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THE MULTIPLICATIVE INTEGRAL AND THE EVOLUTION OF THE
MAGNETIC FIELD IN THE MARKOV LINEAR MODEL

The paper is devoted to the probabilistic asymptotic analysis of the magnetic field and magnetic
energy in a Markov linear model of an incompressible fluid. Firstly, the paper introduces a
brief history of the problem under consideration and presents the main results of the previous
studies, which ultimately lead to the study of the product of independent random matrices with
an increasing number of multiplicands. After that, the description of the Markov linear model
considered in the paper is given, the so-called Lyapunov (generally speaking, random) bases for
the multiplicative (stochastic) integral contained in the integral representation of the magnetic field
are constructed. In conclusion, by decomposing the multiplicative integral over the constructed
Lyapunov basis and relying on the properties of the basis, the main results - theorems on the
asymptotic behavior of the magnetic field and magnetic energy - have been proven.
Key words: Multiplicative integral, Markov linear model, magnetic field, Lyapunov exponent,
Lyapunov basis.
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Мультипликативтi интеграл және марковтық сызықтық моделдегi магнит өрiсiнiң

эволюциясы

Жұмыс сығылмайтын сұйықтық марковтың сызықтық моделiндегi магнит өрiсi мен магнит-
тiк энергияның ықтималдықтық - асимптотикалық талдауына арналған. Жұмыста алдымен
қарастырылып отырған есептiң бұған дейiн басқа авторлар қарастырған, ақыр соңында кө-
бейткiштерiнiң саны өсе беретiн тәуелсiз кездейсоқ матрицалардың көбейтiндiлерiн зерттеуге
келтiрiлетiн, жұмыстардың қысқаша тарихы баяндалған. Сосын жұмыста қарастырылатын
марковтың сызықтық модельдiң сипаттамасы берiлген, магниттiк өрiстiң интегралдық жа-
зылымында пайда болатын мультипликативтiк (стохастикалық) интеграл үшiн ляпуновтық
деп аталатын (жалпы алғанда, кездейсоқ) базис құрастырылған. Ең соңында, мультипли-
кативтiк интегралды құрастырылған ляпуновтық базис арқылы жiктеп және бұл базистiк
қасиеттерiне сүйене отырып, негiзгi нәтижелер - магнит өрiсi мен магниттiк энергияның
асимптотикалық беталыстары туралы теоремалар дәлелденген.
Түйiн сөздер: Мультипликативтiк интеграл, марковтық сызықтық модель, магнит өрiсi,
Ляпунов көрсеткiшi, ляпуновтық базистер.
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В заключение, разлагая мультипликативный интеграл по построенному ляпуновскому базису
и опираясь на свойства этих базисов, доказаны основные результаты - теоремы об асимпто-
тических поведениях магнитного поля и магнитной энергии.
Ключевые слова: Мультипликативный интеграл, марковская линейная модель, магнитное
поле, показатель Ляпунова, ляпуновские базисы.

1 Introduction

The problem of the evolution of a magnetic field in a random turbulent flow of a conducting
fluid is one of the most important in many physical applications. First of all, astrophysical
applications can be mentioned here: stars, planets, and galaxies have magnetic fields that
can vary greatly in time and space. A huge number of works have been devoted to various
physical and mathematical aspects of this problem (see, for example, the monographs [1], [2],
and the recent work [3]). One of the central and actual issues in this area is the study of
asymptotic properties (completely non-trivial from the mathematical point of view) of the
solution of the Cauchy problem for the induction equation. In this paper, the problem of the
evolution of the magnetic field is considered in a kinematic formulation: this means that the
statistical characteristics of a given random velocity field do not change with time, although
the statistical characteristics of the magnetic field, generally speaking, change. In other words,
the reverse effect of the magnetic field on the velocity field is not taken into account. The
kinematic formulation allows one to remain within the linear approximation (i.e., for a given
fluid velocity field), while the problem of the joint evolution of the velocity field and magnetic
field requires the study of a nonlinear system of equations in six dimensions. We note that
the asymptotic behavior of solutions at very large Reynolds numbers is related to the famous
(until now unsolved) problem of the hydromagnetic dynamo (see [4] and the bibliography
cited there).

2 Literature review and problem statement.

While for a given fluid flow the process of magnetic field transfer is fundamentally clear,
the very problem of describing a turbulent fluid flow is known to be extremely complex.
Therefore, one or another method of modeling the motion of a fluid is usually resorted to.
In [5]- [6], the question of the evolution of the magnetic field was studied in the so-called
linear model with updating, and ultimately the problem under consideration was reduced to
studying the product of independent random matrices with increasing number of factors. Our
present work is a generalization of works [5]- [6] in the sense that we study the asymptotic
behavior of the solution of the Cauchy problem for the magnetic induction equation in a more
general (than the updated model) model - a given Markov linear model (for a description of
the model, see below, in Section 5) at long times. We will also consider a similar question for
the total magnetic energy. In this case, we will essentially use the main result of works [7]-
[8] - the Ferstenberg- type theorem (the theorem that establishes the existence of a strictly
positive Lyapunov exponent associated with the introduced Markov model of a multiplicative
stochastic integral of a special form). It should be noted that this Ferstenberg- type theorem
for the multiplicative stochastic integral is, in a certain sense, a generalization of similar
results for the product of unimodular random matrices [9], in particular, the product of
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independent [10] or random matrices forming a Markov sequence [11] (see also the survey
article [12]).

3 Purpose and objectives of the study

The purpose and objectives of our work are to study the asymptotic properties of the solution
of the Cauchy problem for the equation of magnetohydrodynamics and to generalize and
extend the main results of [5]- [6] to the case of a Markov linear model of a given velocity
field. In this case, special attention will be paid to the problem of finding the asymptotic
form of the magnetic field and total magnetic energy present in the integral representations
and determined by the introduced Markov linear model of a multiplicative stochastic integral
of a special kind.

4 Materials and methods.

In the work, some well-known results and methods of the theory of magnetic fields in random
media, the theory of matrices and multiplicative integral, partial differential equations and
stochastic analysis will be used and refined in cases necessary for our purposes.

5 Mean result.

5.1 Model of a Markov linear velocity field.

Let b(t), t ≥ 0 is a Brownian motion on a compact Riemannian manifold K, dimK =
ν ≥ 3, with metric form ds2 having the form in local coordinates x1, ..., xν on K
ds2 =

∑ν
i=1

∑ν
j=1 gijdx

idxj, dσ =
√
detgdx−Riemannian volume element. The infinitesimal

operator of the process b(s), s ≥ 0, is the Beltrami - Laplace operator 1
2
∆, where

∆ =
1√
detg

ν∑
i=1

ν∑
j=1

(
∂

∂xi

(
gij
√
detg

))
.

Let C(·) : K → SL(ν,R), where SL(ν,R) is the linear space of square ν × ν matrices
with zero trace (TrC = 0). Functions gij(x), cij(x) are functions of the class C∞(K). Then
the Markov linear model of the velocity field is the velocity field of the form

~V (t, x) = C(bt)x, (1)

where the process bt = b(t), the manifold and the matrix C(·) are defined and described by
the above conditions.

5.2 Evolution of the magnetic field in a Markov linear model.

It is well known that the evolution of the initial distribution

~H(x) = (H01(x), H02(x), ..., H0ν(x))
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ν-dimensional ν ≥ 3 magnetic field

~H(t, x) = (H1(t, x), H2(t, x), ..., Hν(t, x))

in a given speed field

~V (t, x) = (V1(t, x), V2(t, x), ..., Vν(t, x))

with constant magnetic diffusion νm (νm > 0) is described by the induction equation

∂

∂t
~H = νm∆ ~H + rot

[
~V × ~H

]
, (2)

~H(0, x) = ~H(x), (3)

where t ≥ 0, x ∈ Rν .
If we assume that the velocity field ~V and the initial field ~H0 are incompressible, i.e.

(divergences in x)

div ~V = 0, div ~H0 = 0, (4)

then problem (2)-(3), under the condition

div ~H = 0, (5)

reduces to solving the Cauchy problem (herein after, the bracket (..., ...) means the scalar
product)

∂

∂t
~H = νm∆ ~H −

(
~V ,∇

)
~H +

(
~H,∇

)
~V , ~H(0, x) = ~H0(x). (6)

Note that condition (5) is a consequence of condition (4): from div ~H0(x) = 0 it follows that
div ~H(t, x) = 0 for all t ≥ 0.

Indeed, taking the divergence from both parts of (2) and taking into account the relation
div (rot) = 0 , we obtain

∂

∂t
div ~H = νm∆

(
div ~H

)
. (7)

Therefore, by the uniqueness theorem, condition (5) will be satisfied for all t > 0 if it is
satisfied for t = 0, i.e. for the initial condition ~H0(x).

The initial magnetic field ~H0(x) is given by the distribution of currents, and these currents
are concentrated in a limited region of space. It is known that then ~H0(x) = O (|x|−ν) , x→∞
and this condition ensures the solvability of system (6). Let us now write out the solution of
equation (6) in the Markov linear model (1).

To do this, we first look for a particular solution in the form

~H(t, x) = ~h(t, k)exp
{
i(~κ(t,~k), x)

}
. (8)
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where t ≥ 0, ~k ∈ Rν , i is imaginary unit, and ~κ(~h0, ~k) = ~k. Substituting (8) into (6) and
equating the real and imaginary parts of the received relation, we obtain

d

dt
~κ(t,~k) = −C∗(bt)~κ(t,~k), ~κ(0, ~k) = ~k, (9)

d

dt
~h(t,~k) + νm~κ2~h(t,~k) = C(bt)~h(t,~k), ~h(0, ~k) = h0(~k), (10)

where ∗ is the transposition operation, the scalar square ~κ2 =
(
~κ(t,~k), ~κ(t,~k)

)
and the

condition div ~H0(x) = 0 is equivalent to the condition
(
~h0, ~k

)
. In addition, the condition

div ~V = 0 means that the matrices C(bt), C
∗(bt) have zero traces:

trC(bt) = trC∗(bt) = 0,

those C(bt) ∈ SL(ν,R). As is known ( [13] Ch. XV, §5, §6), the unimodular ν × ν matrix
X(t), is a solution to the equation

d

dt
X(t) = C(t)X(t), X(0) = E,

where the E is identity matrix is called the multiplicative integral (in terms of [13]-matrix)
and is denoted by the symbol

X(t) = Ωt
0(D) =

t∫
0

(E +D(s)ds) .

Then, introducing into consideration the matrix (multiplicative integral, more precisely,
multiplicative stochastic integral)

Gt =

t∫
0

(E + C(bs)ds) . (11)

as a solution to the equation

d

dt
Gt = −C(bt)Gt, G0 = E,

and noting that the matrix of system (9) is (G∗t )
−1 and the property 20 ( [13], p. 431) we get

that the solutions of systems (9) - (10) can be written, respectively, in the form

~κ(t,~k) = (G∗t )
−1~k,

~h(t,~k) = Gt
~h0exp

−νm
t∫

0

~κ2(s,~k)ds

 ,
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Now, to find a general solution of the problem (6) in model (7), we need to expand the initial
condition ~H0(x) into a Fourier integral and force each component of this expansion to evolve

according to systems (9), (10). In other words, if by ~̂H0(~k) we denote the Fourier image of
the initial field ~H0(x):

~H0(x) =
1

(2π)ν/2

∫
Rν

ei(
~k,x) ~̂H0(~k)d~k. (12)

then

~H(t, x) =
1

(2π)ν/2

∫
Rν

Gt
~̂H0(~k)exp

{
i((G∗t )

−1~k, x)
}
·exp

−νm
t∫

0

(
(G∗s)

−1~k
)2
ds

 d~k. (13)

It is easy to see that for the total magnetic energy E(t) we obtain the integral representation

E(t) =

∫
Rν

~H2(t, x)dx =

∫
Rν

(
Gt
~̂H0(~k)

)2

exp

−2νm

t∫
0

(
(G∗s)

−1~k
)2
ds

 d~k (14)

Thus, the solution ~H(t, x) of the magnetic induction equation (6) in the Markov linear model
(1) by formula (13), and its magnetic energy E(t) by formula (14) are expressed as some
functionals of the multiplicative integral (matrix) of the form (11). And this means that in
order to study questions about the asymptotic behaviors of the magnetic field ~H(t, x) and
magnetic energy E(t) as t → ∞, it is important to know the asymptotic behavior as the
multiplicative integral Gt itself and integrals (13) and (14) depending on it as t→∞.

In connection with the above, the following tasks arise:
A) Find out the asymptotic behavior of Gt as t→∞;
B) Carry out an asymptotic analysis of the magnetic field ~H(t, x) and magnetic energy

E(t) at t→∞.
Other equally interesting problems are also possible (for example, those related to various

moments of the magnetic field in the Markov linear model). But in this paper we will not
consider such problems.

The solution of problem A) was announced in [7], and the complete solution of problem
A) was given in [8] in the following setting.

Let θ0 is an arbitrary (non-random) column vector of unit length: θ0 ∈ Sν−1 is the unit
sphere in Rν , ν ≥ 3. Let us act on θ0 by the multiplicative integral Gt with the matrix C(·) :
K → SL(ν,R) and denote by rt the Euclidean length of the resulting vector: rt = ‖Gtθ0‖.

The Lyapunov exponent of the matrix Gt is the almost-probably (a.s.) limit

γ = lim
t→∞

1

t
ln rt.

Then the following is true.
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Theorem 1 (Ferstenberg type theorem) For any fixed initial phase θ0 ∈ Sν−1 there exists
a.s.and a strictly positive limit

γ = lim
t→∞

1

t
ln ‖Gtθ0‖ > 0. (15)

In other words, it was proved in [8] that fort → ∞; the asymptotic rt = ‖Gtθ0‖ ∼
exp{γt}, γ > 0, i.e., for sufficiently larget, the action of the matrix Gt on a vector of unit
length leads to its exponential expansion. The proposed paper is devoted to solving problem
C). In this case, the above Theorem 1 from [8] will play an essential role.

5.3 Construction of Lyapunov bases for Gt

This section is devoted to obtaining such results on the multiplicative integral Gt of a Markov
random matrix that would be convenient for studying the magnetic field ~H(t, x) and its energy
E(t) expressed by formulas (13) and (14).

Let us now proceed to the construction of Lyapunov (generally speaking, random) bases
and show that, with the appropriate use of these bases, the multiplicative integral Gt defined
in model (1) by formula (11) as t → ∞ almost does not differ from the degree of some
constant matrix.

To do this, first of the multiplicative integral (matrix) Gt, like any matrix, we represent
as a product of orthogonal (Ut) and upper triangular (Kt) matrices. Technically, this can be
done as follows. We orthonormalize the columns of the matrix Gt, starting from the first one,
and form a new basis from them. As Ut, we take the transition matrix from the original basis
to the new one. Then the diagonal elements of the matrix Kt will have the following form:
K11 is the length of the first column of the matrix Gt, K22 are the length of the component
of the second column orthogonal to the first column, and so on. Let us now substitute this
representation Gt = UtKt into the equation for Gt, if the matrix U−1t C(bt)Ut is represented
as the sum of antisymmetric (Ft) and upper triangular (Bt) matrices, then for Ut and Kt we
obtain the equations

dUt
dt

= UtFt,
dKt

dt
= BtKt (16)

The first of these equations is a non-linear equation closed with respect to the orthogonal
matrix Ut, which determines the orientation of the matrix Gt. After solving this equation, we
can find the diagonal elements of Kt:

Kii = Kii(0)exp
{
tγi +

√
tξi(t)

}
,

where

γi = lim
t→∞

1

t

t∫
0

bii(s)ds, ξi(t) =
1√
t

t∫
0

(bii(s)− γi) ds. (17)

According to the central limit theorem, as t→∞, the process ξi(t) has a normal distribution
(note that we can always put Kii(0) = 1).
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Moreover, the matrix Ut is Markov and the group of orthogonal matrices is compact in
SL(ν,R). Whence follows the existence of a stationary distribution µ of the matrices U ,
over which the averaging is performed in the first of formulas (17). Further, detKt = 1, so
γ1 + γ2 + ...+ γν = 0. From the decomposition method of Gt into the product UtKt it follows
that γ1 ≥ γ2 ≥ ...γν−1 ≥ γν . Take θ0 = (1, 0, ..., 0) ∈ Sν−1 and make sure that γ1 = γ > 0,
where γν is the largest Lyapunov exponent appearing in the Ferstenberg-type theorem (see
(15)). After that, we act to the unit vector θ0 ∈ Sν−1 by the inverse matrix G−1t . Then
the resulting vector, for the same reasons as above, changes as exp|γν |t, where γν is the
"highest exponent in the reverse course of time i.e. the lowest index and γν < 0. However, the
negativity of γν also follows from the fact that γ1 > 0, γ1 +γ2 + ...+γν = 0. The signs of other
γj(j = 2, 3..., ν − 1) can be arbitrary. For example, if ν = 3 and the distribution of matrices
also has symmetry under the change Gt → G−1t , then γ2 = 0, γ1 = −γ3. In addition, some
of γj can be the same. However, it turns out that in our assumptions, they are all different,
or rather true

Theorem 2 (simplicity theorem for the spectrum of characteristic Lyapunov exponents). The
exponents of the Lyapunov matrix Gt are different, i.e. there are strict inequalities

γ = γ1 ≥ γ2 ≥ ...γν−1 ≥ γν . (18)

Proof 1 We divide the interval [0, t] into n parts by points 0 = t0 < t1 < t2 < ... < tn = t
and represent the matrix Gt as ( [13], p. 433, formula (46))

Gt = gn · gn−1 · ... · g1, (19)

where

gk =

tk∫
tk−1

(E + C(bs)ds) , k = 1, 2, ..., n. (20)

It is clear that g1, g2... are stationary Markov processes with values in the group SL(ν,R) and
mean value Mln‖g1‖ < ∞. Studying this sequence g1, g2... from the point of view of [11].
Given that, according to the results of [8], the pair (bt, Gt) has a smooth transition density,
we see that this sequence satisfies all the requirements of the main theorem of [11] ( [11], §2,
p.122). Thus, according to the main theorem [11], the characteristic Lyapunov exponents are
simple, i.e.

γ1 > γ2 > ... > γν .

The simplicity of the spectrum of characteristic exponents is one of the central properties
that determine the asymptotic behavior of the multiplicative integral Gt. Below, using this
property, we will prove a theorem that, when using an appropriate Lyapunov basis, for large
t (t → ∞) Gt almost does not differ from the degree of some fixed matrix (see Theorem 3
below). For these purposes, we first prove an auxiliary lemma.
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Lemma 1 a) For large t, matrix Kt can be represented as Kt = DtKt, where Kt is an upper
triangular matrix such that there are limits lim

t→∞
Kij(t) = Kij(∞), and Dt is diagonal matrix:

Dt = diag {exp {(γ1 + α11(t))t} , ..., exp {(γν + ανν(t))t}} (21)

αij =
1

t

t∫
0

(bij(s)− γj) ds.

b) Let K(∞) is a matrix with entries Kij(∞). Let us set Kt = KtK(∞). Then for any α > 0
there are numbers βij > 0 such that, for sufficiently large t, the inequalities hold for j < i
with probability 1

−βijexp {(γj − γi)t− αt} ≤ Kij(t) ≤ βijexp {(γj − γi)t+ αt} (22)

where Kij(t) are the elements of the matrix Kt.

Proof 2 For simplicity, we will carry out the proof for matrices Kt of order 3× 3.
a) We know the form of the diagonal elements of Kt (formula (16). Using (17) for off-

diagonal elements, we obtain:

K12(t) = K11(t)K12(t),

K13(t) = K11(t)K13(t),

K22(t) = K22(t)K23(t),

where

K12(t) = 1 +

t∫
0

b12(s)K22(s)K
−1
11 ds,

K13(t) = 1 +

t∫
0

(b12(s)K23(s) + b13(s)K33(s))K
−1
11 ds,

K23(t) = 1 +

t∫
0

b23(s)K33(s)K
−1
22 ds,

(23)

whence Kt = DtKt, where the matrix Dt is defined by proportions (21).
Further, due to the boundedness of the norm matrix C(x) on the compact set K, the

elements of the matrix Bt with probability 1 are bounded functions of t. Therefore, from
formula (21), from the fact that inequalities j > i are found for γj − γi < 0, means of
limitation follow for Kij(t) at t→∞.

b) by the definition of a matrix, Kt we have:

K11(t) = K22(t) = K33(t) = 1, Kij(t) = 0, (j < i), K12(t) = K12(G)−K12(∞),
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K23(t) = K23(t)−K23(∞), K13(t) = K13(t)−K13(∞) +K12(t)K23(∞).

Substituting now the values Kij(t) from (23) into the last relations, and evaluating the
integrals obtained, we obtain the inequalities we need (22).

Definition 1 Let column vectors ~e1, ~e2, ..., ~eν form a matrix e, satisfying the condition

K(∞)e = E,

where E is the identity matrix. Then the basis ~e1, ~e2, ..., ~eν called corresponding indicators
γ1, γ2, ..., γν Lyapunov basis.

The name "Lyapunov bases"is justified to some extent by the following theorem.

Theorem 3 On Lyapunov bases ~e1, ~e2, ..., ~eν the relations are fulfilled

γj = lim
t→∞

1

t
ln ‖Gt~ej‖ , j = 1, 2, ..., ν. (24)

Proof 3 By definition of the Lyapunov basis

K(∞)~e = (0, ..., 0, 1, 0, ..., 0)∗,

where 1(one) is in the j−th place, and the ∗ is sign is the transposition operation.
Therefore, ‖Gt~ej‖2 the length is simply the square of the length of the j−th column of the

matrix DtKt, i.e.,

‖Gt~ej‖2 =
ν∑
l=1

K
2

ijexp {2(γl + αll(t))t}

Using inequalities (22), we obtain that for any α > 0 there are numbers β1, β2 > 0 such that

β1exp {2γjt− αt} ≤ ‖Gt~ej‖2 ≤ β2exp {2γjt+ αt}

Now the relations (21) we need follow from the last inequality (due to the arbitrariness of α).

Note that the Lyapunov exponents are, as averages, non-random numbers. Mean while, the
Lyapunov basis corresponding to them is random; it is different for different implementations
of the process bt. However, for this implementation, the basis is the same and does not depend
on time.

5.4 Asymptotic analysis of the magnetic field and total magnetic energy

Now let the vectors ~e1, ~e2, ..., ~eν constitute the Lyapunov basis, and ~e = λ1~e1 + λ2~e2 +
... + λν~eν . Denote by [|Gt~e|]2 approximate value of the square of the Euclidean norm,
calculated under the assumption of the replacement K(t) with K(∞) and Dt on Dt =
diagexp(γ1t), ..., exp(γνt). In other words

[|Gt~e|]2 =
ν∑
j=1

λ2jexp(2γjt). (25)
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On the other hand, due to the infinite smallness of αjj(t)(j = 1, ..., ν)ast→∞, for any a > 0
there exists T1 = T1(a) > 0, such that for t > T1 the inequalities hold

e−at [|Gt~e|]2 ≤
∥∥DtK(∞)~e

∥∥2 =
ν∑
j=1

λ2je
2(γj+αjj(t))t ≤ eat [|Gt~e|]2 . (26)

Using (6), we can write similar inequalities for the norms
∥∥DtK(∞)~e

∥∥2 and ‖Gt~e‖2. As a
result, we come to the conclusion that the theorem is true.

Theorem 4 For any a > 0 there exists T = T (a) > 0 such that for t > T uniformly over all
vectors ~e ∈ Rν the inequalities hold

e−at ≤ [|Gt~e|]2

‖Gt~e‖2
≤ eat. (27)

Inequalities (27) will later play an essential role in the study of the asymptotic behavior of
the magnetic field strength and its total energy. Now, before proceeding to these studies, we
note the following useful information.

If γ1 > γ2 > ... > γν are the Lyapunov exponents for the matrix Gt, then the Lyapunov
exponents for (G∗t )

−1 will be (−γ1) < (−γ2 < ... < (−γν). The corresponding Lyapunov basis
~e′1, ~e

′
2, ..., ~e

′
ν satisfies the condition(

K(∞)∗
)−1

e′ = E

(e′ composed of column vectors ~e′1, ~e′2, ..., ~e′ν matrix). In other words, e∗e′ = E, i.e. the
Lyapunov bases for Gt and (G∗t )

−1 are biorthogonal.
In addition, for the elements of the matrix (G∗t )

−1 inequalities similar to (22) hold, so
inequalities (27) are also valid for (G∗t )

−1.

Note also that in formulas (12) and (13) the quantities (G∗t )
−1~k and Gt

~̂H0(~k) increase

exponentially with probability 1. Therefore, the multiplier exp

{
−νm

t∫
0

(
(G∗t )

−1~k
)2
ds

}
decreases as t → ∞ (and any νm > 0) as a double exponent. But in the integral sense
(due to the influence of values of ~k close to zero) the double exponent decreases only at the
rate of the usual exponent. This circumstance determines the nontriviality of the analysis of
integral expressions (12) and (13).

Further, for simplicity, we will assume that ν = 3 and proceed from formulas (12) and
(13). In addition, below we will additionally assume that γ2 6= 0 herefore, two qualitatively
different cases are possible:

a)γ1 > 0 > γ2 > γ3,

b)γ1 > γ2 > 0 > γ3.

Let us now formulate the main results - the theorem on the exponential decrease in the
magnetic field and the theorem on the exponential growth of the total magnetic energy.
(Below, |~a| denotes the length of the vector ~a, and we use the sign ‖ · ‖ to denote the norm).
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Theorem 5 Let | ~H0(x)| ∈ L1+β(R3) ∩ L2(R3) where 0 < β ≤ 1. Then there is α > 0 (which
does not depend on νm, provided that νm > 0) such that with probability 1 as t→∞

sup
x
| ~H(t, x)| = o(exp(−αt)). (28)

Theorem 6 Let ~̂H0(0) 6= 0, | ~H0(x)| ∈ L1(R3) and the initial field ~H0(x) either be nonrandom
or random, but does not depend on the fluid flow, i.e. from process bt. Then there exists a
positive with probability 1 function B(ω) of the elementary ω and a constant α > 0 (the same
for all νm > 0) such that for sufficiently large t the inequality

ε(t) > B(ω)(exp(αt)). (29)

The proofs of these theorems will essentially be based on the inequalities (27), and the
methodologies of the proofs from the technical point of view are in many respects similar and
rather lengthy. In this connection, here we omit the detailed proofs of these assertions and
give only the proof of Theorem 5 in case b).

We will proceed from the integral representation (12) for the magnetic field strength H
~H(t, x). Omitting the constant before the integral, we can write

| ~H(t, x)| ≤
∫
R3

exp

−νm
t∫

0

(
(G∗s)

−1~k
)2
ds


∣∣∣∣Gt

~̂H0(~k)

∣∣∣∣ d~k. (30)

But according to Theorem 2, for any α > 0 there exists T = T (a) > 0 such that for t > T
we have∣∣∣∣Gt

~̂H0(~k)

∣∣∣∣ ≤ exp {(γ1 + α)t}
∣∣∣∣ ~̂H0(~k)

∣∣∣∣ (31)

On the other hand, ~H0(x) ∈ L1+β(R3), therefore, by the Hausdorff-Young inequality, ~̂H0(~k) ∈
Lq(R3), 1

q
+ 1

1+β
= 1. Furthermore,∥∥∥∥ ~̂H0(~k)

∥∥∥∥
Lq
≤ cβ

∥∥∥ ~H0(x)
∥∥∥
L1+β

,

where Cβ is a constant depending on β. Therefore, applying the Holder inequality to the
right-hand side of (21), we obtain

∣∣∣ ~H(t, x)
∣∣∣ ≤ cβ

∫
R3

exp
−(1 + β)νm

t∫
0

(
(G∗s)

−1~k
)2
ds




1
1+β ∥∥∥∥ ~̂H0(~k)

∥∥∥∥
Lq
exp {(γ1 + α)t} d~k.

Let us estimate the triple integral on the right side of the last inequality. Let k1, k2, k3 are the
coordinates of the vector ~k in the Lyapunov basis for (G∗t )

−1. Then, according to Theorem 5,
for any α > 0 and sufficiently large t, the inequalities are fulfilled

t∫
0

(
(G∗s)

−1~k
)2
ds ≥

τ∫
0

(
(G∗s)

−1~k
)2
ds+

t∫
t−τ

(
(G∗s)

−1~k
)2
ds ≥

δ(ω)
(
k21 + k22 + k23

)
+

3∑
j=1

fj(t)k
2
j ,
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where δ(ω) = δ is a finite, positive value with probability 1 (ω is an elementary event), τ is
a sufficiently small number,

fj(t) =

t∫
t−τ

exp {−2 (γj + α) s} ds.

Since γ1 > γ2 > 0 > γ3 and an α is an arbitrary small number, then for large t

t∫
0

(
(G∗t )

−1~k
)2
ds ≥δ(ω)k2 + C1(τ)exp (−2 (γ1 + α) t) k21+

C2(τ)exp (−2 (γ2 + α) t) k22 + exp (−2 (γ3 + α) t) k23 ≥
δ(ω)k2 + exp (−2 (γ3 + α) t) k23,

where Cj are some positive constants depending on τ .
Hence∫

R3

exp

−(1 + β)νm

t∫
0

(
(G∗s)

−1~k
)2
ds

 d~k ≤
(

π

(1 + β)νm

) 3
2

exp ((γ3 + α) t) .

Substituting this into (31) and taking into account the fact that γ1 +γ3 = −γ2 < 0, we verify
the assertion of Theorem 5. in case b).

Remark 1 Usually in applications the initial field ~H0(x) is decreasing at infinity as
|x|−(3+α), α > 0, so that in the most important practical cases the condition of Theorem 5 is
satisfied.

If the initial function is not random, then Theorem 5 can be strengthened by assuming only
the finiteness of the magnetic energy, i.e. by assuming that | ~H0(x)| ∈ L2(R3). Namely, the
following is true.

Theorem 7 If the initial field is nonrandom or independent of the fluid flow, from the
finiteness of its magnetic energy follows an exponential, with probability 1, decrease of the
magnetic field as t→∞: for some α > 0 with probability 1

sup
x
| ~H(t, x)| = o(exp(−αt)), t→∞. (32)

The proof of this theorem is similar to the proof of Theorem 5.

6 Discussion of the results

The main results of the work are presented in section 5. At the same time, at the beginning,
in Section 5.4, a description of the Markov linear model considered in this paper is introduced
and given. Note that such a model of the velocity field in the form (1) was first defined in the
previous works of the first of the authors of this article. Such a representation of the velocity
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field in [7]- [8] made it possible to apply the theory of degenerate elliptic-parabolic Hermander
operators to prove the existence of non-degenerate joint transition densities constructed
according to the multiplicative integral (matrix) Gt of diffusion processes defined by formula
(11), and, ultimately, to prove theorems of Furstenberg type (Theorem 1). This theorem plays
the main role later in paragraph (5.) in the construction of Lyapunov bases for Gt.

In paragraph 5.2. the magnetic induction equation is considered within the introduced
Markov linear model. Explicit integral representations (in the form of some functionals of the
multiplicative integral Gt) of the desired solution ~H(t, x) of the magnetic induction equation
(6) and its total magnetic energy εt (formulas (13) and (14), respectively) are obtained. the
main problem was reduced to studying the asymptotic behavior of the multiplicative integral
Gt and integrals (14) and (15) depending on it as t→∞.

Section 5.3 is devoted to the construction of Lyapunov (generally speaking, random) bases
for Gt. At the same time, using the results known from the theory of matrices (decomposition
of a matrix into a product of orthogonal and upper triangular matrices, etc.) and the central
limit theorem, we first find the characteristic Lyapunov exponents (formulas (17)), prove a
theorem on their simplicity (Theorem 3), and the Lyapunov bases corresponding to these
t(t→∞) exponents are defined (Definition1).

In the last subsection 5.2, we present and prove the main results of this paper, Theorems
5 and 6 In proving these theorems, the results of Theorem 4 (i.e., inequalities (27)) were
essentially used. Theorems 5 and 6 actually mean that in the Markov linear model for large
t(t→∞) the exponential decrease of the magnetic field occurs with probability 1, however,
its total magnetic energy grows exponentially throughout space. This property of the field,
which at first glance seems paradoxical, can be explained simply: in the linear model, due to
the increase in velocity, the volume of space occupied by the field rapidly increases, which
entails an increase in the total magnetic energy.

The results obtained in this work are similar to the results of [5]- [6], where the problem
of the evolution of a magnetic field in a random linear velocity field was also studied in a
kinematic setting (i.e., for a given velocity field), but the authors of these papers had to deal
with with the product of independent random matrices as the number of factors increases.
Our paper covers a more general situation (than papers [5]- [6]), because we are studying
the magnetic induction equation in a more general (Markovian) linear model, and we had to
investigate the asymptotic behavior of a more general product - a multiplicative stochastic
integral.

7 Conclusion

The work was devoted to the asymptotic analysis of the solution of the Cauchy problem for the
induction equation in a given Markov linear velocity model. Explicit, containing (associated
with a given velocity field) some multiplicative stochastic integral Gt of a Markov random
matrix, integral representations for the magnetic field and its total energy were obtained.
So-called Lyapunov bases are constructed and it is shown that, with an appropriate choice
of the corresponding Lyapunov bases, Gt for large t(t → ∞) almost does not differ from
the degree of some constant matrix. As a result, theorems were proved on the exponential
decrease in the magnetic field at each point in space and the exponential growth of the total
magnetic energy (over the entire space) in a given Markov linear model.



N. Akanbay et. al. 39

Acknowledgment

The authors are grateful to Professor S.A. Molchanov for statement of the problems and
useful discussions.

References

[1] H.K. Moffatt. Magnetiс Fild Generation in electrically Conduсting Fluids. - Cambridge Univ. Press, Cambridge, 1978.

[2] Yu.B. Zeldovich, A.A. Ruzmaikin, D.D. Sokoloff. Magnetic Fields in Astrophysics. - Gordon Breach, New York, 1983.

[3] N. Akanbay, S.A. Molchanov, Z.I. Suleimenova. "Model of discrete kinematic dynamo"Russian Math. Surveys, 79:4 (2024),
724-726

[4] A.I. Alillueva, A.I. Shafarevich, "Asymptotic Solutions of a Magnetohydrodynamic System which Describe Smoothed
Discontinuities Math. Notes, 99:6 (2016), 795-809

[5] Ya.B. Zel’dovich, A.A. Ruzmaikin A.A, S.A. Molchanov, D.D. Sokoloff Kinematic dinamo problem in a linear velocity
field.FluidMech., 144(1984), 1-11.

[6] S.A. Molchanov, V.N. Tutubalin. A linear model for hydromagnetic dynamo and the products of random matrices.Theory
Probab.Appl., 29:2 (1985), 231-246.

[7] N. Akanbay, M.S. Nurkhanova, Z.I. Suleimenova. Linear model of the hydromagnetic dynamo and multiplicative products
of Markov random matrices. VI congress of the Turkic world mathematical society. Octobor, 2-5, 2017. Astana,
Kazakhstan. The Abstract Book,p. 286 - 287.

[8] N. Akanbay, S.A. Molchanov, Z.I. Suleimenova.Theorem of Furstenberg type for multiplicative stochastic integrals.
Random operatore and Stochastic equations., 28:3 (2020), 163-176.

[9] H. Furstenberg Noncommuting random products. Trans. Amer. Math. Soc. 1963. 108. 377-428.

[10] H. Furstenberg, H. Kesten Products of random matrices. Ann. Math. Statist. 31(2): 457-469 (1960).

[11] A. D. Virсer, On the simplicity of the spectrum of Lyapunov’s characteristic indices of a product of random
matrices.TheoryProbab. Appl., 28:1 (1984), 122-135

[12] I.Ya. Gol’dsheid, G.A. Margulis, "Lyapunov indices of a product of random matrices Russian Math. Surveys, 44:5 (1989),
11-71

[13] F.R.Gantmakher, Theory of matrices. Moscow, 1967.

Авторалар туралы мәлiмет:
Нұрсадық Ақанбай – әл-Фараби атындағы Қазақ ұлттық университетiнiң есептеу ғы-

лымдары және статистика кафедрасының доцентi (Алматы, Қазақстан, электрондық по-
шта:noureke1953@gmail.com);

Сулейменова Зоя Изтелеуовна (корреспондент автор) – әл-Фараби атындағы Қазақ ұлт-
тық университетiнiң есептеу ғылымдары және статистика кафедрасының аға оқытушысы
(Алматы, Қазақстан, электрондық пошта: Suleymenova2474@gmail.com);

Тапеева Самал Конысбековна – әл-Фараби атындағы Қазақ ұлттық университетiнiң есеп-
теу ғылымдары және статистика кафедрасының аға оқытушысы (Алматы, Қазақстан, элек-
трондық пошта: tapeevasamal77@gmail.com).



40 The multiplicative integral and the evolution of the magnetic field. . .

Сведения об авторах:
Нурсадык Аканбай – доцент кафедры вычислительной науки и статистики Казахского

национального университета имени аль-Фараби (Алматы, Қазақстан, электронная почта:
noureke1953@gmail.com);

Сулейменова Зоя Изтелеуовна (корреспондент автор) – старший преподаватель кафедры
вычислительной науки и статистики Казахского национального университета имени аль-
Фараби (Алматы, Қазақстан, электронная почта: Suleymenova2474@gmail.com);

Тапеева Самал Конысбековна – старший преподаватель кафедры вычислительной науки
и статистики Казахского национального университета имени аль-Фараби (Алматы, Қаза-
қстан, электронная почта: tapeevasamal77@gmail.com).

Information about authors:
Nursadyk Akanbai – Associate Professor of the Department of Computational Sciences

and Statistics, Al-Farabi Kazakh National University (Almaty, Kazakhstan, email:
noureke1953@gmail.com);

Suleimenova Zoya Izteleuovna (corresponding author) – Senior lecturer of the Department of
Computational Sciences and Statistics, Al-Farabi Kazakh National University (Almaty, Kazakhstan,
email: Suleymenova2474@gmail.com);

Tapeeva Samal Konysbekovna – Senior lecturer of the Department of Computational
Sciences and Statistics, Al-Farabi Kazakh National University (Almaty, Kazakhstan, email:
tapeevasamal77@gmail.com).

Received: March 2, 2025
Accepted: June 7, 2025


	Introduction
	Literature review and problem statement.
	Purpose and objectives of the study
	Materials and methods.
	Mean result.
	Model of a Markov linear velocity field.
	Evolution of the magnetic field in a Markov linear model.
	 Construction of Lyapunov bases for Gt
	Asymptotic analysis of the magnetic field and total magnetic energy

	Discussion of the results
	Conclusion

