle, it
is closely related to the theory of trigonometric series and the analysis of periodic functions.

In this paper, we consider local coordinates on S! and classes of functions defined on it.
We define the Laplace-Beltrami operator and study its spectral structure.

The eigenfunctions of this operator form an orthonormal basis in the space of square
integrable functions, which makes them an important tool for expanding functions in Fourier
series. This fact has wide applications, from solving equations of mathematical physics to
signal analysis in applied sciences.

Additional interest in the spectral properties of the Laplace-Beltrami operator on the
circle is due to their connection with quantum mechanics and statistical physics. In particular,
similar spectral problems arise in the study of string vibrations, heat conduction, and wave
propagation. In addition, the circle serves as a model object for studying more complex
manifolds with symmetries.

The goal of this paper is to conduct a detailed study of the circle S* as a differential
manifold, describe its local coordinates, consider the main classes of functions defined on it,
and study the spectral properties of the Laplace-Beltrami operator. The results obtained will
allow a better understanding of the role of the circle in spectral geometry and its connections
with various sections of analysis and mathematical physics.
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2 Circle as a manifold of dimension one

In the two-dimensional space R?&IQ, consider the circle
§' = {(@"2) | @) + (@) =1},

We introduce the local coordinates of the circle. It is not possible to introduce universal
coordinates in the entire circle S!, so the circle S is represented as a union of two maps V;
and V5. Each map can define its own individual coordinates. For example, V; = S'\{(1,0)}
is a punctured circle with coordinate ¢ :

z! = cost,z? = sint,

where t runs through the interval (0,27). On the map V5 = S'\{(—1,0)} we enter the

coordinate 7 :

2! =cosT, 2% =sinT,

where 7 runs through the interval (m,37). Note that the maps V; and V5 intersect and their
intersection

VinV, =St uUSt,

where S% and S! are semicircles without intersections.

In S} the transition from ¢ to 7 is carried out by formula 7 = ¢ 4 27, and in ST the
coordinates of ¢t and 7 coincide. Therefore, the maps V; and V, are consistent maps and
define an atlas on S!.

3 Function classes on S!

Now we define the function classes C* (S). If the function f € C(S') is given, then f =
f(z*, z*). Then we define the restriction of f to Si, which we denote by flsi = fi(a', 2?). We

can define the restriction of f to S! in exactly the same way, that is, flgr = fa(zt, 2%). We

denote by fi(cost,sint) = fi(t) 0 <t < m. The function f,(z!,22) on S can be represented
as a function of ¢:
fi(cost,sint) = fi(t), 0<t<m.

The same function fi(z!, 2?) in S} can be written in terms of 7 coordinates:

fi(cosT,sinT) = fi(7), 27 < T < 3.

It is clear that .
fit +2m) = fi(t).

If the restriction of f(z',22) to S is denoted by fo(t) = fo(7), where 7 = . Since f(z',2?) €
C (S1), then the function f(x',2?) is continuous at the point (1,0). That is,

lim f(a!,a®) = f(1,0) or lim fi(t) = f(1,0)

(z1,22)—(1,0)
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or lim, o, f1(7) = f(1,0) = ]g(27r) =

A

= %E%fl(ﬂ = f1(2m).

Therefore, f1(0) := fi(2r). Similarly, f(z!,22) is continuous at (—1,0). That is,
lim(x17x2)_>(_1’0) f(xl,:L‘2) = f(—l, 0) or

~

lim f(t) = f(=1,0) = lim fi(7) = fi(7).

t—m T—3T

Therefore, f1(37) = fi(r). In the same way, we can extend fi(7) to the point 7 = . For
example,

lim fi(r) = f(=1,0) = fi(x) or

filx +0) = fi(x) = fu(37 —0)

That is, fl(r) can be defined at the points 7 = 7m and 7 = 37. In other words, fl(t) is

defined by 7 € [, 3x], and fi(m +0) = f1(37 — 0). Thus, the function fi(7) has a continuous
2m-periodic extension to the entire axis. In the same way, fi(¢) has a 27-periodic continuous
extension to the entire number axis. More of these extensions give the same periodic function

~

fit) = fi(t), VieR

Remark 1:if f € C® (S), then restriction f|y, = f(t) can be extended to the entire number
line and the extension has the following properties:
1) 27 is periodic;
2) infinitely many times continuously differentiable.
Now consider an arbitrary continuous 27 - periodic function on the entire number line.

N

ft)=f(t+2m),Vte R

Let (z',2%) € S'\{1,0} = V. Find a unique ¢ € (0,27) such that z = cost,z® = sint.
Since f — 27 is a continuous periodic function, then f(t) = % + 3" (aj cos kt + by sin kt) =

= % + Z (ak COS(k arcsos xl) + by, Sin(k P— x1>)
k=1
a [e.e]
= 5+ Y (@) +batUie)) = o' a)

B
Il

1

where T}(.) and Uy(.) are Chebyshev polynomials of the first and second kind.
Remark 2: Thus, for each smooth 27— periodic function f(¢), we can uniquely construct
a smooth function f(z',2?), defined on the circle S*.
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4 Laplace-Beltrami operator on the circle

We denote by C* (S?) the set of infinitely continuously differentiable functions on S'. By
A'(S') we denote the exterior differential forms of the first order in the circle S', that is

w'(z) = ay(z)dz’ + as(2)dz?, == (2',2%) € S,

where ay, a9 € C(S1).
By A% (S') we denote the exterior differential forms of the second order in the circle S,
that is
w?(z) = a(z)da’ A da?,
where o € C* (S'). Let us recall how the Hodge operator acts on the basis elements:

sdr' = da? *dx® = —dx', xdz' Nd2x® = 1.

Take a scalar function i € C>°(S"). Calculate its differential dh(z) = 2%dz' + 2% da?. Now

apply the Hodge operator

xdh(z) = %dmz - %dml.

Let’s calculate the differential of 1-form

d % dh(z) 0 ( e + ath:rQ) na?— 2 (%dazl + %d:ﬁ) Adzt =

= ozt \ ozt ox Ox2 \ Ox! Ox?
2 2
= (91h2+ 852 dxt A da?
(Oxh) (0x?)

It remains to apply the Hodge operator, as a result we obtain the Laplace-Beltrami
operator on the circle
2 2
Ah = *d x dh(z) = 0 h2 + 0 h2
(Oxm) (0x?)

The Laplace-Beltrami operator has physical and geometric meanings, therefore, this
definition of the Laplace-Beltrami operator has an invariant description. Indeed, the Laplace-
Beltrami operator is defined through exterior differential forms and operations on forms that
are invariant with respect to the choice of local coordinates.

Now we calculate the Laplace-Beltrami operator in local coordinates. Let x = (z!, z?)
belong to the map Vi, that is, 2! = cost,z? = sint,t € (0,27). According to the results
of point 2, the scalar function h(z) € C*(S') in local coordinates has the form h(z) =
h(cost,sint) = h(t) for t € (0,2r). Moreover, h(t)— 2m-periodically extends to the entire real
axis, and the extension h(t) is an infinitely differentiable function. Calculate the differential

dh(z) = dh(t) = %dt

Apply the Hodge operator, then sdh(z) = xdh(t) = %. Hence Ah = *d x dh(x) = *d *

dﬁ(t) = digﬁ“. Therefore, the Laplace-Beltrami operator on the real axis represents the double

differentiation operator.
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5 Spectral analysis of the Laplace-Beltrami operator on the circle

In this section, we calculate the eigenvalues and eigenfunctions of the Laplace-Beltrami
operator on the circle. In the previous paragraph, the Laplace-Beltrami operator is defined
by the formula

A = xdxd

where d is the exterior differentiation operator, and * is the Hodge operator.

Since the Laplace-Beltrami operator is defined in invariant form, its eigenvalues do not
depend on the choice of local coordinates on the circle.

The eigenvalues of the Laplace-Beltrami operator are determined from the equation.

—Au(z) = Mu(x),z € S*. (1)

In this case, the complex number A\ will be an eigenvalue of the Laplace-Beltrami operator
if equation (1) has a non-zero solution for the corresponding .

To find the eigenvalues A of the Laplace-Beltrami operator, equation (1) can be considered
in local coordinates, since the eigenvalues are invariant with respect to local coordinates.
Therefore, we write equation (1) on the local map V;.

The role of the local coordinate in V; is played by the variable ¢, which was introduced
in point 1. Then, according to the results of point 3, equation (1) takes the form

—a"(t) = Mu(t), teTR, (2)

where 4(t) — 27 is a periodic function on R.
Thus, we need to find A, for which equation (2) has non-trivial 27 periodic solutions.
The solution to this problem is known [1]:

the numbers A = 0,1,4,9, ... are eigenvalues, and the corresponding eigenfunctions take
the form

Uo(t) = 1,11, 5(t) = cos VAL T_ 5(t) = sin VAt

Thus, A = 0 is a simple eigenvalue, and all non-zero eigenvalues have multiplicity equal
to two.

Now we rewrite the eigenfunctions 4, /5 (t) in the variables z = (2',2%) € S*. To do this,
we need to use Chebyshev polynomials.

up (@) =Tz(ah),  u_yz(z) =2 Uy(ah))

where T 5(z') and U s(z') are Chebyshev polynomials of genus 1 and 2.
Thus, the system of eigenfunctions of the Laplace-Beltrami operator on the circle has the
form

{1,Tk(x1),x2Uk(x1),k =1,2,3,.. } . where z = (2',2%) € S
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6 Inverse operator to the Laplace-Beltrami operator on the circle

It follows from the results of section 4 that the equation (I — A)u(z) = f(x) for z € S! has
a unique solution for any f € Ly (S'), and

a(t) = — /0 f(t)sh(t — 7)dr—

cht o sh2r  sh(2r —7)
_2—2ch27r'/0 T chor —1 ch(2m — 7) 4T + (3)
sht S ch2r —1 sh(2r —7)
T 2 —2ch2r J, (7) sh 27 ch(2r — 1) ar,

where f(t) = f(xl,x2)|vl ,u(t) = u(xl,m2)|v1.

In order to write out the formula for the solution u(z!,z?), in the last formula we need
to go from the local coordinate ¢ to (z',2%) € V;. For this we need the following auxiliary
statement.

Lemma 1. For any smooth 2 - periodic function F () the integral identity holds

/ F(r)dr = / (€, €2)(¢"e? — £deY),
0

Yz

where 7, is a positively oriented arc of S' connecting the point (1,0) with the point (z!, 2?).
Proof of Lemma 1. The identity holds

/0 E(r)dr = /0 F(t)(cos?(t) + sin?(t))dt =

t
= / F(t)(costdsint — sintd cost) =
0

:/ F (331,132) (:vld:nQ — xdevl) .

Yx

Lemma 1 is completely proved.
We expand the function sht¢ and cht on (0,27) into trigonometric Fourier series, that is,

cht = %O + Z (cx cos kt + dj sinkt)
k=1
sht = % + Z (s cos kt + rysinkt),

i
I

where {cx},{de}, {sk},{rr} are the corresponding Fourier coefficients in the trigonometric
system.
We introduce two functions by the formulas
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infty

C(z) = C (2, + Z Ty (') + dpz® (Ug (1))
znfty

S(z) =S (a, + Z siTy (2') + Uy (21)) .

On the circle S* we introduce the concept of convolution of two functions f(x) and g(z)
for z € S*. We choose a fixed point a = (costg,sinty) € S'. Then the convolution of two
functions f and g at point a is defined by the integral

(f * 9)(a /f (t — 1)d

where f(t) = f(cost,sint), §(t) = g(cost,sint).
Then from representation (3) taking into account Lemma 1 we have the relation

u(@) = = (f %2 S) (x)—

5@ (g |

sh 2 1
(n) ’_5‘ C(z) (f*,C)(n)

2 _-9ch2r

where n = (1,0) € S*.
Thus, the inverse operator to the Laplace-Beltrami operator has the form

Clz) (f %S
S(z) (f%C

(I =A)" f@) == (f*:S) (2)~
__sh2m 1 C(x) (f*S)(m) | _ 1| S(x) (f*S)(n)
2—2ch2r | S(z) (f+C)(n) | 2] Clz) (f*C)n)
From this it is clear that the inverse operator is a linear integral operator. Denote by
G(z,£) the kernel of the inverse operator to the Laplace-Beltrami operator on the circle.

7 Well-solvable restrictions of the Laplace-Beltrami operator on a punctured
circle

Choose an arbitrary point xy € S'. Denote by S3 the punctured circle S*\ {xy}. Consider
the equation
(I = Aw(z) = f(z),x €S (4)

Note that the inhomogeneous equation (4) for any right-hand side f € Lo(S!) has
infinitely many solutions. Indeed, let u(z) be a solution to the inhomogeneous equation
(I — A)w(z) = f(x) for Vx € S'. In the previous paragraph it was proved that such a
solution exists. Let us choose an arbitrary number o € R and consider the expression

w(x) = u(r) + aG(z,10), for z € S;.

Since x # xg, then

(I — A)G(x,z9) = 0.
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Therefore, for any @ € R the function W(z) = u(x) + aG(x,zo) for x € S} satisfies the
inhomogeneous equation (4).

Thus, with respect to the inhomogeneous equation (4), the following question arises:

How many and what additional conditions should be added to the inhomogeneous
equation (4) so that for Vf € Ly(S') equation (4) has a unique solution.

To answer this question, we introduce two linear functionals. Let xg = (cost,sinty),
where tj is a fixed number.

Uo(w) lim (’LZ)(t() + 5) — w(to - (5)) . (5)

N 6—+0

The functional Uy(-) can be rewritten in another form. We will write z” < zy < 2/, if
2", x9,2' € S! and they preserve positive ordering on the circle S'. Then

Uo(w) = lim [w(z") —w(z")].
! <zo<x'z' =20z —20
We introduce another linear functional in the same way.
0 0
U(w) = lim a—w(:c”) — —w(2)|,
T

/' <xo<x'z' =20z —20

where a% is the derivative in the tangent direction.

Now we can formulate one of the main results of this article.

Theorem 1. For any function f € Ly(S') and any numbers 7y and ;, the inhomogeneous
equation (4) is supplemented by the conditions

Up(w) =70, Ui(w)=m  (6)
has a unique solution.
The proof of Theorem 1 is proved by repeating the arguments given in the works [2}3].
Theorem 1 can also be proved by simpler arguments.
Indeed, equation (4) is equivalent to the equation

w(t) —a"(t) = f(t), 0<t<2m, t#t, (7)

with the boundary conditions

w(to+0) — w(ty — 0) = 7,
W' (tg +0) — ' (tg — 0) =7 (8)

and the periodicity conditions

Problems (7)-(9) have a unique solution, since ch2m # 1. Thus, Theorem 1 is completely
proven.
From Theorem 1 it follows that
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1(+) be arbitrary linear continuous functionals on Lo(S!). Then
) the following boundary value problem applies.

Corollary 1 Let v(-),
for any function f € Ly(S

,_.\,

(I = Aw(x) = f(z), x €5,
Uo(w) =((f = A)w),  (10)
Ur(w) =n((I = Aw)

has a unique solution.

By choosing the linear functionals v,(-) and ;(-) in a special way, we can refine Corollary
1 as follows.

We choose two functions ag(z) and a;(z) for € S* such that (I — A)a;(z) =0, V€
St 5=0,1. Let the linear functlonals Yo and ~y; be chosen according to the Riesz theorem
in the form v;(f) = [o f()a;(z)dSL,j = 0,1. Then the boundary conditions (10) can be
rewritten as

{Uo(w) a(t0) Us(w) — do(to)Us (w) = Agw(0) + Bou!(0),
U1 (w) QAKII (to)Ug(’w) — 021 (to)Ul (w) A ’LU(O) + Blw’(O),

where AO = ()20,(271') - OZ(),(O), B() = 021,(271') - O?{(O)

Thus, the following statement is true.

Corollary 2 Let ap(x) and o (x) for z € S* be a solution of the equation (I — A)a;(z) =
0,7 € S',j = 0,1. Then for any function f € Ly(S') the following boundary value problem
applies.

(I —Aw(z) = f(z), z €S,

(to)Ur(w)
(to)Ur(w)

22

A(ﬂU(O) + Bow/<0),
A

Uy(w) + & (tg) Uy (w) — w(0) + Byw'(0),

{Uo(w) + & (to) Uo(w) —

has a unique solution.
Similar problems on punctured balls and punctured spheres can be found in [4]- [13].

8 Spectral analysis of the Laplace-Beltrami operator on one stratified set

In this section, we consider a stratified set consisting of two punctured circles and one
segment connecting these circles. Consider the eigenvalue problem on the stratified set
S = {X', X? X3 A, B}, where A and B are two points on X! and X?, respectively. That is,
consider the system of equations

(I — A wi(zy) = dwi(21), 21 € X 2y = (21, 23)
(] — AQ)ZUQ(ZL'Q) = )\’LUQ(ZL’Q) Xo € X2 (11)
ws(x3) — w”3(w3) = Mws(xs), z3 € X3 = (0,1),
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(x1,X3) (x},x})

Puc. 1: Stratified set

with boundary conditions

\

Uy (w1) = ws3(0),

Ui (wr) = wy(0),

Us(wz) = ws(1),  (12)
Ui (wa) = wi(1),

w3(0) =0,

(w3(1) =0

Here, the functionals UJ(-) and UJ(:) for j = 1,2 are defined the same way as the
functionals Uy and U; were defined in step 6 for the punctured circle S} ..

Now we calculate the eigenvalues and eigenfunctions of problem (11)-(12). The eigenvalues
of problem (11)-(12) consist of eigenvalues of two types:

1. Each eigenvalue A,(D) of the Dirichlet problem in the interval (0,1) : y(t) —
"(t) = Ay(t),t € (0,1),y(0) = 0,y(1) = 0 are also eigenvalues of the original problem
11)-(12). If A\, (D) corresponds to an eigenfunction y,(t), then the eigenvector function
W1 (1), Won (22), wan(x3)) of problem (11)-(12) has the form

<

—~

Wsy (73) = yn(z3), 23 € X37

for j = 1,2 the function wj,(z;) coincides with the solution of the problem

(I = Bj)wjn(@;) = Aa(D)wjn(;),  Ud(win) = Y05, U (win) = 1y,
where 701 = ¥ (0),721 = ¥,,(0), %02 = ¥n(1), 112 = ¥, (1)
2. Each eigenvalue \,,(S') problems
(I — Ag)u(z) = A\p(SHu(z),r € S*

is also an eigenvalue of the original problem (11)-(12). If \,,(S') corresponds to an

eigenfunction u,,(x), then the eigenvector function (wy,,(x1), wan, (x2), w3y, (x3)) of problem
(11)-(12) has the form
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where ¢ can be equal to 0 and/or 1.
The eigenvalue problem studied in this section is analogous to spectral problems on graphs
[14,[15].

9 Conclusion

In this paper, a detailed characterization of the circle S' as a differential manifold was
carried out, local coordinates and classes of functions defined on it were considered. Particular
attention was paid to the Laplace-Beltrami operator, its spectral properties and connection
with harmonic analysis.

The results obtained confirm the fundamental role of the circle in spectral theory and
analysis of periodic functions. The study of the spectrum of the Laplace-Beltrami operator
demonstrates its connection with trigonometric functions, which is the basis for many
applications in mathematical physics and signal theory.

Thus, the circle S* remains an important object of mathematical analysis, and further
study of its properties can lead to new results in related areas, such as geometric analysis
and representation theory.
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