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AN INVERSE PROBLEM FOR PSEUDOPARABOLIC EQUATION WITH
MEMORY TERM AND DAMPING

In this paper, we study the inverse problem of determining, along with solution w(z,t) of a
pseudo-parabolic equation with memory (convolution term) and a damping term, also an unknown
coefficient f(t) determining the external effect (the free term). In the investigating inverse problem,
the overdetermination condition is given in integral form, which represents the average value of a
solution tested with some given function over all the domain. By reducing the considering inverse
problem to an equivalent nonlocal direct problem. The applicability of the Faedo-Galerkin method
to the inverse problem is analyzed. The damping term ~ |u|q*2 u affects as nonlinear source in the
case v > 0, and an absorption, if v < 0. In all these cases, we establish the conditions on the
range of exponent ¢, the dimension d, and the data of the problem for the global and local in time
existence and uniqueness of a weak solution of the studing problem.

Key words: inverse problem, nonlinear pseudoparabolic equation, memory term, solvability.
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Bo Bcex aTmx ciyvasXx yCcTaHABJIMUBAIOTCS YCJIOBHUS HA JUANA30H M3MEHEHUs MOKA3aTess (, pa3-
MepHOCTh d W JaHHBIE 3aJia9u Jjisl TVIODAJBLHOTO U JIOKAJBHOTO 10 BPEMEHU CYIIeCTBOBAHUSI U
€/INHCTBEHHOCTH CJIa00r0 PEIeHUs] M3y IaeMOil 3a1a4n.

KiroueBbie ciioBa: obOparHasi 3ajiada, HEJUHEHHOE ICEBIONapadOInIecKOe ypaBHEHUE, HHTE-
TpajIbHBII UJIeH, Pa3penInMOCTb.

1 Introduction

A coeflicient inverse problems for differential equations have been called problems in which,
together with the solution of the corresponding differential equation, it is also necessary to
determine coefficient of the equation itself or the coefficient of the right-hand side (external
influence). Such problems naturally arise in the mathematical modeling of physical, biological,
etc. processes occurring in environments with previously unknown characteristics, since it
is the characteristics of the environment that determine coefficient of the corresponding
differential equation. This work devoted to study one of these kind of problem.

The statement of problem. Let 2 be a bounded domain in R¢, d > 2 with smooth
boundary 02, and Qr = {(z,t) : x € Q, 0 <t < T} is a cylinder with lateral I'r. Let us
consider the following inverse problem of finding the pair of functions (u(x,t), f(¢)), which
satisfy the pseudoparabolic equation with memory term and damping

u — KAu; — AMAu — /K(t — s)Au(z, s)ds =y u|* Fu+ f(t) - glz,t), in Qr, (1)
0

the initial condition

u(z,0) = up(x) in Q, (2)
the boundary condition

u(z,t) =0 on I'p, (3)
and the integral overdetermination condition

/u(x,t)w(w)dw = h(t), te[0,T]. (4)

Q

Here, the coefficient s, A are given positive numbers, v is the coefficient of the damping term
might be positive v > 0 either negative v < 0. The functions g(z,t), ug(x), w(z) and h(t)
are given. The exponent ¢ is given positive number such that

1 < qg<oo. (5)

Pseudo-parabolic equations can be used to describe various important physical processes, such
as hydrodynamics, filtration theory, continuum mechanics, the heat conduction involving two
temperature systems, dispersive, viscous flow in materials with memory and so on. One of
the examples is furnished by the Kelvin-Voigt (Navier-Stokes-Voigt) equations. We refer the
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reader to the works |1H7] and the references therein, in which these issues were discussed in
detail for the model equation .

In the absence of the memory term (K (t) = 0), the equation in (/1)) reduces to the pseudo-
parabolic equation with damping. In corresponding equation if the coefficient of the external
term f(¢) is given, then we will obtain an initial boundary value (IBV) problem. Various IBV
problems for nonlinear pseudo-parabolic equation have been extensively studied in [4}8-14]
and results concerning existence and uniqueness of solution, and asymptotic behavior like
blow up have been established. In the presence of the memory term (K (t) # 0), the various
IBV problems have been considered and many results were obtained, such as the existence
and uniqueness of classical and weak solutions, and finite-time blow up, asymptotic behavior
of solutions in [15-19] and so on.

Next, we focus on the inverse problems posed for the pseudo-parabolic equation and their
different modification. Since the pioneer works of [20-23] in the field of the inverse problem
brought the authors international fame. In [24], a class of abstract pseudoparabolic equations
of the form

{Agut(t) — Ayu(t) = k* Ayu(t) + f(t), t€[0,T)
u(0) = ug

for the operators A;,j = 0,1, 2, were investigated. The main focus was to pay attention to
the recoverving the kernel and finding solution in the Volterra operator integral equation.
Lyubanova and coauthors in [25,126] proved existence and uniqueness, regularity results for
strong solutions to the pseudoparabolic equation of the operator form

ut+nMut+k(t)Mut+g($at)u = f7

where M is a linear differential operator of the second order in the space variables. Yaman [27]
discussed the coefficient inverse problem for Eq. with K (t) = 0 and the special external
source term

Fa,t) = f(t) (@ - Aw), (6)

where the test function w replaced by w — Aw in the overdetermination condition . It
may restrict the statement of the problem from both of mathematical and physical view, he
derived the upper bound for the blow-up time under some assumptions about the initial data.
The equation consisting relation between the damping term and p-Laplacian was considered
by Antontsev and et. [29] with the special right-hand side and overdetermination condition
such as in [27]. The authors proved in [29] the local existence of weak solution (without the
uniqueness). This work was later improved by Khompysh et al. [30] established global and
local in time existence and uniqueness result. Recently, Aitzhanov and et. in |28 considered
Eq. with v = b(x,t) variable coefficients and instead of assumed overdetermination
condition @ The authors showed that existence and uniqueness of weak and strong solutions
under certain conditions and initial data of the corresponding inverse problem. In the present
work overdetermination condition cause some difficulties, thus author has to develop other
techniques to overcome these difficulties. Similar problems for the equation were studied
earlier articles of the author [34-36].
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The present paper is organized as follows. In Section [2] we introduce some auxiliary
lemmas that we use in this work. In Section |3| we prove that the initial inverse problem —
(4)) is equivalent to the direct problem — containing the nonlinear nonlocal operator
of u. The global and local in time existence of a weak solution to the direct problem —
is established in Section [4] in the case v > 0, and in Section [5 in the case v < 0. For
that we construct Galerkin’s approximations u™ and derive their priori estimates. Next using
compactness arguments we realize a passage to the limit as n — oo. The Section [0]is devoted
to the study the uniqueness of the weak solution to the problem — in both case of
v >0 and v < 0.

2 Preliminaries

In this section, we introduce some auxiliary lemmas that will be used throughout the paper.
For the definitions, notations of the function spaces and for their properties, we address the
reader to the monographs [31,[32|. In particular, the norm in the Lebesgue spaces L?(£2) and
LP(Qr) are denoted as follows, respectively:

T
s = | [lu@Pds | Julhor = { [ [ luteopdode
Q 0

Q

We use the classical and the following nonlinear Gronwall’s inequality ( [31]) to establish
the first and second local estimates.

Lemma 1 Ify: Rt — [0,00) is a continuous function such that
¢
y(t) < Cy /y“(s)ds +Cy, teRY, u>1
0

for some positive constants Cy and Cy, then

1
(n—1)CCH

y(t) < Cy (1 — (p— 1)0105*115)‘ﬁ for 0 <t < tpay :=

The following another very important auxiliary lemma (see [33] (Lemma 2.2., p. 1809.)
will be used to prove the uniqueness and passage to the limit in the Galerkin approximation.

Lemma 2 For all p € (1,00) and 6 > 0, there exist constants Cy and Cy, depending on p
and d, such that for all &, n € RY, d > 1, it

|1€[7726 = [nP~2n| < Cul€ —n* (1] + |nl)P > (7)

and

(I€P72¢ = [nlP=n) - (€ —n) = Cal€ — 0P (€] + [n])P >+ (8)
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3 Weak formulation.

Assume that the data of the problem satisfy the following conditions

ug(w) € Wy () N LU(9), (9)

lg0(t)] := /g(:c,t)w(a:) dz| > 1o >0 forall t>0, (10)

g(z,t) € C(0,T; L*()), (11)

h(t) € W2((0,T]) and / wo(z)w(x)dz = h(0). (12)
Q

w(x) € W, (Q) N LYQ). (13)

Lemma 3 Under the conditions @ and @-, the inverse problem - 1S equivalent
to the following problem for a nonlinear pseudoparabolic equation with nonlinear nonlocal
operator of the function u

t
up — kAU — AAu — /K(t — s)Au(z, s)ds = v [u|" P u+ f(t,u) - g(z,t), n Qp, (14)
0

u(@,0) = up(z), = € Q, (15)
u(z,t) =0 on I'r, (16)
where
ft,u) = 1(75) B (t) +/<:/Vutid:c+)\/Vqud:c+
9o

t
/K(t — $)(Vu, Vw)z ods — 'y/ |9 wwdx
0 0
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Proof 1 1. Let the pair (u(x,t), f(t)) be a solution of the inverse problem -. Multiplying
both sides of by w, and integrating over €2 and applying the formula of integrating by parts,
we have

t
/utwdm+/£/Vutid3:+)\/Vquda:~l—/K(t— s)/Vu(s)dea:ds =
Q 0 0 0

g (15)
v TP u - wdz + f(2) | gla, t)wde.
/ /
Using
/utwdx = h/(t) (19)
Q

which follows from the overdetermination condition , and the assumption @, we get

from (@ the equality .

2. Let now u(z,t) be a solution to the direct problem (14)-(16) with (17). It means that
the pair of functions (u, f) is satisfied the equations —(@. Thus, the pair (u, f) to be
a solution of the inverse problem — it is sufficient to prove that the function u(x,t)
satisfies the overdetermination condition . Let us assume that for contradiction, i.e. the
overdetermination condition doesn’t hold. Suppose that

/uwd:c =hi(t), t>0 (20)

where hy(t) # h(t) for all t > 0. Thus, by the conditions and (@, we have hy(t) €
W5 ([0,T]) and

hy(0) = /uowdx = h(0) (21)

Q
Multiply by w and integrating by parts and using ,we get

t
Ri(t) + K / Vug - Vwdr+A / Vu - Vwdx + /K(t —5)(Vu, Vw)s ods—
Q 0 (22)
3 [l e = (6w
Q

Q

where f(t,u) is defined in (17). Plugging into (29), we obtain

t
hy(t) + /@/Vut Vwdz + )\/Vu Vwdz + /K(t — $)(Vu, Vw)a ods — ’y/ u|'* wwdz =
Q 0

Q Q

¢
R (t) + /@/Vut Vwdzr + )\/Vu Vwdz + /K(t —5)(Vu, Vw)s ods — 'y/ |u|?% uwwd.
0 0 0 Q
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(23)
implies that the following Cauchy problem for H(t) = hy(t) — h(t):
H'(t) =0, H(0) = hy(0) — h(0) =0 (24)
which yields that hy(t) = h(t) for all t > 0.
Definition 1 A function u(z,t) is a weak solution to the problem —, if:
1. uwe L0, T; Wy () N LIQ)),ue € L0, T; Wy (Q)).
2. u(0) = ug a.e. in Q
3. The following identity

t
% (up + kVuV)dx + A / VuVodr+ / K(t —s)(Vu,Vp)aads =
Q Q 0 (25)
7/ Jul " updz + /f(t, u)gpdz
Q Q
holds for every ¢ € Wy*(Q) N LUQ) and for a.a. t € [0,T].
4 Global and local existence: a nonlinear source case.
In this section we consider the problem —. Let
1 <qg<o0. (26)
Now we present our mean result for
v >0 (27)

First we state the global existence theorem.

Theorem 1 (Global ezistence) Let the conditions @-, are fulfilled and assume,
that

1<g<2 (28)
Also exists a positive constant m such that

K 2 2
2 sup [lg(®)]zq IVwllzq < m < 2. (29)
0 t€[0,T]

Then there exists a global weak solution to the problem - in the sense of Definition
[1. Moreover, the weak solutions satisfy the following estimates

Sup (IVu@ll30 + lu®lige) + lull o, + Vel o, < C, (30)
€|0,

where C' 1s positive constant depending on data of the problem.
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In this theorem we establish local existence of the weak solution to the problem —.

Theorem 2 (Local existence) Let the conditions (9)-(13), (27), (29) are fulfilled and assume
that the following condition holds

2d
T i d>22 = (l,00) if d=2 (31)

Then there exists a time 7} € (0,7 defined at (48)), below such that the problem (14)-
has, at least, a weak solution u(x,t) in the sense of Definition [1} with 7} instead of
T'. Moreover, these weak solutions satisfy the estimate for all ¢ € (0,7}] with another
positive constant C' depending on data of the problem.

2<q< 2t 2 =

Remark 1 The condition assures the passage to the limit as n — oo below, see .
We have assumed that the condition 15 fulfilled, because we return to the statement of
the[1) in case q < 2.

Proof 2 The proof of these theorems consists of the steps: construction of Galerkin’s
approximations; obtain energy estimates; passage to limait.

4.1 Galerkin’s approximations.

Let {¢x}ren be an orthonormal family in L?(Q2) and their linear combinations are dense in
V= Wy (Q) N LI(Q). Given n € N, let us consider the n-dimentional space V" spanned by
Y1, ..., ¥,. for each n € N, we search for approximate solutions

n

uat) =Y G Os(e), v e VT (32)

Jj=1

where the coefficients c}(¢), ..., cl'(t) are defined as the solutions of the following n ordinary
differential equations derived from

/ (uir, + KVu Vi) de+\ / Vu"Viy dx + /K (t —s)(Vu", Vipg)aads =

“ (33)
/’un’q U g dr+ f(tu )/!ﬂﬂkdfﬂ
Q
for k=1, 2, ..., n. The system of ODEs is supplemented with the following Cauchy
data
u"(0) =u; in (34)

and assume that
ul — ug(x) asn — oo in Wy 2(Q) N LYQ). (35)

According to the general theory of nonlinear ODE, the problem 1} has a solution ¢} (t)
in [0, ¢o], where t5 € (0, 7. The solution can be extended to [0, 7] by a priory estimate which
we shall obtain below.
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4.2 Global priori estimates

Let us consider the case . In this case we obtain the global a priori estimates.

Proof 3 Multiplying both sides of (.) by di’;t , and summing on k, and adding %% ||u"||ZQ
on both side, we have

d n Y n n n 27 d . .,
7 (—IIV 5.0 + Ellu IIZ,Q) +luplsg + £Vl g = [ llge +hi+ L (36)
where

t
L= / K(t = 8)(Vu'(s), Vi (t))s.0ds, (37)

0

1
I = 0 h’(t)+m/Vu?~dex+)\/Vu”~Vw dz+

9o

. (38)

/K(t — $)(Vu", Vw)s ads — ’y/ 172" - wda | (g(t), uf (1), -
0 0

Now we estimate each term on the right hand side of (@) by using the Hélder and Cauchy
inequalities with €y together with the assumptions in . Thus, we have

Dt =2 [l e < 25 4l I 1 0 <
(39)
D o+ Cleooa) 0130 0 < 2 130 + Cleo 7,0, 9) (V0 120) "
Also the Cauchy inequality with some €, gives us
2 t
HE / K(t = V0 O [V o ds < 5 1967130+ 5> [ IV l3ads.  (10)
0

Exploiting the Holder integral inequality and Cauchy inequality with eo > 0, we estimate the
third term iy in (@

1 n n
Bl < & (W(t)! TR [VUllyo [Vl o + A VU ly0 VWl o +

n n|qg—1 n
/|K(t—8)| IVu"(s) o0 [Vwllo g ds + 7 llwll o w50 | 9ll0 Uil dt <

2
€2 2 K 2 2
2 [ B adr + 2 V6l sup l9®l30 IVulag + Z a3 +
/ 0c2 te[0,7]
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]' n
o sup [lg(t) 30 (1M + X2 [V 3o IVell3 0 +

lea t€[0,T]

2 n 2 2 n|2(g—1
K3 [Vl / IV (5) g ds +9° ol o o757 | <

2 2 1 2 2 (41)
|| upllg + ||vw||2Q sup |[|g(t )Ilz,QIIVU?IIQ,Qer— sup [lg(t)[l5.q (10 (6)1+
0 (0,7 0€2 tef0,T]
n n2(g—1
A2V HRG Vel [ 196 (5) 30 ds + O la Va4
Plugging (@)- mto (@, we get
d 1 n Y nq ni2 ni2 <
p + 5 ”V “29 E Ju Hq,Q + a[|u ”29 + B Vuy HQQ >
t
ni2 a2 )41 n 2
OV g+ Ca (IV120)" + o [ IV (s)2gds +Ci <
(42)

e (142 1902+ Lo y) + 6 (14 2 19+ L rleg)
I+ IV lae + o llwlln ) + G (14 5 IV a0 + lletllae )+

t
A
e [ (1+ 319+ 2 1l ) ds + Co
0

2
where o :=1— %2 3= — & — lg—EQ ||VW||§Q sup ||9(t)||§ﬂ7

)\2 2 2 Kg Kg 2
Cri= - lIVwllzg sup flg@)llyg. Coi= 5 e IVwll3 sup lg(t)llsg -
0€2 t€[0,T) t€[0,T)

Cy? 2 2 1 2
Cs = Cleo.1.0.9) + 2 ol sup la(®l 0. Cai= o sup [lg0) B WO
0€2 te[0,T) 2 t€0,T)
Now we choose €;, i = 0,1,2 such that a, 8 > 0, and C;, j = 1,2,3,4 to be finite. It is
possible by (@)

However €1,e9 cannot be chosen such that m > 2, because €9 < 2 due to a > 0. Thus,
choosing €;, 1 = 0, 1,2 with suitable values and in case g —1 < 1 integrating (@ with respect
to T from 0 to t and using , we obtain

t t

y(t) "‘/ (a ||UZ||§Q + ||VUZ||§Q> dr < Cs /?J(T)dT + Cs, (43)

0 0
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nl12 n
where y(t) := 1+ % [Vu ”29 + % [[u Hg,ﬂ’
Cs = Cy+ o+ G5T; Gy o= AT + 2 [V 20 + 2 !
5:= 01 2 343 6= L4 9 Uoll2,0 q tollge -

Omitting the integral terms on left hand side and applying classical Grénwall’s lemma,
inequality implies that

y(t) < Cee®t. (44)
Thus, substituting into and taking suppremum, we obtain the estimate (@/

t
s (G190 0+ 2l )+ [ (oo + 81902 50) ds < 0y < +oc, (45)
0

te[0,T
where My := My (T, Cs, Cg).

4.3 Local a priori estimates

Let now be g < 2*. In this case we obtain the local a priori estimates.

Proof 4 Choosing e;,1 = 0,1, 2 with suitable values as we did in obtaining a priory estimates
above and in case q—1 > 1 integrating @ with respect to T € (0,t) and using , we have

t

t
A0+ [ (alatlin + 8IVaIEa) dr < Cs [ 217 (r)dr + G (46)
0

0

Omitting the second and third terms on left hand side (@ and applying Grinwall’s Lemma
we obtain

2(t) < Co [1— (g — 2)C5C8 %] 77 (47)

for

1
(¢ —2)CsCE*

0<t< T :=

Using and mazximizing by t € (0,T1], we have

A n 2 ,Y n||lq n 2 n 2
s (5 IVu 0+ 2 Nl ) + a5, + BV 5, < Mo <00, (49)

where My := My (T, Cs, Cp).
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4.4 Passage to the limit

By means of reflexivity and up to some subsequences, the estimate implies that

u® — u  weakly-+ in L=(0,T; W, *(Q) N LYQ)) as n — oo, (50)
ul —u; weakly in L*(0,T; W,*(Q)) as n — oo. (51)
On the other hand, implies the existence of function R such that
|9 %" —~ R weakly in L7 (Qr), asn — oo, (52)
where ¢’ = E ] is the Holder conjugate of ¢q. By the compact and continuous embedding

Wy (Q) = L'(Q) = L*(Q), Vr:2<r<?2
and by Aubin-Lions compactness lemma, and imply that

u" — u strongly in L*(0,T; L"(Q)), 2<r <2" asn — oo, (53)
and in particular,

u" — u strongly in L*(0,T; L*(Q)) asn — oo, (54)

where 2* is the Sobolev conjugate of 2, i.e. 2* = d% with d > 2.
As a consequence of and Riesz-Fischer’s theorem, we have up to some subsequence,

u" — u a.e. in Qp asn — oo, (55)
which together with yields (see Lemma 1.3 in [32} p. 12])

[u™|9 U™ — |ulT %y weakly in LY (Qr), asn — oo. (56)
Under the assumption and , , we have also that

u" — u strongly in LY Qr) as n—oo, for ¢<2°
and consequently

[ o0, — lullug, as  n— oo. (57)

Let n(t) be a continuously differentiable function on [0, 7], where T is the maximal time such
that above first and second estimates are hold. Multiplying by n and integrating by
t € [0,T], we obtain

T ¢
/(u:‘zk + ﬁVu?Vsz;t:dt%—A/Vu"Vzk dxdt + //K (t — s)(Vu", Vz)aadsdt =

Qr Qr 0
T

1
7/ lu™ |7 20" 2, dmdt—i—/ 0 h'(t) +/€/VU?V¢U da:—l—)\/Vu”Vw dr+ (58)
9o

0

/K(t—s)(Vu",Vw)Zst—7/|u”|q_2unwdx /gzk dxdt
Q 0
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and using above convergence results , and , we obtain

T ¢
/(utzk + kVu Vzg)dxdt + A / VuVz, dedt + //K(t —5)(Vu, Vzi)2qdsdt =
Qr Qr 0 0
’ 1
7/ lu| 2uz, dmdt+/ G h'(t) + /i/Vuti dr + )\/VUVw dr+ (59)
go
Qr 0 Q Q

t
/K(t —5)(Vu, Vw)s ods — 'y/ |u|? " ?uwdz /gzk dxdt
0 0 Q

for all z = Wp(x)n(t), k € {1,...,n}. By linearity and by a continuity argument, the
equation is still true for any

zeZ ={z=yC: eV, (€C;0,1)}.

5 Global and local existence: an absorption case.
In this section we present existence of weak solution to the problem - for

7 <0. (60)
For existence of the weak solution the following theorems hold.

Theorem 3 (Global existence) Let the conditions (@—, (@, (@), (@) are fulfilled.
Then there exists a global weak solution to the problem — in the sense of Definition .
Moreover, the weak solutions satisfy the estimate (@) for all t € [0,T] with another positive
constant C' depending on data of the problem.

Theorem 4 (Local existence) Let the conditions @-, (@), , (@) are fulfilled. Then
there exists To € (0,T] and at least one weak solution to the problem (14)-(17) in the sense

of Definition |1| and satisfies the estimate (@) in Qr,, where Ty depending on data of the
problem.

Proof 5 The proof of Theorems|[3 and [ are similar to the Theorems[1] and [3

6 Unigeness
Theorem 5 Assume that the following conditions

Vw € L*(), (61)

2 d>2 (62)
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hold. Moreover, there exists a positive constant m such that

K
Z S lg@)ll5.0 IVwllsq <m < 2. (63)
0 te0,T

If v <0, assume addition to (ﬂ) (@ that all conditions of Theoremsl and@ are fulfilled.
If v > 0, assume addition to (ﬂ) (@ that all conditions of Theorem @ andl are fulfilled.
Then the weak solution of (.) (.) 1S unique.

Proof 6 Let u; and uy be two weak solutions to the problem - in the sense of
Definition . Using Oyu := Oyu; — Oyus as a test function in , it follows, by subtracting
the equation for us to the equation for uy, that

Ad
2 \Vull g + lulq + 5 IVl = D+ G+ P (64
where
¢
D=~ [ K(t = s)(Vus). Vus(t)sads. (65
0
G ’y/(\ull [ug|? ) -y da (66)
0
F= 0 R/Vut-Vw dx—i—/\/Vu-Vw dx—i—/K(t—s)(Vu,Vw)g,st
9o

(67)
[l o el 2 ) - e | [ gt 0pud
Q Q

Using Hélder’s and Minkovskii inequalities and @ i Lemma |2 with § = 0, we estimate D,
G and F

t
2
DI < Z1Vula+ 52 [ IVuliads (09
0

Gl = 7 [ (" s = fual"™ w2) e < | [ Jul (] + Jual)" o <
Q
q—2 (69)
s S WIC? (Vg + [Vuzllyg)

A 2d
2 2
HVUHQ,Q HvutHz,Q < E ||Vut||2,§z + §b0 HVUH2,Q7 ¢ 5

7] lallye o Wfun ] + full1f, 24 g [l

d—2
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2hyPC2ce-2

where by := 3

1
|F| < E HgHQQ Hut”QQ (’i HVUtHQ,Q HVWH2,Q +A HVUHQQ va”2,§2 +

t
/ K(t - 5) [Vullyq [Vellods + / (ul (fr] + o) "2 ] de) | <
0

1
Lol g |51V l0 [Velon + AVl Vo]0 +

t

/K(t = 5) [ Vullyq IV&lly0 ds + 7] lu
0

q—2
27,0 <HU1 +U2H<q—22)d79> [wWllye 0| <

€1 2 1 2 2
— ||u Vw sup Vu Vw sup X
3 llia + g IVelia sup lolia IVulBa + o IVelEa s ol

(70)
q—2
N[ Vullpq + K3 / IVul} g ds ++°C2 (IVlq + Vuzllog) IVulg | <
€1
EHngn 4l2 HVme SUP HQH2QHVUtHQQ+ bl HVUH29+ b2/Hqu2Q
where
2d  (¢—2)d 2d 2d
< < =29 < ——
1=a=2" 2 i—2° 1=a—2
1 _
b= e IVwllsg sup llgllzq (A +297C1C17?),
2\lge " telo,T] '
K2
b= gy IVea s ol
Furthermore, taking into account Sobolev’s inequality we derive
1
IVullo > gy (ke +1Vul50) = (o), (71)

where y(t) := |[ul3 o + |Vul3o and 1= g
Using estimates for u;, i = 1,2, and choosing €;,1 = 0, 1,2 with suitable values as we did
as obtaining a priory estimates above we can make a, B to be positive and finite constants,

and it is possible due to the assumption j Sup g2 VW3 < m < 2,
O tefo,T ' ’

Plugging (64 (.) (@ nto and using (.) and integrating by T € (0,t) we arrive to
the following Cauchy problem

0 (72)
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where
o b1 + b1 + by
: —77 )

Due to the conditions to the Theorem [J and then by the Gronwall’s lemma, it follows from
@ that y(t) = 0 for all t € [0, Thuas], and consequently that uy = uo, where Ty is a
mazimal time such that the weak solution to the problem — exists.

7 Conclusion

In the paper, the space of a weak generalized solution of inverse problem for the
pseudoparabolic equation with memory term and damping is defined. Under suitable
conditions on the data of the problem, the global and local in time existence and uniqueness
theorems are obtained and proved.
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