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PREDICTION OF DRILL STRING VIBRATIONS USING MACHINE
LEARNING TOOLS

The objective of this work is to apply machine learning algorithms for the analysis of dynamic
vibrations of drill strings. As part of the research, a mathematical model describing the vibrations of
the drill string was developed; a finite difference scheme was implemented, and numerical modeling
was carried out using the three-point sweep method. Based on the data obtained from the numerical
solution, a machine learning model was created. The numerical modeling was implemented using
C++, while data collection and the construction of the machine learning model were performed
using the Python programming language. As a result, a predictive model was obtained, capable
of accurately forecasting the dynamic vibrations of the drill string and determining optimal
parameters, thereby improving the efficiency and safety of drilling operations.

Key words: drill string, vibrations, machine learning, linear regression, random forest.

Ackap K. Kynaiitbeprenos, Ackar K. Kynaiibeprenos, T.B. Tiney6epai*
oni-Qapabdbu arsingarsl Kasak yarTeik yausepcureri, Anmarsr, Kazakcran
*e-mail: togzhantileuberdi@gmail.com
Byprbulay 6araHIapbIHBIH, TepOeicTepiH MAIMHAJIBIK, OKBITY KYpaJlJapbl apKbljibl 00J2Kay

Byn xymbicThiH MakcaTsl OYpFbLIAY OaraHIAPBIHBIH AUHAMUAKAJBIK T€POETICTEpiH Tagay YIIiH
MAIUHAJBIK, OKBITY aJrOPUTMJEPIH KOJJIaHy. 3epTTey OapbIChIHIa OYyprbliay OaraHbIHBIH Tep-
OesricTepiH CHUIATTAWTBIH MAaTEMATHUKAJBIK MOJEIb 93IpJIEHII; aKbIPJIbI-aflbIPBIMIBIK CYI0aChI
KYPBLJIBIIL, VI HYKTE KyaJay 9/IiCiH KOJJIAaHy apKbLIbl CAHJBIK MOJeJbey »Kyprisiyg. Casmapik
IIENTMHEeH aJIbIHFAH MoJIiMeTTepre cyiieHe OTBIPBII, MAIUHAJBIK OKBITY MOjesni Kypbuiabl. Can-
OBk Mozenbaey yuria C++ Timiage OarmapiiaMaliblK, KOJT YKACAJIIbI, aJl JIEPEKTEPl KUHAY YKOHE
MAaIMHAJIBIK, OKBITY MOJEIH Kypy mporectepi Python 6armapiamasay Tii apKpLIbl )Ky3ere acbl-
poutael. Hotmkecinge 6yprouray 6araHachIHBIY JIUHAMUKAJBIK TEpPOETiCTEPIiH KOFaphl IR/ IIKIICH
OoJKall alaThIH 2KOHE OYTailIbl apaMeTpJiep/li aHbIKTANTHIH OOJI2KaMIbl MOJIEb aJIbIHJIbI, OYJI
OYpFBLIAY »KYMBICTAPBIHBIH TUIMJIJII MEH KAyIlCI3IiriH apTThIpyFa BIKIIAJI eTesli.

Tyiiiu ce3aep: Oyproutay 6aranbl, TepOEIIC, MAITMHAJIBIK, OKBITY, ChI3BIKTHI PECPECCHS, KE3IEeHCOK,
OpMAH.
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Kazaxckuit HarmoHa bHBIH yHUBepcuTeT nMenn aab-Papabu, Anmarer, Kazaxcran
*e-mail: togzhantileuberdi@gmail.com
IIporuosupoBanue kKosebaHul OypPUIbHBIX KOJIOHH C MPUMEHEHHEM WHCTPYMEHTOB MAIIUHHOIO
oby4eHUst

Hesnpio mammOil pabOTHI sIBJISETCS NMPUMEHEHNE aJrOPUTMOB MAIMAHHOTO OOyYeHWsS IS AHAJIH-
3a JIUHAMUYECKNX KOJe0anunit OypuIbHBIX KOJOHH. B paMKax MpoBEAEHHOTO MCCJIEIOBAHN ObLIa
paspaboTaHa MaTeMaTHIecKasl MOJEJb, OIMUCHIBAIONIAs KoJiebaHusi OypHIIbHOM KOJIOHHBI; PeaJiu-
30BaHa KOHEYHO-PA3HOCTHAS CXEMa U IIPOBEJICHO UNCJIEHHOE MOJEJINPOBAHUE C HCIIOJIH30BAHUEM
MeTOa TPEXTOUEYHOU Mporouku. OCHOBBIBAasICh HA JIAHHBIX, TOJIyYEHHBIX B PE3YJIbTATe IHCIEHHO-
T'O pelrenusi, ObLa CO3MaHa MOJIEIb MAIUHHOTO 00y dYeHus. /{1t YMCIeHHOTO MOIeIMPOBaHus ObLI
pas3paboTaH IPOrpaMMHBIl Ko Ha s3bike C++, a mporeccsl c00opa TAHHBIX U HOCTPOEHUS MOIETH
MAITUHHOTO 00yYIeHUsT OBITN BBITTOJHEHDBI C MCIOJIH30BAHUEM SI3bIKa TporpaMmupoBanus Python.
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B pesynbrare ObuIa IMOJIyUeHA TPOTHO3HAST MOJIEJIb, CIOCOOHAS C BBICOKON TOYHOCTBIO IPEJICKa-
3bIBATh JUHAMUYECKHE KOjiebaHust Oy pPUIbHON KOJIOHHBI U OIIPEJIEJISITh ONTUMAJIbHBIE TapaMeTpPhl,
9TO CIIOCOOCTBYET MOBBIIIEHUIO 3(MHEKTUBHOCTH U GE30MACHOCTU ITPOBOIUMBIX Oy POBBIX OIIEPAITHii.
KiroueBsbie ciioBa: OypuiibHasi KOJOHHA, KOJIEOAHNS, MAITUHHOE 00y YeHre, JIMHeHHAS PErPeCcCus,
Cay4JaiHblIil Jiec.

1 Introduction

Oil and gas constitute a significant portion of the world’s energy resources, and the drilling
industry plays a key role in their extraction. Drilling is a complex technological process
that involves penetrating rock formations to access hydrocarbon reservoirs. During the
drilling process, various types of vibrations frequently occur in the drill string, which are
an undesirable side effect. Excessive vibrations can damage drilling tools, cause premature
equipment wear, reduce drilling efficiency, and increase overall costs. Therefore, monitoring,
analyzing, and minimizing drill string vibrations have become a critical area of research in
the drilling industry.

Machine learning, as part of modern technological advancements, offers extensive
opportunities for addressing this challenge. These methods enable the analysis of large
datasets, the identification of hidden patterns, and the prediction of complex system behavior
in real time. In recent years, numerous studies have been conducted on the application of
machine learning for vibration analysis and control in drill string operations.

For instance, Saadeldin et al. [1| developed machine learning models for detecting drill
string vibrations during horizontal drilling using surface sensor data. The study utilized
radial basis functions (RBF), support vector machines (SVM), adaptive neuro-fuzzy inference
systems (ANFIS), and functional networks (FN). These models successfully identified
axial, torsional, and lateral vibrations with high accuracy, achieving correlation coefficients
above 0.9 and a mean absolute percentage error (MAPE) of less than 7.5%. The results
demonstrated that using surface data for vibration monitoring can significantly reduce costs
by eliminating the need for expensive downhole sensors.

Another study by Saadeldin et al. |2] focused on predicting vibrations during the drilling
of curve sections using real field data from multiple wells. The models were built using
the same algorithms (RBF, SVM, ANFIS, and FN), but the emphasis was placed on
curved well sections. The models showed impressive results, with ANFIS and SVM models
achieving correlation coefficients of up to 0.99 and an error rate of less than 2.8%. The study
confirmed that machine learning applications can significantly improve drilling performance
in challenging conditions.

In the work [3]|, the authors investigated the application of different neural network
architectures for predicting drill string vibrations. The tested models included fully connected
networks, physics-informed neural networks, and long short-term memory (LSTM) networks.
The results indicated that incorporating physical constraints into neural network structures
enhanced prediction reliability, particularly in the context of nonlinear interactions between
drilling equipment and rock formations.

Etaje [4] employed principal component analysis (PCA) and decision tree algorithms
to identify optimal drilling zones with minimal vibrations. The proposed approach allowed
for real-time adjustments of drilling parameters, thereby minimizing vibration-related risks.
Notably, the study demonstrated high efficiency when using only surface data without
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requiring additional downhole measurements.

Hegde et al. [5] developed a model for classifying stick-slip vibrations using a random
forest algorithm. The model was trained on historical data, including drill string rotation
speed, bit load, and torque measurements. During testing, the model achieved 90% accuracy,
highlighting its potential for integration into rate of penetration (ROP) optimization systems
to improve the safety and efficiency of drilling operations. The authors in [6] investigated the
application of machine learning for predicting drilling complications in oil and gas wells.
Using historical data from 67 wells, they analyzed key drilling parameters such as standpipe
pressure, hook load, rotary table torque, and rate of penetration to classify potential risks.
Eight machine learning algorithms with gradient boosting (GB) demonstrating the highest
accuracy in anomaly detection were tested. The study concluded that ML-based models
can significantly enhance drilling efficiency by providing early warnings of complications,
reducing non-productive time, and optimizing decision-making for drilling engineers. Future
work suggests integrating geomechanical parameters to improve prediction accuracy. The
authors in [7|] developed a new machine learning-based model for predicting the rate of
penetration (ROP) in vertical wells. The study compared physic-based models and data-
driven methods, concluding that data-driven techniques provide better accuracy.

Despite significant progress in applying machine learning to analyze drill string vibrations,
research in this area remains relevant. The complex dynamic processes that arise during
interactions between drilling equipment and rock formations require the development of more
accurate models capable of considering a wide range of influencing factors. An essential task
is to create efficient algorithms capable of reliably predicting vibrations in real production
environments and assisting operators in making informed drilling decisions.

The outcome of this work is a predictive model capable of accurately forecasting drill
string vibrations and determining optimal drilling parameters. The implementation of this
model contributes to improving the efficiency and safety of drilling operations by reducing
downtime, minimizing accident risks, and optimizing operational parameters in real-time
production conditions.

2 Materials and methods

2.1 Linear mathematical model

The linear model of the dynamics of a rotating drill string, compressed from both ends with
a longitudinal load N (z,t), is given by [8]:

2u “u tu u
pSg?jLE[m%—pm%—{—%(N(;E,t)g—x) — pSQ*u = 0. (1)

The parameters of the linear model are as follows: p is the density of the drill string
material, which is typically made of steel or duralumin; S is the cross-sectional area of the
transverse section; F is Young’s modulus, a physical quantity that characterizes the elastic
properties of the material, defining the relationship between stress and strain during tension
or compression; I is the principal moment of inertia, describing the distribution of mass
around the axis of rotation; N(x,t) is the axial load that occurs during drilling, directed
along the drill string and influenced by the string’s weight, tensile forces, soil resistance, and
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dynamic loading; € is the angular speed of the drill string, representing its rotation around
its own axis.

Taking into account the method of fixing the upper end of the drill string and its
interaction with the rock at the bottom, as well as the fact that only rotational motion
is possible while longitudinal and transverse movements are constrained, the boundary
conditions are presented as follows:

u(z,t) =0 (x=0,2=1), (2)
Pu(z,t) B B
EI“W =0 (z=0,2=1). (3)

These conditions correspond to a hinged support.
The initial conditions are defined as follows:

u(z,t) =0 (t=0), (4)
ou(z,0)
—5 = (=0, (5)

where C represents the displacement rate of the drill string in the Ox;x3 plane at the initial
moment in time.

The numerical solution of equation (1) was obtained by discretizing it in a finite difference
form. The finite difference scheme of equation (1) is given as follows:

ultt — 2ul 4l ul o — 4ul |+ 6ul — dul |+ ul,
pS z +EIQ;1 1— 11— 1 1+ 1+
At? Azt
I U?jll - 2“?“ + U?—Jrll — 2(uy uityy = 20+ ug 1)+ uz+1 + 2u ! u?_*ll
Pln At2Az?
1 n n n n n n n
4A IA2 (Nz+1< uiy —uit) — Ni'(uff — Uiﬂ)) — pSPuit = 0. (6)

Since the scheme is semi-implicit, the three-point Thomas algorithm was applied.

2.2 Application of machine learning
2.2.1 Data collection and processing of vibration information

Machine learning data is a fundamental component of the training process for machine
learning models and algorithms. The data was collected through numerical solutions of the
mathematical model of drill string vibrations. Three parameters of the drilling process —
initial velocity, longitudinal load, and angular velocity — were used as features, while the
maximum vibration value at the exact center of the drill string was taken as the data point.
The dataset consists of 300 data points and 3 features. The min-max normalization method
was used to avoid difficulties when building the model. Data collection and processing were
implemented using the Python programming language. The collected data was split into 75%
training data and 25% test data using the train test split function from the Scikit-learn
library. Figures 1 and 2 illustrate the training and test datasets.
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Figure 1: Training dataset Figure 2: Test dataset

2.2.2 Random forest

The Random Forest algorithm is a machine learning method that uses an ensemble of decision
trees for classification and regression tasks. The Random Forest algorithm operates as follows:

1. A random subset of objects (bootstrap sample) and a random subset of features (feature
subset) are selected from the training dataset.

2. For each selected feature subset, a decision tree is built using an information criterion.

3. Steps 1 and 2 are repeated k times, where k is the number of trees in the forest.

4. For classifying a new object, each tree in the forest makes a prediction, and the final
decision is determined by majority voting.

5. For regression tasks, each tree predicts a value, and the final prediction is calculated
by averaging the results across all trees.

To build the Random Forest model, the number of trees (the n_estimators parameter)
was set to 100. These trees are built independently of each other, and the algorithm selects a
random subset of features for constructing each tree. To build a tree, a bootstrap sample is
first created from the training dataset: from n_samples examples, n_samples examples are
randomly selected with replacement. As a result, the sample has the same size as the original
dataset, but some examples may be missing, while others may appear multiple times.

Next, a decision tree is built based on the generated bootstrap sample. The node-splitting
algorithm selects a subset of features at each split and determines the best split using one of
the selected features. The number of features to consider is controlled by the max_features
parameter [9].

Let us visualize the decision boundaries of the first 10 trees and the aggregated prediction
provided by the Random Forest model. Each plot in the graph corresponds to a decision tree
trained on the training dataset. Including all three features results in a 3D graph (Figure
3).The model built using all decision trees is shown in Figure 4.

The "feature importance"function in the Random Forest algorithm was used to determine
the importance of each feature. This metric indicates how significant each feature is in the
decision-making process. The importance of the features in the dataset is shown in Figure 5.
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Figure 3: Decision trees model Figure 4: Random Forest model
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Figure 5: Visualization of feature importance

2.2.3 Linear regression

Linear regression is a machine learning method used to predict numerical values based on a
linear relationship between features and the target variable. The general prediction formula
for linear regression is as follows:

g = w[0] - z[0] + w[1] - z[1] + w[p] - z[p] + b (7)

where z[0] to z[p] are the features. In our case, p = 3. w and b are the model parameters,
while g is the prediction generated by the model [10].
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The model is trained by finding the optimal coefficients w and b that minimize the mean
squared error (MSE) between the predicted and actual target values. The parameters are
adjusted to minimize the MSE, ensuring the best possible predictive performance. The 3D

linear regression model is illustrated in Figure 6.

U max

04 =

U max

Figure 6: The 3D linear regression model

Figure 7 shows the visualization of the linear model predicting the initial velocity based

on vibration values.



158 Prediction of Drill String Vibrations Using Machine Learning Tools

—— Regression model
Sample data

10- o

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -
O.IB 1?0 1 I2 1‘4
U_max

0.0 0.2 0.4 0.6

Figure 7: Visualization of the linear model

3 Results and discussions

The parameters obtained from [8] in Table 1 were used to obtain the results of the numerical
solution of the linear mathematical model.

Table 1: Parameter values of the drilling system

Young’s modulus 2.1 x 10 Pa
Drill string density 7800 kg/m?
Drill string length 200 m
Inner diameter of the drill string 0.12m
Outer diameter of the drill string 0.20 m
Cross-sectional area of the string | 2.1 x 1072 m?
Angular velocity of the string 0.083 rad/s
Longitudinal load 1200 N
Initial velocity 0.01 m/s
Spatial step 0.1m
Time step 2x107°

Figure 8 shows the vibration graphs at different parts of the drill string. As a result,
we observe that the largest vibrations occur in the middle of the drill string.This is due
to the resonance vibrations caused by the interaction of the elastic properties of the drill
string material, gyroscopic forces, and external loads, including friction against the wellbore
walls. The maximum vibration amplitudes occur in the middle of the drill string due to the
distribution of mass, length, and boundary fixation conditions [11].
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3.1 Evaluation of machine learning model performance

To evaluate the performance of the developed models, 25% of the dataset was set aside as test
data before model training. This test dataset will be used to assess the model’s performance
by generating predictions for each test sample based on the provided features. The predicted
values will then be compared with the actual observed values. For this purpose, the score
method of the trained model object will be applied. Figures 9, 10 illustrate the comparison
of the Random Forest model and the Linear Regression model with the test dataset.

Predictions vs. actual values Predictions vs. actual values
e Linear Predictions 1.0 -gmamm RFR Predictions
—— Actual values = Actual values \
0.8 0.8 -
0.6~ 0.6 -
0.4 - 04 -
0.2- \J m 02- \J N
0.0 - 0.0 -
0 10 20 30 a0 50 60 70 0 10 20 0 2 50 60 70
Figure 9: Comparison of the linear Figure 10: Comparison of the random
regression model with actual data forest model with actual data

As observed, the predicted values closely align with the actual values, with only minor
discrepancies in certain areas. The x-axis represents the 75 test samples, while the y-axis
corresponds to their respective values. The results indicate that the model demonstrates
high accuracy in predicting vibration characteristics.

Table 2 presents a comparison of the results obtained from the Random Forest model,
the Linear Regression model, and the numerical solution of the mathematical model under
various conditions.

Table 2: Comparison of model predictions with actual values

C N L | Random Forest U,,,, | Linear Regression U,,., | Actual Value U,,q,
0.46 | 3000 | 0.15 0.28344 0.286592 0.28610
0.30 | 2800 | 0.05 0.18170 0.18549 0.18639
0.15 | 3800 | 0.33 0.09693 0.09369 0.09355
0.70 | 2500 | 0.25 0.44384 0.438285 0.435873

Table 3 presents the results of the second linear regression analysis, where the initial
velocity serves as the independent variable and the vibration amplitude as the dependent
variable. Additionally, the table includes the corresponding results obtained from the
mathematical model.
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Table 3: Comparison of the model’s predicted initial velocity with the actual value

U max | Linear Regression, C | Actual Value, U max
0.33 0.5 0.31
0.0025 0.0093 0.005
0.085 0.13 0.084
0.22 0.34 0.21
0.75 1.14 0.70

The linear regression model demonstrated better performance than the random forest
model, making it the preferred choice for this task. Random forest offers high accuracy,
robustness to large datasets, and feature importance evaluation but suffers from complex
interpretability and high computational cost. Linear regression, on the other hand, provides
simplicity, efficiency, and clear result interpretation while being sensitive to outliers and
limited in capturing nonlinear relationships. Given its reliable performance on the given
dataset, linear regression is recommended for predicting drill string vibrations.

4 Conclusion

The results of this study demonstrate that the application of machine learning techniques
significantly improves the accuracy of drill string vibration predictions. Three models were
developed and tested. Two models were designed to predict the maximum vibration amplitude
based on input parameters: one using the random forest algorithm and the other using linear
regression. Comparative analysis showed that linear regression performed better on new data
due to the linear dependency between initial velocity and maximum vibration amplitude.
However, with larger datasets, the performance of linear regression may decline, making
the random forest algorithm more suitable for such cases. The third model predicts the
initial velocity required to keep the vibration amplitude below a specified threshold, aiding
in optimizing operational parameters and ensuring wellbore stability. Linear regression was
chosen for this model due to its simplicity and accuracy with the given dataset. The use
of machine learning techniques in this context offers several advantages, including faster
and more accurate predictions, process optimization through reduced preparation time, and
automated data analysis for real-time decision-making. However, the models require high-
quality data and sufficient sample size for reliable performance, which can be challenging
when dealing with complex drilling conditions. Future work could involve expanding the
dataset with more diverse parameters and exploring advanced models to capture nonlinear
relationships more effectively. Overall, the study confirms the potential of machine learning
techniques for predicting drill string vibrations and optimizing drilling operations in the oil
and gas industry.
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