A note on Rogers semilattices of families of two embedded sets in the Ershov hierarchy

M. MANAT¹, A. $SORBI^2$

¹Kazakh National University, Al-Farabi ave., 71, Almaty, 050038, Kazakhstan e-mail: manat.mustafa@gmail.com
²Dipartimento di Scienze Matematiche ed Informatiche "Roberto Magari", Università di Siena, 53100 Siena, Italy

e-mail: sorbi.andrea@gmail.com

Аннотация

Abstract

We show that for every ordinal notation a of a successor ordinal > 1, there is a Σ_a^{-1} family $\mathcal{A} = \{A, B\}$ with $A \subset B$ such that the Rogers semilattice of \mathcal{A} has exactly one element. This extends a result of Badaev and Talasbaeva, proved for the case in which a is the ordinal notation of 2.

1 Introduction

In this paper we generalize a result of Badaev and Talasbaeva [2], stating that there is a family of *d*-c.e. sets $\mathcal{A} = \{A, B\}$, with $A \subset B$ (i.e., $A \subseteq B$, and $A \neq B$) such that the Rogers semilattice of \mathcal{A} (in the sense of Goncharov and Sorbi [7]) consists of exactly one element. For unexplained notions and results on the theory of numberings, the reader is referred to [6].

In a nutshell, Goncharov and Sorbi's proposal for generalizing the theory of numberings to different notions of computability consists in the following. Let \mathcal{C} be an abstract "notion" of computability, i.e. a countable class of sets of numbers, and let $\mathcal{A} \subseteq \mathcal{C}$: then a numbering $\pi: \omega \to \mathcal{A}$ is \mathcal{C} -computable, if $\{\langle k, x \rangle : x \in \pi(k)\} \in \mathcal{C}$. On numberings α, β of a same family, one defines $\alpha \leq \beta$ if there is a computable function f such that $\alpha = \beta \circ f$; and $\alpha \equiv \beta$ if $\alpha \leq \beta$ and $\beta \leq \alpha$; for $\mathcal{A} \subseteq \mathcal{C}$, we denote by $Com_{\mathcal{C}}(\mathcal{A})$ the set of \mathcal{C} -computable numberings of \mathcal{A} ; we say that \mathcal{A} is \mathcal{C} -computable if $Com_{\mathcal{C}}(\mathcal{A}) \neq \emptyset$; finally we denote by $\mathfrak{R}_{\mathcal{C}}(\mathcal{A})$ the set of *Rogers degrees* of the elements of $Com_{\mathcal{C}}(\mathcal{A})$, i.e. the set $Com_{\mathcal{C}}(\mathcal{A})/\equiv$; it can be shown that $\mathfrak{R}_{\mathcal{C}}(\mathcal{A})$, if nonempty, is an upper semilattice. When the class \mathcal{C} is clearly understood from the context, it is customary to drop the prefix \mathcal{C} , and write simply "computable" instead of " \mathcal{C} -computable".

The motivation for Badaev and Talasbaeva's result lies in the fact that in the classical case, i.e. in the case $\mathcal{C} = \Sigma_1^0$ -sets, it is well known ([6]) that the Rogers semilattice of any family $\{A, B\}$, with $A \subset B$, is infinite. This result holds of all abstract notions of computability (in the sense of Goncharov and Sorbi [7]) with reasonable "closure" properties. Indeed, let $\mathcal{A} = \{A, B\}$, with $A \subset B$: for every computably enumerable (c.e.) set U, one can define the numbering

$$\alpha_U(k) = \begin{cases} A, & \text{if } k \notin U; \\ B, & \text{if } k \in U. \end{cases}$$

which is computable, since

$$\{\langle k, x \rangle : x \in \alpha_U(k)\} = \{\langle k, x \rangle : x \in A \text{ or } [x \in B \text{ and } k \in U]\}$$

$$\tag{1}$$

and the latter set is Σ_1^0 . It is then easy to see that, for all pairs of c.e. sets U, V,

$$U \leq_m V \Leftrightarrow \alpha_U \leq \alpha_V$$

(where \leq_m denotes many-one reducibility), and thus the upper semilattice of the c.e. m-degrees is embeddable (as an upper semilattice) into the Rogers semilattice of the family $\{A, B\}$, showing that this Rogers semilattice is infinite.

Clearly the argument remains valid for every notion of computability C for which, given any c.e. set U, the right-hand side of (1) is still in C. In particular:

Theorem 1.1 If $C \in {\Sigma_n^0, \Pi_n^0 : n \ge 1} \cup {\Sigma_1^1, \Pi_1^1, \Delta_1^1 : n \ge 0}$ then the Rogers semilattice of any *C*-computable family ${A, B}$, with $A \subset B$, is infinite.

Proof. The proof is immediate. Notice that in most cases one can embed upper semilattices of *m*-degrees, that are "bigger" than the upper semilattice of c.e. *m*-degrees: for instance, let $\mathcal{C} = \Sigma_n^0, n \ge 1$: if $A, B, U \in \Sigma_n^0$, then the right-hand side of (1) is still in Σ_n^0 , and thus the upper semilattice of the Σ_n^0 *m*-degrees is embeddable into the Rogers semilattice of $\{A, B\}$.

In this paper, we extend Badaev and Talasbaeva's result showing that for every $n \geq 2$ there is a family $\mathcal{A} = \{A, B\}$ with $A \subset B$, such that $\mathfrak{R}_{\Sigma_n^{-1}}(\mathcal{A})$ has exactly one element. The result admits a further extension to the infinite levels of the Ershov hierarchy of Δ_2^0 sets, given by notations of successor ordinals. The proof is a straightforward generalization of [2].

2 Computable numberings for families of sets in the Ershov hierarchy

We refer to Kleene's system O of ordinal notations for computable ordinals: for details, see [9]. In particular, for $a \in O$, the symbol $|a|_O$ represents the ordinal of which a is a notation. We now briefly recall the definition of the Ershov hierarchy, introduced in [3, 4, 5]. Our presentation is based on [8].

Definition 2.1 If a is a notation for a computable ordinal, then a set of numbers A is said to be Σ_a^{-1} if there are a computable function f(z,t) and a partial computable function $\gamma(z,t)$ such that, for all z,

- 1. $A(z) = \lim_{t \to 0} f(z,t)$, with f(z,0) = 0; (here, given a set X, and a number z, the symbol X(z) denotes the value of the characteristic function of X on z);
- 2. (a) $\gamma(z,t) \downarrow \Rightarrow \gamma(z,t+1) \downarrow$, and $\gamma(z,t+1) \leq_O \gamma(z,t) <_O a$; (b) $f(z,t+1) \neq f(z,t) \Rightarrow \gamma(z,t+1) \downarrow \neq \gamma(z,t)$.

We call the partial function γ the mind-change function for A, relatively to f.

A Σ_a^{-1} -approximation to a Σ_a^{-1} -set A, is a pair $\langle f, \gamma \rangle$, where f and γ are respectively a computable function and a partial computable function satisfying 1. and 2., above, for A.

Following [7], we give the following:

Definition 2.2 A Σ_a^{-1} -computable numbering, or simply a computable numbering, of a family \mathcal{A} of Σ_a^{-1} -sets is an onto function $\pi: \omega \longrightarrow \mathcal{A}$, such that

$$\{\langle k, x \rangle : x \in \pi(k)\} \in \Sigma_a^{-1}.$$

To be fully explicit, a computable numbering of a family \mathcal{A} of Σ_a^{-1} -sets is an onto function $\pi : \omega \longrightarrow \mathcal{A}$ for which there exist a computable function f(y,t) and a partial computable function $\gamma(y,t)$, such that

- 1. $\pi(k)(x) = \lim_{t \to 0} f(\langle k, x \rangle, t)$, with f(y, 0) = 0 for all y;
- 2. γ satisfies 2. of Definition 2.1 relatively to f.

In the rest of the paper we will write $Com_a^{-1}(\mathcal{A})$ for $Com_{\Sigma_a^{-1}}(\mathcal{A})$, and $\mathfrak{R}_a^{-1}(\mathcal{A})$ for $\mathfrak{R}_{\Sigma_a^{-1}}(\mathcal{A})$. We recall (see e.g. [8]) that there is an effective indexing of the family of all Σ_a^{-1} sets. For instance, given a, let U_a be Σ_a^{-1} -complete (see e.g. [1]). Then $\{A_z\}_{z\in\omega}$, where

$$A_z = \phi_z^{-1}[U_a]$$

provides such an effective indexing, where "effective" means that $\{\langle x, z \rangle : x \in A_z\} \in \Sigma_a^{-1}$. From this, it is possible to define an effective indexing of all computable numberings of families of Σ_a^{-1} sets. Indeed, if π is a computable numbering of a family of Σ_a^{-1} sets, then by the above and the *s*-*m*-*n*-Theorem, there exists a total computable function f such that, for every k,

$$\pi(k) = \phi_{f(k)}^{-1}[U_a]$$

Now, let u(e, k) be a partial computable universal function of two variables, and let

$$\pi_e(k) = \phi_{u(e,k)}^{-1}[U_a]$$

with the understanding that if $u(e, k) \uparrow$ then $\pi_e(k) = \emptyset$. It follows that $\{\pi_e\}_{e \in \omega}$ is the desired indexing: notice that

$$\{\langle e, k, x \rangle : x \in \pi_e(k)\} \in \Sigma_a^{-1}.$$
(2)

An indexing satisfying (2) is called a Σ_a^{-1} -computable indexing of all Σ_a^{-1} -computable numberings. From *e* one has (see e.g. [8]) an effective way of getting a computable function f_e and a partial computable function γ_e witnessing that $\{\langle k, x \rangle : x \in \pi_e(k)\}$ is Σ_a^{-1} , as in Definition 2.2.

Definition 2.3 Let $a \in O$, and let $\{R_k\}_{k \in \omega}$ be a computable partition of a computable set into infinite sets. We say that a Σ_a^{-1} -computable numbering π has a special approximation with respect to $\{R_k\}_{k \in \omega}$ if there is a Σ_a^{-1} -approximation $\langle f, \gamma \rangle$ to π (in the sense of Definition 2.2) such that, for every k, s, x,

1.
$$|\{y: f(\langle k, y \rangle, s+1) \neq f(\langle k, y \rangle, s)\}| \le 1;$$

2. $f(\langle k, x \rangle, s+1) \neq f(\langle k, x \rangle, s) \Rightarrow s \in R_k,$

where, for a given set X, the symbol |X| denotes the cardinality of X.

The features of a special approximation (i.e. at most one change at each stage; and changes may be expected only at certain stages), for a numbering, will be used in the proof of Theorem 3.1. The following is a useful, although straightforward, lemma:

Lemma 2.4 For every ordinal notation a, every Σ_a^{-1} -computable numbering π , and every computable partition $\{R_k\}_{k\in\omega}$ of a computable set into infinite sets, π has a special approximation with respect to $\{R_k\}_{k\in\omega}$.

Proof. We show how to build a special approximation starting from a given one. Suppose we are given a Σ_a^{-1} -approximation to π , and let $\{R_k\}_{k\in\omega}$ be a computable partition of a computable set into infinite sets. The proof is by induction. At stage s we define for every z, $\hat{f}(z,s)$, $\hat{\gamma}(z,s)$, and two finite sets $L^i(z,s)$ and $L^f(z,s)$, with $L^f(z,s) \subseteq L^i(z,s)$. On $L^i(z,s)$ we define also a strict linear order $<_s$: we use the same symbol $<_s$ to denote its restriction to $L^f(z,s)$.

Stage 0). For every z, h, let $\hat{f}(z, 0) = 0$, $\hat{\gamma}(z, 0) = \uparrow$, $L^i(h, 0) = L^f(h, 0) = \emptyset$, and $<_0 = \emptyset$.

Stage s + 1). For every h, let

$$L^{i}(h, s+1) = L^{f}(h, s) \cup \{ \langle y, s \rangle : f(\langle h, y \rangle, s+1) \neq f(\langle h, y \rangle, s) \}.$$

Order $L^{i}(h, s+1)$ as follows: if $v, w \in L^{i}(h, s+1)$ then

$$v <_{s+1} w \Leftrightarrow [v, w \in L^{f}(h, s) \& v <_{s} w] \lor [v, w \notin L^{f}(h, s) \& v < w].$$

Next, we distinguish two cases:

- 1. If $s \notin \bigcup_k R_k$, then define for all z, h, $\hat{f}(z, s+1) = \hat{f}(z, s)$, $\hat{\gamma}(z, s+1) = \hat{\gamma}(z, s)$, and $L^f(h, s+1) = L^i(h, s+1)$.
- 2. Assume $s \in R_k$. If $L^i(k, s+1) = \emptyset$ then for every z, h define $\hat{f}(z, s+1) = \hat{f}(z, s)$, $\hat{\gamma}(z, s+1) = \hat{\gamma}(z, s)$, and $L^f(h, s+1) = L^i(h, s+1)$. If $L^i(k, s+1) \neq \emptyset$, and $\langle x, r \rangle$ is the $\langle s_{s+1}$ -least number of $L^i(k, s+1)$, then for every z define $\hat{f}(z, s+1) = \hat{f}(z, s)$ and $\hat{\gamma}(z, s+1) = \hat{\gamma}(z, s)$, unless $z = \langle k, x \rangle$, in which case define

$$\hat{f}(\langle k, x \rangle, s+1) = f(\langle k, x \rangle, r+1), \hat{\gamma}(\langle k, x \rangle, s+1) = \gamma(\langle k, x \rangle, r+1).$$

For all h, let $L^{f}(h, s+1) = L^{i}(h, s+1)$, unless h = k, in which case define

$$L^{f}(k, s+1) = L^{i}(k, s+1) - \{ \langle x, r \rangle \}.$$

In order to show that $\langle \hat{f}, \hat{\gamma} \rangle$ is the desired Σ_a^{-1} -approximation, notice that for every u there are bijective finite sets C, \hat{C} , with

$$C = \{ s_0 < \dots < s_{n_u} \}, \quad \hat{C} = \{ r_0 < \dots < r_{n_u} \},$$

such that

$$C = \{s : \hat{f}(u, s+1) \neq \hat{f}(u, s)\}, \quad \hat{C} = \{r : f(u, r+1) \neq f(u, r)\},$$

and

$$f(u, s_i + 1) = f(u, r_i + 1), \quad \hat{\gamma}(u, s_i + 1) = \gamma(u, r_i + 1).$$

Finally, notice that $\hat{f}(z, s + 1) \neq \hat{f}(z, s)$ only if $z = \langle k, x \rangle$, and for some r, $\langle x, r \rangle$ is $\langle s_{s+1}$ -least of $L^i(k, s + 1)$, and $s \in R_k$. Hence $\langle \hat{f}, \hat{\gamma} \rangle$ is special.

A similar argument shows:

Corollary 2.5 Let $\{\pi_e\}_{e\in\omega}$ be a Σ_a^{-1} -computable indexing of all computable numberings of all Σ_a^{-1} -computable families, and let $\{R_{e,k}\}_{e,k\in\omega}$ be a computable partition of a computable set into infinite sets. For every e, one can uniformly find a special approximation to π_e with respect to the partition $\{R_{e,k}\}_{k\in\omega}$; in other words, there is a pair $\langle f, \gamma \rangle$ of functions having three variables, with f computable and γ partial computable, such that, for every e, the pair $\langle f_e, \gamma_e \rangle$ is a special approximation to π_e with respect to $\{R_{e,k}\}_{k\in\omega}$, where $f_e(\langle k, x \rangle, s) =$ $f(e, \langle k, x \rangle, s)$ and $\gamma_e(\langle k, x \rangle, s) = \gamma(e, \langle k, x \rangle, s)$.

Corollary 2.6 For every $A \in \Sigma_a^{-1}$ and any computable infinite set R there is a Σ_a^{-1} approximation to A which is special with respect to R, meaning a Σ_a^{-1} -approximation $\langle f, \gamma \rangle$ to A, such that for every s, z, $|\{y : f(y, s+1) \neq f(y, s)\}| \leq 1$, and $f(z, s+1) \neq f(z, s)$ or $\gamma(z, s+1) \neq \gamma(z, s)$ only if $s \in R$.

3 The theorem

We are now in a position to prove the theorem:

Theorem 3.1 For every ordinal notation a, with $|a|_O > 1$ and $|a|_O$ successor, there exists $a \Sigma_a^{-1}$ -computable family $\mathcal{A} = \{A, B\}$, with $A \subset B$ such that $|\mathcal{R}_a^{-1}(\mathcal{A})| = 1$.

Proof. Given a, with $|a|_O > 1$ and $|a|_O$ successor, we build $A \subseteq B$, $A \neq B$, and a Σ_a^{-1} computable numbering α of $\mathcal{A} = \{A, B\}$, such that for every Σ_a^{-1} -computable numbering π of \mathcal{A} , we have $\pi \equiv \alpha$.

We will define $\alpha(0) = A$, $\alpha(1) = B$, and $\alpha(k) = B$ for all $k \ge 1$.

Let $\{\pi_e\}_{e \in \omega}$ be a Σ_a^{-1} -computable indexing of all Σ_a^{-1} -computable numberings, and by Corollary 2.5 let us refer to uniform special approximations to these numberings with respect to the partition $\{R_{e,k}\}_{e,k \in \omega}$, where

$$R_{e,k} = \{ \langle e, k, x \rangle + 1 : x \in \omega \} :$$

if $\langle f, \gamma \rangle$ is such a uniform special approximation, write $f_e(\langle k, x \rangle, s) = f(e, \langle k, x \rangle, s)$ and $\gamma_e(\langle k, x \rangle, s) = \gamma(e, \langle k, x \rangle, s)$. We will define α so that, for every e, k, the following requirement is satisfied:

 $Q_{e,k}$: $\pi_e(k) \in \{A, B\} \Rightarrow g_e(k)$ defined and $\pi_e(k) = \alpha(g_e(k)),$

where g_e is a partial computable function defined by us.

The construction is by stages. At stage s+1 > 1 with $s \in R_{e,k}$ (notice that for every t > 0there is a unique e, k such that $t \in R_{e,k}$)) our action aims at making $\pi_e(k) \notin \mathcal{A}$ (so that π_e is not a numbering of \mathcal{A}), or we define $g_e(k) \in \{0, 1\}$ so as to ensure that $\pi_e(k) = \alpha(g_e(k))$, if eventually $\pi_e(k) \in \{A, B\}$. This is enough to show the claim since, if $\pi_e \in Com_a^{-1}(\mathcal{A})$ then trivially $\alpha \leq \pi_e$.

Our attempts at diagonalizing $\pi_e(k)$ against A, B at stage s+1 with $s \in R_{e,k}$ make use of (computably given) witnesses $a_0(e,k), a_1(e,k)$: we assume that $a_0(e,k) \neq a_1(e,k)$, and $\{a_0(e,k), a_1(e,k)\} \cap \{a_0(e',k'), a_1(e',k')\} = \emptyset$ if $\langle e,k \rangle \neq \langle e',k' \rangle$. So at this stage we define $f_A(a_0(e,k), s+1), f_A(a_1(e,k), s+1), \text{ and } \gamma_A(a_0(e,k), s+1), \gamma_A(a_1(e,k), s+1); \text{ and likewise}$ $f_B(a_0(e,k), s+1), f_B(a_1(e,k), s+1)$ and $\gamma_B(a_0(e,k), s+1), \gamma_B(a_1(e,k), s+1)$. The pair $\langle f_A, \gamma_A \rangle$ will be a Σ_a^{-1} -approximation to A; the pair $\langle f_B, \gamma_B \rangle$ will be a Σ_a^{-1} -approximation to B. From these two pairs we will also get a Σ_a^{-1} -approximation $\langle \hat{f}, \hat{\gamma} \rangle$ to α , by letting $\hat{f}(\langle 0, x \rangle, s+1) = f_A(x, s+1), \ \hat{f}(\langle k, x \rangle, s+1) = f_B(x, s+1), \ \hat{\gamma}(\langle 0, x \rangle, s+1) = \gamma_A(x, s+1),$ and $\hat{\gamma}(\langle k, x \rangle, s+1) = \gamma_B(x, s+1)$, for $k \geq 1$. It is understood that all values of $f_A, f_B, \gamma_A, \gamma_B$ that are not explicitly defined maintain the same values as at the preceding stage, the values at s = 0 being 0 for f_A, f_B , and undefined for γ_A, γ_B . Since A and B are disjoint, it is straightforward to see that $\langle \hat{f}, \hat{\gamma} \rangle$ is a Σ_a^{-1} -approximation to α . Finally, at stage $s+1, s \in R_{e,k}$, if $g_{e,s}(k) = \uparrow$ (i.e. the value of $g_e(k)$ is still undefined), we might define also $g_{e,s+1}(k) = 0$ or $g_{e,s+1}(k) = 1$. After defining $g_e(k)$ our only worry will be to make sure that $\pi_e(k) \neq A$ if $g_e(k) = 1$, and $\pi_e(k) \neq B$ if $g_e(k) = 0$. If π_e is a numbering of \mathcal{A} , then eventually g_e is total, and $\pi_e \leq \alpha$ via g_e .

Without loss of generality we may also assume that our uniform special approximation $\langle f, \gamma \rangle$ also satisfies, for every $e, k, x, f(e, \langle k, x \rangle, 1) = 0$.

Let $s \in R_{e,k}$: at stage s + 1 we monitor the *initial* $\pi_e(k)$ -setup at s + 1, meaning the table

$$\begin{array}{c|cccc} \pi_{e}(k) & (u,i) & (v,j) \\ A & (u',i') & (v',j') \\ B & (u'',i'') & (v'',j'') \\ g_{e}(k) & w \end{array}$$
(3)

where $u, u', u'', v, v', v'' \in \{0, 1\}$, $w \in \{0, 1, \uparrow\}$, and $i, i', i'', j, j', j'' \in \omega$. The table has the following meaning: for simplicity, let $a_0 = a_0(e, k)$, and $a_1 = a_1(e, k)$):

- 1. (first line) $f_e(\langle k, a_0 \rangle, s+1) = u$, $f_e(\langle k, a_1 \rangle, s+1) = v$; moreover, for $r \leq s+1$, $f_e(\langle k, a_0 \rangle, r)$ has already made *i* changes, and $f_e(\langle k, a_1 \rangle, r)$ has already made *j* changes;
- 2. (second line): $f_A(a_0, s) = u'$, $f_A(a_1, s) = v'$; moreover, for $r \leq s$, $f_A(a_0, r)$ has already made i' changes, and $f_A(a_1, r)$ has already made j' changes;
- 3. (third line): $f_B(a_0, s) = u''$, $f_B(a_1, s) = v''$; moreover, for $r \leq s$, $f_B(a_0, r)$ has already made i'' changes, and $f_B(a_1, r)$ has already made j'' changes;
- 4. (fourth line) w denotes the value of $g_e(k)$ at the end of stage s.

At the end of the stage, as a result of our action performed during the stage we have the *final* $\pi_e(k)$ -setup at s + 1, i.e. the table

$$\begin{vmatrix} \pi_e(k) & (u,i) & (v,j) \\ A & (\overline{u'},\overline{i'}) & (\overline{v'},\overline{j'}) \\ B & (\overline{u''},\overline{i''}) & (\overline{v''},\overline{j''}) \\ g_e(k) & \overline{w} \end{vmatrix} .$$

Notice that the first line of the final setup is just the same as in the initial setup; the overlined symbols denote the (possibly new) values of A, B, and of $g_e(k)$, at the end of the stage.

The advantage of working with uniform special approximations is that we can take complete care of the requirement $Q_{e,k}$ only by looking at the behavior of $\pi_e(k)$ at stages s + 1with $s \in R_{e,k}$: moreover at each such stage at most one of a_0, a_1 may change its membership status in $\pi_e(k)$.

The construction Stage 0): Let $f_A(z, 0) = f_B(z, 0) = 0$ and let $\gamma_A(z, 0) = \gamma_B(z, 0) = \uparrow$.

Stage 1): for every e, k, let $f_A(a_0(e, k), 1) = 1$, $\gamma_A(a_0(e, k), 1) = 2$ (remember that $|2|_O = 1$); let $f_B(a_0(e, k), 1) = f_B(a_1(e, k), 1) = 1$, $\gamma_B(a_0(e, k), 1) = b$ (where $2^b = a$, i.e. b is the unique ordinal notation, with $b <_O a$, of the predecessor of $|a|_O$), and $\gamma_B(a_1(e, k), 1) = 1$ (remember that $|1|_O = 0$). So for every e, k, the final $\pi_e(k)$ -setup at stage 1 is

$$\begin{array}{c|ccc} \pi_e(k) & (0,0) & (0,0) \\ A & (1,1) & (0,0) \\ B & (1,1) & (1,1) \\ g_e(k) & \uparrow \end{array}$$

Stage s + 1, s > 0. Suppose $s \in R_{e,k}$, and assume that the initial $\pi_e(k)$ -setup at this stage is $\sigma^i(s+1)$. For simplicity let $a_i = a_i(e,k)$. We distinguish the following cases:

1. If

$$\sigma^{i}(s+1) = \begin{vmatrix} \pi_{e}(k) & (u,i) & (1,1) \\ A & (u',i') & (0,0) \\ B & (1,1) & (1,1) \\ g_{e}(k) & \uparrow \end{vmatrix}$$

(with (u, i) = (0, 0) and (u', i') = (1, 1), or (u, i) = (1, 1) and (u', i') = (0, 2)) then define $g_e(k) = 1$, $f_A(a_0, s+1) = 0$, $\gamma_A(a_0, s+1) = 1$; so the final setup is

$$\sigma^{f}(s+1) = \begin{vmatrix} \pi_{e}(k) & (u,i) & (1,1) \\ A & (0,2) & (0,0) \\ B & (1,1) & (1,1) \\ g_{e}(k) & 1 \end{vmatrix}$$

2. If

$$\sigma^{i}(s+1) = \begin{vmatrix} \pi_{e}(k) & (1,1) & (0,0) \\ A & (1,1) & (0,0) \\ B & (1,1) & (1,1) \\ g_{e}(k) \uparrow \end{vmatrix}$$

then extract a_0 from A, i.e. define $f_A(a_0, s+1) = 0$, and $\gamma_A(a_0, s+1) = 1$, so the final setup is

$$\sigma^{f}(s+1) = \begin{vmatrix} \pi_{e}(k) & (1,1) & (0,0) \\ A & (0,2) & (0,0) \\ B & (1,1) & (1,1) \\ g_{e}(k) & \uparrow \end{vmatrix}$$

3. If

$$\sigma^{i}(s+1) = \begin{vmatrix} \pi_{e}(k) & (0,2) & (0,0) \\ A & (0,2) & (0,0) \\ B & (1,1) & (1,1) \\ g_{e}(k) & \uparrow \end{vmatrix}$$

then define $g_e(k) = 0$: so the final setup is

$$\sigma^{f}(s+1) = \begin{vmatrix} \pi_{e}(k) & (0,2) & (0,0) \\ A & (0,2) & (0,0) \\ B & (1,1) & (1,1) \\ g_{e}(k) & 0 \end{vmatrix}$$

- 4. If none of the above cases applies then, as we argue in the verification, $g_e(k)$ is defined. If σ_{s+1}^i is not winning (meaning that either $g_e(k) = 1$ and v = v', or $g_e(k) = 0$ and u = u'': here u, u'', v, v' are as in table (3); also we assume by induction that at the end of the previous relevant stage the final $\pi_e(k)$ -setup is winning) then:
 - (a) if $g_e(k) = 1$ then (by properties of a special approximation) we have $f_e(\langle k, a_1 \rangle, s + 1) \neq f_e(\langle k, a_1 \rangle, s)$, and the initial setup at s + 1 is of the form:

$$\sigma^{i}(s+1) = \begin{vmatrix} \pi_{e}(k) & (u,i) & (v,j) \\ A & (0,2) & (v,j-2) \\ B & (1,1) & (1,1) \\ g_{e}(k) & 1 \end{vmatrix}$$

let $A(a_1, s+1) = 1 - A(a_1, s)$ and $\gamma_A(a_1, s+1) = \gamma_e(\langle k, a_1 \rangle, s)$: the final setup is

$$\sigma^{f}(s+1) = \begin{vmatrix} \pi_{e}(k) & (u,i) & (v,j) \\ A & (0,2) & (1-v,j-1) \\ B & (1,1) & (1,1) \\ g_{e}(k) & 1 \end{vmatrix}$$

(b) if $g_e(k) = 0$ then, similarly, we have $f_e(\langle k, a_0 \rangle, s+1) \neq f_e(\langle k, a_0 \rangle, s)$, and

$$\sigma^{i}(s+1) = \begin{vmatrix} \pi_{e}(k) & (u,i) & (v,j) \\ A & (0,2) & (0,0) \\ B & (u,i-2) & (1,1) \\ g_{e}(k) & 1 \end{vmatrix}$$

let $B(a_0, s+1) = 1 - B(a_0, s)$ and $\gamma_B(a_0, s+1) = \gamma_e(\langle k, a_0 \rangle, s+1)$: the final setup is

$$\sigma^{f}(s+1) = \begin{vmatrix} \pi_{e}(k) & (u,i) & (v,j) \\ A & (0,2) & (0,0) \\ B & (1-u,i-1) & (1,1) \\ g_{e}(k) & 0 \end{vmatrix}$$

If none of the above cases apply, or after acting through one of the above cases, move to stage s + 2.

This concludes the construction, with A, B eventually given by $A(z) = \lim_{s} f_A(z, s)$ and $B(z) = \lim_{s} f_B(z, s)$, and with $\alpha \in Comp-1a(\{A, B\})$ defined as explained earlier.

Verification. Let $\mathcal{A} = \{A, B\}$, let e, k be given, and $a_i = a_i(e, k)$. We want to show that either $\pi_e(k) \notin \{A, B\}$, or $g_e(k)$ is defined and $\pi_e(k) = \alpha(g_e(k))$.

If $f_e(\langle k, a_0 \rangle, s) = f_e(\langle k, a_1 \rangle, s) = 0$ for all s, then the claim is true, since in this case $\pi_e(k) \notin \{A, B\}$, as $a_0 \in A$ and $a_0, a_1 \in B$. Since $a_1 \notin A$, we trivially have in this case that $A \cap \{a_0, a_1\} \subset B \cap \{a_0, a_1\}$.

Otherwise, by definition of a special approximation, there is a least $s_0 > 0$ such that $f_e(\langle k, a_0 \rangle, s_0 + 1) \neq f_e(\langle k, a_0 \rangle, s_0)$ or $f_e(\langle k, a_1 \rangle, s_0 + 1) \neq f_e(\langle k, a_1 \rangle, s_0)$, but noth both, and $s_0 \in R_{e,k}$.

1. If $f_e(\langle k, a_1 \rangle, s_0 + 1) \neq f_e(\langle k, a_1 \rangle, s_0)$, then at stage $s_0 + 1$ we act as in case 1 of the construction, and get the final setup

$$\sigma^{f}(s_{0}+1) = \begin{vmatrix} \pi_{e}(k) & (0,0) & (1,1) \\ A & (0,2) & (0,0) \\ B & (1,1) & (1,1) \\ g_{e}(k) & 1 \end{vmatrix}$$

From now on we may act on behalf of $Q_{e,k}$ only through part 4a of the construction. Every time we act in this way (due to a change of $f_e(\langle k, a_1 \rangle, s+1) \neq f_e(\langle k, a_1 \rangle, s)$, at stages s + 1, with s in $R_{e,k}$, we have a not winning initial setup of the form

$$\sigma^{i}(s+1) = \begin{vmatrix} \pi_{e}(k) & (u,i) & (v,j) \\ A & (0,2) & (v,j-2) \\ B & (1,1) & (1,1) \\ g_{e}(k) & 1 \end{vmatrix}$$

ending with a final setup of the form

$$\sigma^{f}(s+1) = \begin{vmatrix} \pi_{e}(k) & (u,i) & (v,j) \\ A & (0,2) & (1-v,j-1) \\ B & (1,1) & (1,1) \\ g_{e}(k) & 1 \end{vmatrix}$$

after which we define $\gamma_A(a_1, s+1) = \gamma_e(\langle k, a_1 \rangle, s)$. But as $\lim_t f_e(\langle k, a_1 \rangle, t)$ exists, we eventually achieve that if $\pi_e(k) \in \mathcal{A}$ then $\pi_e(k) = \alpha(g_e(k))$ as $\pi_e(k) = \alpha(1)$. Notice that for every t, $\gamma_A(a_1, t)$ is correctly defined making this function a correct mind-change function, since for every t+1 starting from the first change of the memberhip status of a_1 in $\pi_e(k)$, we define $\gamma_A(a_1, t+1) = \gamma_e(\langle k, a_1 \rangle, t)$. The values $\gamma_A(a_0, t)$, $\gamma_B(a_0, t)$ and $\gamma_B(a_1, t)$ are trivially correctly defined, since there is no further changes in the membership status of a_0 in A, and of a_0, a_1 in B.

2. If $f_e(\langle k, a_0 \rangle, s_0 + 1) \neq f_e(\langle k, a_0 \rangle, s_0)$ then we first act through 2, and then, if we act again, we may assume that we act through 3, since otherwise action through 1 would yield a final setup of the form

$$\sigma^{f}(s+1) = \begin{vmatrix} \pi_{e}(k) & (1,1) & (1,1) \\ A & (0,2) & (0,0) \\ B & (1,1) & (1,1) \\ g_{e}(k) & 1 \end{vmatrix}$$

but then by an argument similar to the one used in the previous case, we may conclude that suitably changing $f_A(a_1, s + 1)$ in response to, and diagonalizing against, corresponding changes of $f_e(\langle k, a_1 \rangle, s + 1)$ we eventually achieve success of our strategy. So assume that when we act again at, say $s_1 + 1$, we do it through 3 because an initial setup of the form

$$\sigma^{i}(s_{1}+1) = \begin{vmatrix} \pi_{e}(k) & (0,2) & (0,0) \\ A & (0,2) & (0,0) \\ B & (1,1) & (1,1) \\ g_{e}(k) \uparrow \end{vmatrix}$$

At the same stage, we get the final setup

$$\sigma^{f}(s_{1}+1) = \begin{vmatrix} \pi_{e}(k) & (0,2) & (0,0) \\ A & (0,2) & (0,0) \\ B & (1,1) & (1,1) \\ g_{e}(k) & 0 \end{vmatrix}$$

From now on we may act on behalf of $Q_{e,k}$ only through part 4b of the construction, when finding initial $\pi_e(k)$ -setups that are not winning: we start by suitably changing $f_B(a_0, s+1)$ in response to, and diagonalizing against, corresponding changes of $f_e(\langle k, a_0 \rangle, s+1)$. By Δ_2^0 -ness, the process eventually stops, at the end of which we have correctly defined the values of the mind-change functions γ_A, γ_B on a_0 and a_1 . To see for instance that the values $\gamma_B(a_0, t)$ are correctly defined remember that we define $\gamma_B(a_0, 1) = b$ (where $b <_O a$ is a notation for the predecessor of $|a|_O$), and then we may redefine the values only at a stage $s_2 + 1$ when $f_e(\langle k, a_0 \rangle, s+1)$ has already made two changes, and so, by construction, $\gamma_B(a_1, s_2 + 1) = \gamma_e(\langle k, a_0 \rangle, s_2 + 1) <_O b$. From this stage on, the next values of γ_B on a_1 will be defined through the corresponding values of γ_e on $\langle k, a_1 \rangle$. In either case 1 or 2, we have $a_0 \notin A$, $a_1 \in B$; if $g_e(k)$ is not defined, or $g_e(k) = 0$ then $a_1 \notin A$; if $g_e(k) = 1$ then $a_0 \in B$. In any case we have that $A \cap \{a_0, a_1\} \subset B \cap \{a_0, a_1\}$. Since this holds of every e, k, we conclude that $A \subset B$.

Remark A closer look at the construction shows that if $|a|_O = n \in \omega$, $n \geq 2$, then for every e, k, $f_A(a_0(e,k),t)$ changes at least once and at most 2 times; $f_A(a_1(e,k),t)$ and $f_B(a_0(e,k),t)$ change at most n-1 times (and $f_B(a_0(e,k),t)$ at least once); $f_B(a_1(e,k),t)$ changes exactly once. Thus in general B is n-1-c.e., and A is n-1-c.e. or A is 2-c.e. if n=2, in accordance with a similar remark made for n=2 by Badaev and Talasbaeva [2].

Problem. We do not know if Theorem 3.1 is true also of ordinal notations of limit ordinals, although we conjecture that it is so.

Reference

[1] M.M. Arslanov. Ershov hierarchy. Kazan, 2007. In Russian.

[2] S.A. Badaev and Zh.T. Talasbaeva. Computable numberings in the hierarchy of Ershov. To appear.

[3] Yu. L. Ershov. A hierarchy of sets, I. // Algebra and Logic, 7:47–73, 1968.

[4] Yu. L. Ershov. A hierarchy of sets, II. // Algebra and Logic, 7:15–47, 1968.

[5] Yu. L. Ershov. A hierarchy of sets, III. // Algebra and Logic, 9:34–51, 1970.

[6] Yu. L. Ershov. Theory of Numberings. Nauka, Moscow, 1977. In Russian.

[7] S. Goncharov and A. Sorbi. Generalized computable numerations and non-trivial Rogers semilattices. // Algebra and Logic, 36(6):359–369, 1997.

[8] S. Ospichev. Computable family of Σ_a^{-1} -sets without Friedberg numberings. // 6th Conference on Computability in Eucope, CiE 2010, 6th Conference on Computability in Eucope, CiE 2010. Ponta Delgada, Azores, pages 311–315, 2010.

[9] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.