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Аннотация

Abstract

We show that for every ordinal notation a of a successor ordinal > 1, there is a Σ
−1

a
family

A = {A,B} with A ⊂ B such that the Rogers semilattice of A has exactly one element. This

extends a result of Badaev and Talasbaeva, proved for the case in which a is the ordinal notation

of 2.

1 Introduction

In this paper we generalize a result of Badaev and Talasbaeva [2], stating that there is a
family of d-c.e. sets A = {A,B}, with A ⊂ B (i.e., A ⊆ B, and A 6= B) such that the Rogers
semilattice of A (in the sense of Goncharov and Sorbi [7]) consists of exactly one element.
For unexplained notions and results on the theory of numberings, the reader is referred to
[6].

In a nutshell, Goncharov and Sorbi’s proposal for generalizing the theory of numberings
to different notions of computability consists in the following. Let C be an abstract "notion"
of computability, i.e. a countable class of sets of numbers, and let A ⊆ C: then a numbering
π : ω → A is C–computable, if {〈k, x〉 : x ∈ π(k)} ∈ C. On numberings α, β of a same family,
one defines α ≤ β if there is a computable function f such that α = β ◦ f ; and α ≡ β if
α ≤ β and β ≤ α; for A ⊆ C, we denote by ComC(A) the set of C–computable numberings
of A; we say that A is C–computable if ComC(A) 6= ∅; finally we denote by RC(A) the set of
Rogers degrees of the elements of ComC(A), i.e. the set ComC(A)/ ≡ ; it can be shown that
RC(A), if nonempty, is an upper semilattice. When the class C is clearly understood from
the context, it is customary to drop the prefix C, and write simply "computable" instead of
"C–computable".

The motivation for Badaev and Talasbaeva’s result lies in the fact that in the classical case,
i.e. in the case C = Σ0

1–sets, it is well known ([6]) that the Rogers semilattice of any family
{A,B}, with A ⊂ B, is infinite. This result holds of all abstract notions of computability
(in the sense of Goncharov and Sorbi [7]) with reasonable “closure” properties. Indeed, let
A = {A,B}, with A ⊂ B: for every computably enumerable (c.e.) set U , one can define the
numbering

αU(k) =

{

A, if k /∈ U ;
B, if k ∈ U .

which is computable, since

{〈k, x〉 : x ∈ αU(k)} = {〈k, x〉 : x ∈ A or [x ∈ B and k ∈ U ]} (1)
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and the latter set is Σ0
1. It is then easy to see that, for all pairs of c.e. sets U, V ,

U ≤m V ⇔ αU ≤ αV

(where ≤m denotes many-one reducibility), and thus the upper semilattice of the c.e. m–
degrees is embeddable (as an upper semilattice) into the Rogers semilattice of the family
{A,B}, showing that this Rogers semilattice is infinite.

Clearly the argument remains valid for every notion of computability C for which, given
any c.e. set U , the right-hand side of (1) is still in C. In particular:

Theorem 1.1 If C ∈ {Σ0
n,Π

0
n : n ≥ 1}∪{Σ1

1,Π
1
1,∆

1
1 : n ≥ 0} then the Rogers semilattice

of any C-computable family {A,B}, with A ⊂ B, is infinite.
Proof. The proof is immediate. Notice that in most cases one can embed upper semilattices

of m–degrees, that are “bigger” than the upper semilattice of c.e. m–degrees: for instance, let
C = Σ0

n, n ≥ 1: if A,B, U ∈ Σ0
n, then the right-hand side of (1) is still in Σ0

n, and thus the
upper semilattice of the Σ0

n m–degrees is embeddable into the Rogers semilattice of {A,B}.
In this paper, we extend Badaev and Talasbaeva’s result showing that for every n ≥ 2

there is a family A = {A,B} with A ⊂ B, such that RΣ−1
n

(A) has exactly one element. The

result admits a further extension to the infinite levels of the Ershov hierarchy of ∆0
2 sets,

given by notations of successor ordinals. The proof is a straightforward generalization of [2].

2 Computable numberings for families of sets in the Ershov hierar-

chy

We refer to Kleene’s system O of ordinal notations for computable ordinals: for details, see
[9]. In particular, for a ∈ O, the symbol |a|O represents the ordinal of which a is a notation.
We now briefly recall the definition of the Ershov hierarchy, introduced in [3, 4, 5]. Our
presentation is based on [8].

Definition 2.1 If a is a notation for a computable ordinal, then a set of numbers A is
said to be Σ−1

a if there are a computable function f(z, t) and a partial computable function
γ(z, t) such that, for all z,

1. A(z) = limt f(z, t), with f(z, 0) = 0; (here, given a set X, and a number z, the symbol
X(z) denotes the value of the characteristic function of X on z);

2. (a) γ(z, t) ↓⇒ γ(z, t + 1) ↓, and γ(z, t + 1) ≤O γ(z, t) <O a;

(b) f(z, t + 1) 6= f(z, t) ⇒ γ(z, t + 1) ↓6= γ(z, t).

We call the partial function γ the mind–change function for A, relatively to f .
A Σ−1

a –approximation to a Σ−1
a –set A, is a pair 〈f, γ〉, where f and γ are respectively a

computable function and a partial computable function satisfying 1. and 2., above, for A.
Following [7], we give the following:
Definition 2.2 A Σ−1

a –computable numbering, or simply a computable numbering, of a
family A of Σ−1

a –sets is an onto function π : ω −→ A, such that

{〈k, x〉 : x ∈ π(k)} ∈ Σ−1
a .

To be fully explicit, a computable numbering of a family A of Σ−1
a –sets is an onto function

π : ω −→ A for which there exist a computable function f(y, t) and a partial computable
function γ(y, t), such that
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1. π(k)(x) = limt f(〈k, x〉, t), with f(y, 0) = 0 for all y;

2. γ satisfies 2. of Definition 2.1 relatively to f .

In the rest of the paper we will write Com−1
a (A) for ComΣ−1

a

(A), and R
−1
a (A) for RΣ−1

a

(A).

We recall (see e.g. [8]) that there is an effective indexing of the family of all Σ−1
a sets. For

instance, given a, let Ua be Σ−1
a -complete (see e.g. [1]). Then {Az}z∈ω, where

Az = φ−1
z [Ua]

provides such an effective indexing, where “effective” means that {〈x, z〉 : x ∈ Az} ∈ Σ−1
a .

From this, it is possible to define an effective indexing of all computable numberings of
families of Σ−1

a sets. Indeed, if π is a computable numbering of a family of Σ−1
a sets, then by

the above and the s-m-n-Theorem, there exists a total computable function f such that, for
every k,

π(k) = φ−1
f(k)[Ua].

Now, let u(e, k) be a partial computable universal function of two variables, and let

πe(k) = φ−1
u(e,k)[Ua],

with the understanding that if u(e, k) ↑ then πe(k) = ∅. It follows that {πe}e∈ω is the desired
indexing: notice thatt

{〈e, k, x〉 : x ∈ πe(k)} ∈ Σ−1
a . (2)

An indexing satisfying (2) is called a Σ−1
a –computable indexing of all Σ−1

a –computable num-
berings. From e one has (see e.g. [8]) an effective way of getting a computable function fe and
a partial computable function γe witnessing that {〈k, x〉 : x ∈ πe(k)} is Σ−1

a , as in Definition
2.2.

Definition 2.3 Let a ∈ O, and let {Rk}k∈ω be a computable partition of a computable set
into infinite sets. We say that a Σ−1

a –computable numbering π has a special approximation
with respect to {Rk}k∈ω if there is a Σ−1

a –approximation 〈f, γ〉 to π (in the sense of Definition
2.2) such that, for every k, s, x,

1. |{y : f(〈k, y〉, s+ 1) 6= f(〈k, y〉, s)}| ≤ 1;

2. f(〈k, x〉, s+ 1) 6= f(〈k, x〉, s) ⇒ s ∈ Rk,

where, for a given set X, the symbol |X| denotes the cardinality of X.
The features of a special approximation (i.e. at most one change at each stage; and changes

may be expected only at certain stages), for a numbering, will be used in the proof of Theorem
3.1. The following is a useful, although straightforward, lemma:

Lemma 2.4 For every ordinal notation a, every Σ−1
a –computable numbering π, and every

computable partition {Rk}k∈ω of a computable set into infinite sets, π has a special approxi-
mation with respect to {Rk}k∈ω.

Proof. We show how to build a special approximation starting from a given one. Suppose
we are given a Σ−1

a –approximation to π, and let {Rk}k∈ω be a computable partition of a
computable set into infinite sets. The proof is by induction. At stage s we define for every z,
f̂(z, s), γ̂(z, s), and two finite sets Li(z, s) and Lf (z, s), with Lf (z, s) ⊆ Li(z, s). On Li(z, s)
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we define also a strict linear order <s: we use the same symbol <s to denote its restriction
to Lf (z, s).

Stage 0). For every z, h, let f̂(z, 0) = 0, γ̂(z, 0) =↑, Li(h, 0) = Lf (h, 0) = ∅, and <0= ∅.

Stage s+ 1). For every h, let

Li(h, s+ 1) = Lf (h, s) ∪ {〈y, s〉 : f(〈h, y〉, s+ 1) 6= f(〈h, y〉, s)}.

Order Li(h, s+ 1) as follows: if v, w ∈ Li(h, s+ 1) then

v <s+1 w ⇔ [v, w ∈ Lf (h, s) & v <s w] ∨ [v, w /∈ Lf (h, s) & v < w].

Next, we distinguish two cases:

1. If s /∈
⋃

k Rk, then define for all z, h, f̂(z, s + 1) = f̂(z, s), γ̂(z, s + 1) = γ̂(z, s), and
Lf (h, s+ 1) = Li(h, s+ 1).

2. Assume s ∈ Rk. If Li(k, s + 1) = ∅ then for every z, h define f̂(z, s + 1) = f̂(z, s),
γ̂(z, s + 1) = γ̂(z, s), and Lf(h, s + 1) = Li(h, s + 1). If Li(k, s + 1) 6= ∅, and 〈x, r〉 is

the <s+1–least number of Li(k, s+ 1), then for every z define f̂(z, s + 1) = f̂(z, s) and
γ̂(z, s + 1) = γ̂(z, s), unless z = 〈k, x〉, in which case define

f̂(〈k, x〉, s+ 1) = f(〈k, x〉, r + 1),
γ̂(〈k, x〉, s+ 1) = γ(〈k, x〉, r + 1).

For all h, let Lf (h, s+ 1) = Li(h, s+ 1), unless h = k, in which case define

Lf (k, s+ 1) = Li(k, s+ 1)− {〈x, r〉}.

In order to show that 〈f̂ , γ̂〉 is the desired Σ−1
a –approximation, notice that for every u

there are bijective finite sets C, Ĉ, with

C = {s0 < · · · < snu
}, Ĉ = {r0 < · · · < rnu

},

such that

C = {s : f̂(u, s+ 1) 6= f̂(u, s)}, Ĉ = {r : f(u, r + 1) 6= f(u, r)},

and
f̂(u, si + 1) = f(u, ri + 1), γ̂(u, si + 1) = γ(u, ri + 1).

Finally, notice that f̂(z, s + 1) 6= f̂(z, s) only if z = 〈k, x〉, and for some r, 〈x, r〉 is

<s+1–least of Li(k, s+ 1), and s ∈ Rk. Hence 〈f̂ , γ̂〉 is special.
A similar argument shows:
Corollary 2.5 Let {πe}e∈ω be a Σ−1

a –computable indexing of all computable numberings
of all Σ−1

a –computable families, and let {Re,k}e,k∈ω be a computable partition of a computable
set into infinite sets. For every e, one can uniformly find a special approximation to πe

with respect to the partition {Re,k}k∈ω; in other words, there is a pair 〈f, γ〉 of functions
having three variables, with f computable and γ partial computable, such that, for every e,
the pair 〈fe, γe〉 is a special approximation to πe with respect to {Re,k}k∈ω, where fe(〈k, x〉, s) =
f(e, 〈k, x〉, s) and γe(〈k, x〉, s) = γ(e, 〈k, x〉, s).

Corollary 2.6 For every A ∈ Σ−1
a and any computable infinite set R there is a Σ−1

a –
approximation to A which is special with respect to R, meaning a Σ−1

a –approximation 〈f, γ〉
to A, such that for every s, z, |{y : f(y, s+ 1) 6= f(y, s)}| ≤ 1, and f(z, s + 1) 6= f(z, s) or
γ(z, s + 1) 6= γ(z, s) only if s ∈ R.
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3 The theorem

We are now in a position to prove the theorem:

Theorem 3.1For every ordinal notation a, with |a|O > 1 and |a|O successor, there exists
a Σ−1

a –computable family A = {A,B}, with A ⊂ B such that |R−1
a (A))| = 1.

Proof. Given a, with |a|O > 1 and |a|O successor, we build A ⊆ B, A 6= B, and a Σ−1
a –

computable numbering α of A = {A,B}, such that for every Σ−1
a –computable numbering π

of A, we have π ≡ α.

We will define α(0) = A, α(1) = B, and α(k) = B for all k ≥ 1.

Let {πe}e∈ω be a Σ−1
a –computable indexing of all Σ−1

a –computable numberings, and by
Corollary 2.5 let us refer to uniform special approximations to these numberings with respect
to the partition {Re,k}e,k∈ω, where

Re,k = {〈e, k, x〉+ 1 : x ∈ ω} :

if 〈f, γ〉 is such a uniform special approximation, write fe(〈k, x〉, s) = f(e, 〈k, x〉, s) and
γe(〈k, x〉, s) = γ(e, 〈k, x〉, s). We will define α so that, for every e, k, the following requirement
is satisfied:

Qe,k : πe(k) ∈ {A,B} ⇒ ge(k) defined and πe(k) = α(ge(k)),

where ge is a partial computable function defined by us.

The construction is by stages. At stage s+1 > 1 with s ∈ Re,k (notice that for every t > 0
there is a unique e, k such that t ∈ Re,k)) our action aims at making πe(k) /∈ A (so that πe

is not a numbering of A), or we define ge(k) ∈ {0, 1} so as to ensure that πe(k) = α(ge(k)),
if eventually πe(k) ∈ {A,B}. This is enough to show the claim since, if πe ∈ Com−1

a (A) then
trivially α ≤ πe.

Our attempts at diagonalizing πe(k) against A,B at stage s + 1 with s ∈ Re,k make use
of (computably given) witnesses a0(e, k), a1(e, k): we assume that a0(e, k) 6= a1(e, k), and
{a0(e, k), a1(e, k)} ∩ {a0(e

′, k′), a1(e
′, k′)} = ∅ if 〈e, k〉 6= 〈e′, k′〉. So at this stage we define

fA(a0(e, k), s+ 1), fA(a1(e, k), s+ 1), and γA(a0(e, k), s+ 1), γA(a1(e, k), s+ 1); and likewise
fB(a0(e, k), s + 1), fB(a1(e, k), s + 1) and γB(a0(e, k), s + 1), γB(a1(e, k), s + 1). The pair
〈fA, γA〉 will be a Σ−1

a –approximation to A; the pair 〈fB, γB〉 will be a Σ−1
a –approximation

to B. From these two pairs we will also get a Σ−1
a –approximation 〈f̂ , γ̂〉 to α, by letting

f̂(〈0, x〉, s+ 1) = fA(x, s + 1), f̂(〈k, x〉, s+ 1) = fB(x, s + 1), γ̂(〈0, x〉, s + 1) = γA(x, s + 1),
and γ̂(〈k, x〉, s+1) = γB(x, s+1), for k ≥ 1. It is understood that all values of fA, fB, γA, γB
that are not explicitly defined maintain the same values as at the preceding stage, the values
at s = 0 being 0 for fA, fB, and undefined for γA, γB. Since A and B are disjoint, it is
straightforward to see that 〈f̂ , γ̂〉 is a Σ−1

a –approximation to α. Finally, at stage s+1, s ∈ Re,k,
if ge,s(k) =↑ (i.e. the value of ge(k) is still undefined), we might define also ge,s+1(k) = 0 or
ge,s+1(k) = 1. After defining ge(k) our only worry will be to make sure that πe(k) 6= A if
ge(k) = 1, and πe(k) 6= B if ge(k) = 0. If πe is a numbering of A, then eventually ge is total,
and πe ≤ α via ge.

Without loss of generality we may also assume that our uniform special approximation
〈f, γ〉 also satisfies, for every e, k, x, f(e, 〈k, x〉, 1) = 0.
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Let s ∈ Re,k: at stage s+1 we monitor the initial πe(k)-setup at s+1, meaning the table
∣

∣

∣

∣

∣

∣

∣

∣

πe(k) (u, i) (v, j)
A (u′, i′) (v′, j′)
B (u′′, i′′) (v′′, j′′)

ge(k) w

∣

∣

∣

∣

∣

∣

∣

∣

(3)

where u, u′, u′′, v, v′, v′′ ∈ {0, 1}, w ∈ {0, 1, ↑}, and i, i′, i′′, j, j′, j′′ ∈ ω. The table has the
following meaning: for simplicity, let a0 = a0(e, k), and a1 = a1(e, k)):

1. (first line) fe(〈k, a0〉, s+1) = u, fe(〈k, a1〉, s+1) = v; moreover, for r ≤ s+1, fe(〈k, a0〉, r)
has already made i changes, and fe(〈k, a1〉, r) has already made j changes;

2. (second line): fA(a0, s) = u′, fA(a1, s) = v′; moreover, for r ≤ s, fA(a0, r) has already
made i′ changes, and fA(a1, r) has already made j′ changes;

3. (third line): fB(a0, s) = u′′, fB(a1, s) = v′′; moreover, for r ≤ s, fB(a0, r) has already
made i′′ changes, and fB(a1, r) has already made j′′ changes;

4. (fourth line) w denotes the value of ge(k) at the end of stage s.

At the end of the stage, as a result of our action performed during the stage we have the final
πe(k)-setup at s+ 1, i.e. the table

∣

∣

∣

∣

∣

∣

∣

∣

πe(k) (u, i) (v, j)
A (u′, i′) (v′, j′)
B (u′′, i′′) (v′′, j′′)

ge(k) w

∣

∣

∣

∣

∣

∣

∣

∣

.

Notice that the first line of the final setup is just the same as in the initial setup; the overlined
symbols denote the (possibly new) values of A,B, and of ge(k), at the end of the stage.

The advantage of working with uniform special approximations is that we can take com-
plete care of the requirement Qe,k only by looking at the behavior of πe(k) at stages s + 1
with s ∈ Re,k: moreover at each such stage at most one of a0, a1 may change its membership
status in πe(k).

The construction Stage 0): Let fA(z, 0) = fB(z, 0) = 0 and let γA(z, 0) = γB(z, 0) =↑.

Stage 1): for every e, k, let fA(a0(e, k), 1) = 1, γA(a0(e, k), 1) = 2 (remember that |2|O =
1); let fB(a0(e, k), 1) = fB(a1(e, k), 1) = 1, γB(a0(e, k), 1) = b (where 2b = a, i.e. b is the
unique ordinal notation, with b <O a, of the predecessor of |a|O), and γB(a1(e, k), 1) = 1
(remember that |1|O = 0). So for every e, k, the final πe(k)–setup at stage 1 is

∣

∣

∣

∣

∣

∣

∣

∣

πe(k) (0, 0) (0, 0)
A (1, 1) (0, 0)
B (1, 1) (1, 1)

ge(k) ↑

∣

∣

∣

∣

∣

∣

∣

∣

Stage s + 1), s > 0. Suppose s ∈ Re,k, and assume that the initial πe(k)–setup at this
stage is σi(s+ 1). For simplicity let ai = ai(e, k). We distinguish the following cases:
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1. If

σi(s+ 1) =

∣

∣

∣

∣

∣

∣

∣

∣

πe(k) (u, i) (1, 1)
A (u′, i′) (0, 0)
B (1, 1) (1, 1)

ge(k) ↑

∣

∣

∣

∣

∣

∣

∣

∣

(with (u, i) = (0, 0) and (u′, i′) = (1, 1), or (u, i) = (1, 1) and (u′, i′) = (0, 2)) then define
ge(k) = 1, fA(a0, s+ 1) = 0, γA(a0, s+ 1) = 1; so the final setup is

σf(s+ 1) =

∣

∣

∣

∣

∣

∣

∣

∣

πe(k) (u, i) (1, 1)
A (0, 2) (0, 0)
B (1, 1) (1, 1)

ge(k) 1

∣

∣

∣

∣

∣

∣

∣

∣

2. If

σi(s+ 1) =

∣

∣

∣

∣

∣

∣

∣

∣

πe(k) (1, 1) (0, 0)
A (1, 1) (0, 0)
B (1, 1) (1, 1)

ge(k) ↑

∣

∣

∣

∣

∣

∣

∣

∣

then extract a0 from A, i.e. define fA(a0, s+ 1) = 0, and γA(a0, s+ 1) = 1, so the final
setup is

σf(s+ 1) =

∣

∣

∣

∣

∣

∣

∣

∣

πe(k) (1, 1) (0, 0)
A (0, 2) (0, 0)
B (1, 1) (1, 1)

ge(k) ↑

∣

∣

∣

∣

∣

∣

∣

∣

3. If

σi(s+ 1) =

∣

∣

∣

∣

∣

∣

∣

∣

πe(k) (0, 2) (0, 0)
A (0, 2) (0, 0)
B (1, 1) (1, 1)

ge(k) ↑

∣

∣

∣

∣

∣

∣

∣

∣

then define ge(k) = 0: so the final setup is

σf(s+ 1) =

∣

∣

∣

∣

∣

∣

∣

∣

πe(k) (0, 2) (0, 0)
A (0, 2) (0, 0)
B (1, 1) (1, 1)

ge(k) 0

∣

∣

∣

∣

∣

∣

∣

∣

4. If none of the above cases applies then, as we argue in the verification, ge(k) is defined.
If σi

s+1 is not winning (meaning that either ge(k) = 1 and v = v′, or ge(k) = 0 and
u = u′′: here u, u′′, v, v′ are as in table (3); also we assume by induction that at the end
of the previous relevant stage the final πe(k)-setup is winning) then:

(a) if ge(k) = 1 then (by properties of a special approximation) we have fe(〈k, a1〉, s+
1) 6= fe(〈k, a1〉, s), and the initial setup at s+ 1 is of the form:

σi(s+ 1) =

∣

∣

∣

∣

∣

∣

∣

∣

πe(k) (u, i) (v, j)
A (0, 2) (v, j − 2)
B (1, 1) (1, 1)

ge(k) 1

∣

∣

∣

∣

∣

∣

∣

∣
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let A(a1, s+ 1) = 1−A(a1, s) and γA(a1, s+ 1) = γe(〈k, a1〉, s): the final setup is

σf (s+ 1) =

∣

∣

∣

∣

∣

∣

∣

∣

πe(k) (u, i) (v, j)
A (0, 2) (1− v, j − 1)
B (1, 1) (1, 1)

ge(k) 1

∣

∣

∣

∣

∣

∣

∣

∣

(b) if ge(k) = 0 then, similarly, we have fe(〈k, a0〉, s+ 1) 6= fe(〈k, a0〉, s), and

σi(s+ 1) =

∣

∣

∣

∣

∣

∣

∣

∣

πe(k) (u, i) (v, j)
A (0, 2) (0, 0)
B (u, i− 2) (1, 1)

ge(k) 1

∣

∣

∣

∣

∣

∣

∣

∣

let B(a0, s+1) = 1−B(a0, s) and γB(a0, s+1) = γe(〈k, a0〉, s+1): the final setup
is

σf(s + 1) =

∣

∣

∣

∣

∣

∣

∣

∣

πe(k) (u, i) (v, j)
A (0, 2) (0, 0)
B (1− u, i− 1) (1, 1)

ge(k) 0

∣

∣

∣

∣

∣

∣

∣

∣

If none of the above cases apply, or after acting through one of the above cases, move to
stage s+ 2.

This concludes the construction, with A,B eventually given by A(z) = lims fA(z, s) and
B(z) = lims fB(z, s), and with α ∈ Comp−1a({A,B}) defined as explained earlier.

Verification. Let A = {A,B}, let e, k be given, and ai = ai(e, k). We want to show
that either πe(k) /∈ {A,B}, or ge(k) is defined and πe(k) = α(ge(k)).

If fe(〈k, a0〉, s) = fe(〈k, a1〉, s) = 0 for all s, then the claim is true, since in this case
πe(k) /∈ {A,B}, as a0 ∈ A and a0, a1 ∈ B. Since a1 /∈ A, we trivially have in this case that
A ∩ {a0, a1} ⊂ B ∩ {a0, a1}.

Otherwise, by definition of a special approximation, there is a least s0 > 0 such that
fe(〈k, a0〉, s0 + 1) 6= fe(〈k, a0〉, s0) or fe(〈k, a1〉, s0 + 1) 6= fe(〈k, a1〉, s0), but noth both, and
s0 ∈ Re,k.

1. If fe(〈k, a1〉, s0 + 1) 6= fe(〈k, a1〉, s0), then at stage s0 + 1 we act as in case 1 of the
construction, and get the final setup

σf(s0 + 1) =

∣

∣

∣

∣

∣

∣

∣

∣

πe(k) (0, 0) (1, 1)
A (0, 2) (0, 0)
B (1, 1) (1, 1)

ge(k) 1

∣

∣

∣

∣

∣

∣

∣

∣

From now on we may act on behalf of Qe,k only through part 4a of the construction.
Every time we act in this way (due to a change of fe(〈k, a1〉, s + 1) 6= fe(〈k, a1〉, s), at
stages s+ 1, with s in Re,k, we have a not winning initial setup of the form

σi(s+ 1) =

∣

∣

∣

∣

∣

∣

∣

∣

πe(k) (u, i) (v, j)
A (0, 2) (v, j − 2)
B (1, 1) (1, 1)

ge(k) 1

∣

∣

∣

∣

∣

∣

∣

∣
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ending with a final setup of the form

σf (s+ 1) =

∣

∣

∣

∣

∣

∣

∣

∣

πe(k) (u, i) (v, j)
A (0, 2) (1− v, j − 1)
B (1, 1) (1, 1)

ge(k) 1

∣

∣

∣

∣

∣

∣

∣

∣

after which we define γA(a1, s + 1) = γe(〈k, a1〉, s). But as limt fe(〈k, a1〉, t) exists, we
eventually achieve that if πe(k) ∈ A then πe(k) = α(ge(k)) as πe(k) = α(1). Notice that
for every t, γA(a1, t) is correctly defined making this function a correct mind–change
function, since for every t + 1 starting from the first change of the memberhip status
of a1 in πe(k), we define γA(a1, t + 1) = γe(〈k, a1〉, t). The values γA(a0, t), γB(a0, t)
and γB(a1, t) are trivially correctly defined, since there is no further changes in the
membership status of a0 in A, and of a0, a1 in B.

2. If fe(〈k, a0〉, s0 + 1) 6= fe(〈k, a0〉, s0) then we first act through 2, and then, if we act
again, we may assume that we act through 3, since otherwise action through 1 would
yield a final setup of the form

σf(s+ 1) =

∣

∣

∣

∣

∣

∣

∣

∣

πe(k) (1, 1) (1, 1)
A (0, 2) (0, 0)
B (1, 1) (1, 1)

ge(k) 1

∣

∣

∣

∣

∣

∣

∣

∣

but then by an argument similar to the one used in the previous case, we may conclude
that suitably changing fA(a1, s + 1) in response to, and diagonalizing against, corre-
sponding changes of fe(〈k, a1〉, s + 1) we eventually achieve success of our strategy. So
assume that when we act again at, say s1 + 1, we do it through 3 because an initial
setup of the form

σi(s1 + 1) =

∣

∣

∣

∣

∣

∣

∣

∣

πe(k) (0, 2) (0, 0)
A (0, 2) (0, 0)
B (1, 1) (1, 1)

ge(k) ↑

∣

∣

∣

∣

∣

∣

∣

∣

At the same stage, we get the final setup

σf(s1 + 1) =

∣

∣

∣

∣

∣

∣

∣

∣

πe(k) (0, 2) (0, 0)
A (0, 2) (0, 0)
B (1, 1) (1, 1)

ge(k) 0

∣

∣

∣

∣

∣

∣

∣

∣

From now on we may act on behalf of Qe,k only through part 4b of the construction, when
finding initial πe(k)–setups that are not winning: we start by suitably changing fB(a0, s+
1) in response to, and diagonalizing against, corresponding changes of fe(〈k, a0〉, s+1).
By ∆0

2-ness, the process eventually stops, at the end of which we have correctly defined
the values of the mind–change functions γA, γB on a0 and a1. To see for instance that
the values γB(a0, t) are correctly defined remember that we define γB(a0, 1) = b (where
b <O a is a notation for the predecessor of |a|O), and then we may redefine the values
only at a stage s2 + 1 when fe(〈k, a0〉, s + 1) has already made two changes, and so,
by construction, γB(a1, s2 + 1) = γe(〈k, a0〉, s2 + 1) <O b. From this stage on, the next
values of γB on a1 will be defined through the corresponding values of γe on 〈k, a1〉.
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In either case 1 or 2, we have a0 /∈ A, a1 ∈ B; if ge(k) is not defined, or ge(k) = 0 then
a1 /∈ A; if ge(k) = 1 then a0 ∈ B. In any case we have that A∩ {a0, a1} ⊂ B ∩ {a0, a1}. Since
this holds of every e, k, we conclude that A ⊂ B.

Remark A closer look at the construction shows that if |a|O = n ∈ ω, n ≥ 2, then
for every e, k, fA(a0(e, k), t) changes at least once and at most 2 times; fA(a1(e, k), t) and
fB(a0(e, k), t) change at most n − 1 times (and fB(a0(e, k), t) at least once); fB(a1(e, k), t)
changes exactly once. Thus in general B is n − 1-c.e., and A is n − 1-c.e. or A is 2-c.e. if
n = 2, in accordance with a similar remark made for n = 2 by Badaev and Talasbaeva [2].

Problem. We do not know if Theorem 3.1 is true also of ordinal notations of limit
ordinals, although we conjecture that it is so.
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