A note on Rogers semilattices of families of two embedded sets in the Ershov hierarchy

M. Manat 1, A. Sorbi 2
${ }^{1}$ Kazakh National University, Al-Farabi ave., 71, Almaty, 050038, Kazakhstan
e-mail: manat.mustafa@gmail.com
${ }^{2}$ Dipartimento di Scienze Matematiche ed Informatiche "Roberto Magari", Università di Siena, 53100 Siena, Italy
e-mail: sorbi.andrea@gmail.com

Abstract

Аннотация Abstract We show that for every ordinal notation a of a successor ordinal >1, there is a Σ_{a}^{-1} family $\mathcal{A}=\{A, B\}$ with $A \subset B$ such that the Rogers semilattice of \mathcal{A} has exactly one element. This extends a result of Badaev and Talasbaeva, proved for the case in which a is the ordinal notation of 2 .

1 Introduction

In this paper we generalize a result of Badaev and Talasbaeva [2], stating that there is a family of d-c.e. sets $\mathcal{A}=\{A, B\}$, with $A \subset B$ (i.e., $A \subseteq B$, and $A \neq B$) such that the Rogers semilattice of \mathcal{A} (in the sense of Goncharov and Sorbi [7]) consists of exactly one element. For unexplained notions and results on the theory of numberings, the reader is referred to [6].

In a nutshell, Goncharov and Sorbi's proposal for generalizing the theory of numberings to different notions of computability consists in the following. Let \mathcal{C} be an abstract "notion" of computability, i.e. a countable class of sets of numbers, and let $\mathcal{A} \subseteq \mathcal{C}$: then a numbering $\pi: \omega \rightarrow \mathcal{A}$ is \mathcal{C}-computable, if $\{\langle k, x\rangle: x \in \pi(k)\} \in \mathcal{C}$. On numberings α, β of a same family, one defines $\alpha \leq \beta$ if there is a computable function f such that $\alpha=\beta \circ f$; and $\alpha \equiv \beta$ if $\alpha \leq \beta$ and $\beta \leq \alpha$; for $\mathcal{A} \subseteq \mathcal{C}$, we denote by $\operatorname{Com}_{\mathcal{C}}(\mathcal{A})$ the set of \mathcal{C}-computable numberings of \mathcal{A}; we say that \mathcal{A} is \mathcal{C}-computable if $\operatorname{Com}_{\mathcal{C}}(\mathcal{A}) \neq \emptyset$; finally we denote by $\mathfrak{R}_{\mathcal{C}}(\mathcal{A})$ the set of Rogers degrees of the elements of $\operatorname{Com}_{\mathcal{C}}(\mathcal{A})$, i.e. the $\operatorname{set} \operatorname{Com}_{\mathcal{C}}(\mathcal{A}) / \equiv$; it can be shown that $\mathfrak{R}_{\mathcal{C}}(\mathcal{A})$, if nonempty, is an upper semilattice. When the class \mathcal{C} is clearly understood from the context, it is customary to drop the prefix \mathcal{C}, and write simply "computable" instead of " \mathcal{C}-computable".

The motivation for Badaev and Talasbaeva's result lies in the fact that in the classical case, i.e. in the case $\mathcal{C}=\Sigma_{1}^{0}$-sets, it is well known ([6]) that the Rogers semilattice of any family $\{A, B\}$, with $A \subset B$, is infinite. This result holds of all abstract notions of computability (in the sense of Goncharov and Sorbi [7]) with reasonable "closure" properties. Indeed, let $\mathcal{A}=\{A, B\}$, with $A \subset B$: for every computably enumerable (c.e.) set U, one can define the numbering

$$
\alpha_{U}(k)= \begin{cases}A, & \text { if } k \notin U \\ B, & \text { if } k \in U\end{cases}
$$

which is computable, since

$$
\begin{equation*}
\left\{\langle k, x\rangle: x \in \alpha_{U}(k)\right\}=\{\langle k, x\rangle: x \in A \text { or }[x \in B \text { and } k \in U]\} \tag{1}
\end{equation*}
$$

and the latter set is Σ_{1}^{0}. It is then easy to see that, for all pairs of c.e. sets U, V,

$$
U \leq_{m} V \Leftrightarrow \alpha_{U} \leq \alpha_{V}
$$

(where \leq_{m} denotes many-one reducibility), and thus the upper semilattice of the c.e. m degrees is embeddable (as an upper semilattice) into the Rogers semilattice of the family $\{A, B\}$, showing that this Rogers semilattice is infinite.

Clearly the argument remains valid for every notion of computability \mathcal{C} for which, given any c.e. set U, the right-hand side of (1) is still in \mathcal{C}. In particular:

Theorem 1.1 If $\mathcal{C} \in\left\{\Sigma_{n}^{0}, \Pi_{n}^{0}: n \geq 1\right\} \cup\left\{\Sigma_{1}^{1}, \Pi_{1}^{1}, \Delta_{1}^{1}: n \geq 0\right\}$ then the Rogers semilattice of any \mathcal{C}-computable family $\{A, B\}$, with $A \subset B$, is infinite.

Proof. The proof is immediate. Notice that in most cases one can embed upper semilattices of m-degrees, that are "bigger" than the upper semilattice of c.e. m-degrees: for instance, let $\mathcal{C}=\Sigma_{n}^{0}, n \geq 1$: if $A, B, U \in \Sigma_{n}^{0}$, then the right-hand side of (1) is still in Σ_{n}^{0}, and thus the upper semilattice of the $\Sigma_{n}^{0} m$-degrees is embeddable into the Rogers semilattice of $\{A, B\}$.

In this paper, we extend Badaev and Talasbaeva's result showing that for every $n \geq 2$ there is a family $\mathcal{A}=\{A, B\}$ with $A \subset B$, such that $\mathfrak{R}_{\Sigma_{n}^{-1}}(\mathcal{A})$ has exactly one element. The result admits a further extension to the infinite levels of the Ershov hierarchy of Δ_{2}^{0} sets, given by notations of successor ordinals. The proof is a straightforward generalization of [2].

2 Computable numberings for families of sets in the Ershov hierarchy

We refer to Kleene's system O of ordinal notations for computable ordinals: for details, see [9]. In particular, for $a \in O$, the symbol $|a|_{O}$ represents the ordinal of which a is a notation. We now briefly recall the definition of the Ershov hierarchy, introduced in [3, 4, 5]. Our presentation is based on [8].

Definition 2.1 If a is a notation for a computable ordinal, then a set of numbers A is said to be Σ_{a}^{-1} if there are a computable function $f(z, t)$ and a partial computable function $\gamma(z, t)$ such that, for all z,

1. $A(z)=\lim _{t} f(z, t)$, with $f(z, 0)=0$; (here, given a set X, and a number z, the symbol $X(z)$ denotes the value of the characteristic function of X on $z)$;
2. (a) $\gamma(z, t) \downarrow \Rightarrow \gamma(z, t+1) \downarrow$, and $\gamma(z, t+1) \leq_{O} \gamma(z, t)<_{O} a$;
(b) $f(z, t+1) \neq f(z, t) \Rightarrow \gamma(z, t+1) \downarrow \neq \gamma(z, t)$.

We call the partial function γ the mind-change function for A, relatively to f.
$A \Sigma_{a}^{-1}$-approximation to a Σ_{a}^{-1}-set A, is a pair $\langle f, \gamma\rangle$, where f and γ are respectively a computable function and a partial computable function satisfying 1. and 2., above, for A.

Following [7], we give the following:
Definition 2.2 $A \Sigma_{a}^{-1}$-computable numbering, or simply a computable numbering, of a family \mathcal{A} of $\Sigma_{a}^{-1}-$ sets is an onto function $\pi: \omega \longrightarrow \mathcal{A}$, such that

$$
\{\langle k, x\rangle: x \in \pi(k)\} \in \Sigma_{a}^{-1} .
$$

To be fully explicit, a computable numbering of a family \mathcal{A} of Σ_{a}^{-1}-sets is an onto function $\pi: \omega \longrightarrow \mathcal{A}$ for which there exist a computable function $f(y, t)$ and a partial computable function $\gamma(y, t)$, such that

1. $\pi(k)(x)=\lim _{t} f(\langle k, x\rangle, t)$, with $f(y, 0)=0$ for all y;
2. γ satisfies 2. of Definition 2.1 relatively to f.

In the rest of the paper we will write $\operatorname{Com}_{a}^{-1}(\mathcal{A})$ for $\operatorname{Com}_{\Sigma_{a}^{-1}}(\mathcal{A})$, and $\Re_{a}^{-1}(\mathcal{A})$ for $\mathfrak{R}_{\Sigma_{a}^{-1}}(\mathcal{A})$.
We recall (see e.g. [8]) that there is an effective indexing of the family of all Σ_{a}^{-1} sets. For instance, given a, let U_{a} be Σ_{a}^{-1}-complete (see e.g. [1]). Then $\left\{A_{z}\right\}_{z \in \omega}$, where

$$
A_{z}=\phi_{z}^{-1}\left[U_{a}\right]
$$

provides such an effective indexing, where "effective" means that $\left\{\langle x, z\rangle: x \in A_{z}\right\} \in \Sigma_{a}^{-1}$. From this, it is possible to define an effective indexing of all computable numberings of families of Σ_{a}^{-1} sets. Indeed, if π is a computable numbering of a family of Σ_{a}^{-1} sets, then by the above and the $s-m$ - n-Theorem, there exists a total computable function f such that, for every k,

$$
\pi(k)=\phi_{f(k)}^{-1}\left[U_{a}\right] .
$$

Now, let $u(e, k)$ be a partial computable universal function of two variables, and let

$$
\pi_{e}(k)=\phi_{u(e, k)}^{-1}\left[U_{a}\right],
$$

with the understanding that if $u(e, k) \uparrow$ then $\pi_{e}(k)=\emptyset$. It follows that $\left\{\pi_{e}\right\}_{e \in \omega}$ is the desired indexing: notice thatt

$$
\begin{equation*}
\left\{\langle e, k, x\rangle: x \in \pi_{e}(k)\right\} \in \Sigma_{a}^{-1} . \tag{2}
\end{equation*}
$$

An indexing satisfying (2) is called a Σ_{a}^{-1}-computable indexing of all Σ_{a}^{-1}-computable numberings. From e one has (see e.g. [8]) an effective way of getting a computable function f_{e} and a partial computable function γ_{e} witnessing that $\left\{\langle k, x\rangle: x \in \pi_{e}(k)\right\}$ is Σ_{a}^{-1}, as in Definition 2.2.

Definition 2.3 Let $a \in O$, and let $\left\{R_{k}\right\}_{k \in \omega}$ be a computable partition of a computable set into infinite sets. We say that a Σ_{a}^{-1}-computable numbering π has a special approximation with respect to $\left\{R_{k}\right\}_{k \in \omega}$ if there is a Σ_{a}^{-1}-approximation $\langle f, \gamma\rangle$ to π (in the sense of Definition 2.2) such that, for every k, s, x,

1. $|\{y: f(\langle k, y\rangle, s+1) \neq f(\langle k, y\rangle, s)\}| \leq 1$;
2. $f(\langle k, x\rangle, s+1) \neq f(\langle k, x\rangle, s) \Rightarrow s \in R_{k}$,
where, for a given set X, the symbol $|X|$ denotes the cardinality of X.
The features of a special approximation (i.e. at most one change at each stage; and changes may be expected only at certain stages), for a numbering, will be used in the proof of Theorem 3.1. The following is a useful, although straightforward, lemma:

Lemma 2.4 For every ordinal notation a, every Σ_{a}^{-1}-computable numbering π, and every computable partition $\left\{R_{k}\right\}_{k \in \omega}$ of a computable set into infinite sets, π has a special approximation with respect to $\left\{R_{k}\right\}_{k \in \omega}$.

Proof. We show how to build a special approximation starting from a given one. Suppose we are given a Σ_{a}^{-1}-approximation to π, and let $\left\{R_{k}\right\}_{k \in \omega}$ be a computable partition of a computable set into infinite sets. The proof is by induction. At stage s we define for every z, $\hat{f}(z, s), \hat{\gamma}(z, s)$, and two finite sets $L^{i}(z, s)$ and $L^{f}(z, s)$, with $L^{f}(z, s) \subseteq L^{i}(z, s)$. On $L^{i}(z, s)$
we define also a strict linear order $<_{s}$: we use the same symbol $<_{s}$ to denote its restriction to $L^{f}(z, s)$.
Stage 0). For every z, h, let $\hat{f}(z, 0)=0, \hat{\gamma}(z, 0)=\uparrow, L^{i}(h, 0)=L^{f}(h, 0)=\emptyset$, and $<_{0}=\emptyset$.
Stage $s+1$). For every h, let

$$
L^{i}(h, s+1)=L^{f}(h, s) \cup\{\langle y, s\rangle: f(\langle h, y\rangle, s+1) \neq f(\langle h, y\rangle, s)\} .
$$

Order $L^{i}(h, s+1)$ as follows: if $v, w \in L^{i}(h, s+1)$ then

$$
v<_{s+1} w \Leftrightarrow\left[v, w \in L^{f}(h, s) \& v<_{s} w\right] \vee\left[v, w \notin L^{f}(h, s) \& v<w\right] .
$$

Next, we distinguish two cases:

1. If $s \notin \bigcup_{k} R_{k}$, then define for all $z, h, \hat{f}(z, s+1)=\hat{f}(z, s), \hat{\gamma}(z, s+1)=\hat{\gamma}(z, s)$, and $L^{f}(h, s+1)=L^{i}(h, s+1)$.
2. Assume $s \in R_{k}$. If $L^{i}(k, s+1)=\emptyset$ then for every z, h define $\hat{f}(z, s+1)=\hat{f}(z, s)$, $\hat{\gamma}(z, s+1)=\hat{\gamma}(z, s)$, and $L^{f}(h, s+1)=L^{i}(h, s+1)$. If $L^{i}(k, s+1) \neq \emptyset$, and $\langle x, r\rangle$ is the $<_{s+1}$-least number of $L^{i}(k, s+1)$, then for every z define $\hat{f}(z, s+1)=\hat{f}(z, s)$ and $\hat{\gamma}(z, s+1)=\hat{\gamma}(z, s)$, unless $z=\langle k, x\rangle$, in which case define

$$
\begin{aligned}
& \hat{f}(\langle k, x\rangle, s+1)=f(\langle k, x\rangle, r+1) \\
& \hat{\gamma}(\langle k, x\rangle, s+1)=\gamma(\langle k, x\rangle, r+1)
\end{aligned}
$$

For all h, let $L^{f}(h, s+1)=L^{i}(h, s+1)$, unless $h=k$, in which case define

$$
L^{f}(k, s+1)=L^{i}(k, s+1)-\{\langle x, r\rangle\}
$$

In order to show that $\langle\hat{f}, \hat{\gamma}\rangle$ is the desired Σ_{a}^{-1}-approximation, notice that for every u there are bijective finite sets C, \hat{C}, with

$$
C=\left\{s_{0}<\cdots<s_{n_{u}}\right\}, \quad \hat{C}=\left\{r_{0}<\cdots<r_{n_{u}}\right\}
$$

such that

$$
C=\{s: \hat{f}(u, s+1) \neq \hat{f}(u, s)\}, \quad \hat{C}=\{r: f(u, r+1) \neq f(u, r)\},
$$

and

$$
\hat{f}\left(u, s_{i}+1\right)=f\left(u, r_{i}+1\right), \quad \hat{\gamma}\left(u, s_{i}+1\right)=\gamma\left(u, r_{i}+1\right) .
$$

Finally, notice that $\hat{f}(z, s+1) \neq \hat{f}(z, s)$ only if $z=\langle k, x\rangle$, and for some $r,\langle x, r\rangle$ is $<_{s+1}$-least of $L^{i}(k, s+1)$, and $s \in R_{k}$. Hence $\langle\hat{f}, \hat{\gamma}\rangle$ is special.

A similar argument shows:
Corollary 2.5 Let $\left\{\pi_{e}\right\}_{e \in \omega}$ be a Σ_{a}^{-1}-computable indexing of all computable numberings of all Σ_{a}^{-1}-computable families, and let $\left\{R_{e, k}\right\}_{e, k \in \omega}$ be a computable partition of a computable set into infinite sets. For every e, one can uniformly find a special approximation to π_{e} with respect to the partition $\left\{R_{e, k}\right\}_{k \in \omega}$; in other words, there is a pair $\langle f, \gamma\rangle$ of functions having three variables, with f computable and γ partial computable, such that, for every e, the pair $\left\langle f_{e}, \gamma_{e}\right\rangle$ is a special approximation to π_{e} with respect to $\left\{R_{e, k}\right\}_{k \in \omega}$, where $f_{e}(\langle k, x\rangle, s)=$ $f(e,\langle k, x\rangle, s)$ and $\gamma_{e}(\langle k, x\rangle, s)=\gamma(e,\langle k, x\rangle, s)$.

Corollary 2.6 For every $A \in \Sigma_{a}^{-1}$ and any computable infinite set R there is a Σ_{a}^{-1} approximation to A which is special with respect to R, meaning a Σ_{a}^{-1}-approximation $\langle f, \gamma\rangle$ to A, such that for every $s, z,|\{y: f(y, s+1) \neq f(y, s)\}| \leq 1$, and $f(z, s+1) \neq f(z, s)$ or $\gamma(z, s+1) \neq \gamma(z, s)$ only if $s \in R$.

3 The theorem

We are now in a position to prove the theorem:
Theorem 3.1For every ordinal notation a, with $|a|_{O}>1$ and $|a|_{O}$ successor, there exists $a \Sigma_{a}^{-1}$-computable family $\mathcal{A}=\{A, B\}$, with $A \subset B$ such that $\left.\mid \mathcal{R}_{a}^{-1}(\mathcal{A})\right) \mid=1$.

Proof. Given a, with $|a|_{O}>1$ and $|a|_{O}$ successor, we build $A \subseteq B, A \neq B$, and a $\Sigma_{a}^{-1}-$ computable numbering α of $\mathcal{A}=\{A, B\}$, such that for every Σ_{a}^{-1}-computable numbering π of \mathcal{A}, we have $\pi \equiv \alpha$.

We will define $\alpha(0)=A, \alpha(1)=B$, and $\alpha(k)=B$ for all $k \geq 1$.
Let $\left\{\pi_{e}\right\}_{e \in \omega}$ be a Σ_{a}^{-1}-computable indexing of all Σ_{a}^{-1}-computable numberings, and by Corollary 2.5 let us refer to uniform special approximations to these numberings with respect to the partition $\left\{R_{e, k}\right\}_{e, k \in \omega}$, where

$$
R_{e, k}=\{\langle e, k, x\rangle+1: x \in \omega\}:
$$

if $\langle f, \gamma\rangle$ is such a uniform special approximation, write $f_{e}(\langle k, x\rangle, s)=f(e,\langle k, x\rangle, s)$ and $\gamma_{e}(\langle k, x\rangle, s)=\gamma(e,\langle k, x\rangle, s)$. We will define α so that, for every e, k, the following requirement is satisfied:

$$
Q_{e, k}: \quad \pi_{e}(k) \in\{A, B\} \Rightarrow g_{e}(k) \text { defined and } \pi_{e}(k)=\alpha\left(g_{e}(k)\right),
$$

where g_{e} is a partial computable function defined by us.
The construction is by stages. At stage $s+1>1$ with $s \in R_{e, k}$ (notice that for every $t>0$ there is a unique e, k such that $\left.t \in R_{e, k}\right)$) our action aims at making $\pi_{e}(k) \notin \mathcal{A}$ (so that π_{e} is not a numbering of \mathcal{A}), or we define $g_{e}(k) \in\{0,1\}$ so as to ensure that $\pi_{e}(k)=\alpha\left(g_{e}(k)\right)$, if eventually $\pi_{e}(k) \in\{A, B\}$. This is enough to show the claim since, if $\pi_{e} \in \operatorname{Com}_{a}^{-1}(\mathcal{A})$ then trivially $\alpha \leq \pi_{e}$.

Our attempts at diagonalizing $\pi_{e}(k)$ against A, B at stage $s+1$ with $s \in R_{e, k}$ make use of (computably given) witnesses $a_{0}(e, k), a_{1}(e, k)$: we assume that $a_{0}(e, k) \neq a_{1}(e, k)$, and $\left\{a_{0}(e, k), a_{1}(e, k)\right\} \cap\left\{a_{0}\left(e^{\prime}, k^{\prime}\right), a_{1}\left(e^{\prime}, k^{\prime}\right)\right\}=\emptyset$ if $\langle e, k\rangle \neq\left\langle e^{\prime}, k^{\prime}\right\rangle$. So at this stage we define $f_{A}\left(a_{0}(e, k), s+1\right), f_{A}\left(a_{1}(e, k), s+1\right)$, and $\gamma_{A}\left(a_{0}(e, k), s+1\right), \gamma_{A}\left(a_{1}(e, k), s+1\right)$; and likewise $f_{B}\left(a_{0}(e, k), s+1\right), f_{B}\left(a_{1}(e, k), s+1\right)$ and $\gamma_{B}\left(a_{0}(e, k), s+1\right), \gamma_{B}\left(a_{1}(e, k), s+1\right)$. The pair $\left\langle f_{A}, \gamma_{A}\right\rangle$ will be a Σ_{a}^{-1}-approximation to A; the pair $\left\langle f_{B}, \gamma_{B}\right\rangle$ will be a Σ_{a}^{-1}-approximation to B. From these two pairs we will also get a Σ_{a}^{-1}-approximation $\langle\hat{f}, \hat{\gamma}\rangle$ to α, by letting $\hat{f}(\langle 0, x\rangle, s+1)=f_{A}(x, s+1), \hat{f}(\langle k, x\rangle, s+1)=f_{B}(x, s+1), \hat{\gamma}(\langle 0, x\rangle, s+1)=\gamma_{A}(x, s+1)$, and $\hat{\gamma}(\langle k, x\rangle, s+1)=\gamma_{B}(x, s+1)$, for $k \geq 1$. It is understood that all values of $f_{A}, f_{B}, \gamma_{A}, \gamma_{B}$ that are not explicitly defined maintain the same values as at the preceding stage, the values at $s=0$ being 0 for f_{A}, f_{B}, and undefined for γ_{A}, γ_{B}. Since A and B are disjoint, it is straightforward to see that $\langle\hat{f}, \hat{\gamma}\rangle$ is a Σ_{a}^{-1}-approximation to α. Finally, at stage $s+1, s \in R_{e, k}$, if $g_{e, s}(k)=\uparrow$ (i.e. the value of $g_{e}(k)$ is still undefined), we might define also $g_{e, s+1}(k)=0$ or $g_{e, s+1}(k)=1$. After defining $g_{e}(k)$ our only worry will be to make sure that $\pi_{e}(k) \neq A$ if $g_{e}(k)=1$, and $\pi_{e}(k) \neq B$ if $g_{e}(k)=0$. If π_{e} is a numbering of \mathcal{A}, then eventually g_{e} is total, and $\pi_{e} \leq \alpha$ via g_{e}.

Without loss of generality we may also assume that our uniform special approximation $\langle f, \gamma\rangle$ also satisfies, for every $e, k, x, f(e,\langle k, x\rangle, 1)=0$.

Let $s \in R_{e, k}$: at stage $s+1$ we monitor the initial $\pi_{e}(k)$-setup at $s+1$, meaning the table

$$
\left|\begin{array}{cll}
\pi_{e}(k) & (u, i) & (v, j) \tag{3}\\
A & \left(u^{\prime}, i^{\prime}\right) & \left(v^{\prime}, j^{\prime}\right) \\
B & \left(u^{\prime \prime}, i^{\prime \prime}\right) & \left(v^{\prime \prime}, j^{\prime \prime}\right) \\
g_{e}(k) & w &
\end{array}\right|
$$

where $u, u^{\prime}, u^{\prime \prime}, v, v^{\prime}, v^{\prime \prime} \in\{0,1\}, w \in\{0,1, \uparrow\}$, and $i, i^{\prime}, i^{\prime \prime}, j, j^{\prime}, j^{\prime \prime} \in \omega$. The table has the following meaning: for simplicity, let $a_{0}=a_{0}(e, k)$, and $\left.a_{1}=a_{1}(e, k)\right)$:

1. (first line) $f_{e}\left(\left\langle k, a_{0}\right\rangle, s+1\right)=u, f_{e}\left(\left\langle k, a_{1}\right\rangle, s+1\right)=v$; moreover, for $r \leq s+1, f_{e}\left(\left\langle k, a_{0}\right\rangle, r\right)$ has already made i changes, and $f_{e}\left(\left\langle k, a_{1}\right\rangle, r\right)$ has already made j changes;
2. (second line): $f_{A}\left(a_{0}, s\right)=u^{\prime}, f_{A}\left(a_{1}, s\right)=v^{\prime}$; moreover, for $r \leq s, f_{A}\left(a_{0}, r\right)$ has already made i^{\prime} changes, and $f_{A}\left(a_{1}, r\right)$ has already made j^{\prime} changes;
3. (third line): $f_{B}\left(a_{0}, s\right)=u^{\prime \prime}, f_{B}\left(a_{1}, s\right)=v^{\prime \prime}$; moreover, for $r \leq s, f_{B}\left(a_{0}, r\right)$ has already made $i^{\prime \prime}$ changes, and $f_{B}\left(a_{1}, r\right)$ has already made $j^{\prime \prime}$ changes;
4. (fourth line) w denotes the value of $g_{e}(k)$ at the end of stage s.

At the end of the stage, as a result of our action performed during the stage we have the final $\pi_{e}(k)$-setup at $s+1$, i.e. the table

Notice that the first line of the final setup is just the same as in the initial setup; the overlined symbols denote the (possibly new) values of A, B, and of $g_{e}(k)$, at the end of the stage.

The advantage of working with uniform special approximations is that we can take complete care of the requirement $Q_{e, k}$ only by looking at the behavior of $\pi_{e}(k)$ at stages $s+1$ with $s \in R_{e, k}$: moreover at each such stage at most one of a_{0}, a_{1} may change its membership status in $\pi_{e}(k)$.

The construction Stage 0): Let $f_{A}(z, 0)=f_{B}(z, 0)=0$ and let $\gamma_{A}(z, 0)=\gamma_{B}(z, 0)=\uparrow$.

Stage 1): for every e, k, let $f_{A}\left(a_{0}(e, k), 1\right)=1, \gamma_{A}\left(a_{0}(e, k), 1\right)=2$ (remember that $|2|_{O}=$ 1); let $f_{B}\left(a_{0}(e, k), 1\right)=f_{B}\left(a_{1}(e, k), 1\right)=1, \gamma_{B}\left(a_{0}(e, k), 1\right)=b$ (where $2^{b}=a$, i.e. b is the unique ordinal notation, with $b<_{O} a$, of the predecessor of $\left.|a|_{O}\right)$, and $\gamma_{B}\left(a_{1}(e, k), 1\right)=1$ (remember that $|1|_{O}=0$). So for every e, k, the final $\pi_{e}(k)$-setup at stage 1 is

$$
\left|\begin{array}{clc}
\pi_{e}(k) & (0,0) & (0,0) \\
A & (1,1) & (0,0) \\
B & (1,1) & (1,1) \\
g_{e}(k) & \uparrow &
\end{array}\right|
$$

Stage $s+1), s>0$. Suppose $s \in R_{e, k}$, and assume that the initial $\pi_{e}(k)$-setup at this stage is $\sigma^{i}(s+1)$. For simplicity let $a_{i}=a_{i}(e, k)$. We distinguish the following cases:

1. If

$$
\sigma^{i}(s+1)=\left|\begin{array}{clc}
\pi_{e}(k) & (u, i) & (1,1) \\
A & \left(u^{\prime}, i^{\prime}\right) & (0,0) \\
B & (1,1) & (1,1) \\
g_{e}(k) & \uparrow &
\end{array}\right|
$$

(with $(u, i)=(0,0)$ and $\left(u^{\prime}, i^{\prime}\right)=(1,1)$, or $(u, i)=(1,1)$ and $\left.\left(u^{\prime}, i^{\prime}\right)=(0,2)\right)$ then define $g_{e}(k)=1, f_{A}\left(a_{0}, s+1\right)=0, \gamma_{A}\left(a_{0}, s+1\right)=1$; so the final setup is

$$
\sigma^{f}(s+1)=\left|\begin{array}{ccc}
\pi_{e}(k) & (u, i) & (1,1) \\
A & (0,2) & (0,0) \\
B & (1,1) & (1,1) \\
g_{e}(k) & 1 &
\end{array}\right|
$$

2. If

$$
\sigma^{i}(s+1)=\left|\begin{array}{ccc}
\pi_{e}(k) & (1,1) & (0,0) \\
A & (1,1) & (0,0) \\
B & (1,1) & (1,1) \\
g_{e}(k) & \uparrow &
\end{array}\right|
$$

then extract a_{0} from A, i.e. define $f_{A}\left(a_{0}, s+1\right)=0$, and $\gamma_{A}\left(a_{0}, s+1\right)=1$, so the final setup is

$$
\sigma^{f}(s+1)=\left|\begin{array}{ccc}
\pi_{e}(k) & (1,1) & (0,0) \\
A & (0,2) & (0,0) \\
B & (1,1) & (1,1) \\
g_{e}(k) & \uparrow
\end{array}\right|
$$

3. If

$$
\sigma^{i}(s+1)=\left|\begin{array}{ccc}
\pi_{e}(k) & (0,2) & (0,0) \\
A & (0,2) & (0,0) \\
B & (1,1) & (1,1) \\
g_{e}(k) & \uparrow
\end{array}\right|
$$

then define $g_{e}(k)=0$: so the final setup is

$$
\sigma^{f}(s+1)=\left|\begin{array}{ccc}
\pi_{e}(k) & (0,2) & (0,0) \\
A & (0,2) & (0,0) \\
B & (1,1) & (1,1) \\
g_{e}(k) & 0 &
\end{array}\right|
$$

4. If none of the above cases applies then, as we argue in the verification, $g_{e}(k)$ is defined. If σ_{s+1}^{i} is not winning (meaning that either $g_{e}(k)=1$ and $v=v^{\prime}$, or $g_{e}(k)=0$ and $u=u^{\prime \prime}$: here $u, u^{\prime \prime}, v, v^{\prime}$ are as in table (3); also we assume by induction that at the end of the previous relevant stage the final $\pi_{e}(k)$-setup is winning) then:
(a) if $g_{e}(k)=1$ then (by properties of a special approximation) we have $f_{e}\left(\left\langle k, a_{1}\right\rangle, s+\right.$ 1) $\neq f_{e}\left(\left\langle k, a_{1}\right\rangle, s\right)$, and the initial setup at $s+1$ is of the form:

$$
\sigma^{i}(s+1)=\left|\begin{array}{cll}
\pi_{e}(k) & (u, i) & (v, j) \\
A & (0,2) & (v, j-2) \\
B & (1,1) & (1,1) \\
g_{e}(k) & 1
\end{array}\right|
$$

let $A\left(a_{1}, s+1\right)=1-A\left(a_{1}, s\right)$ and $\gamma_{A}\left(a_{1}, s+1\right)=\gamma_{e}\left(\left\langle k, a_{1}\right\rangle, s\right)$: the final setup is

$$
\sigma^{f}(s+1)=\left|\begin{array}{cll}
\pi_{e}(k) & (u, i) & (v, j) \\
A & (0,2) & (1-v, j-1) \\
B & (1,1) & (1,1) \\
g_{e}(k) & 1 &
\end{array}\right|
$$

(b) if $g_{e}(k)=0$ then, similarly, we have $f_{e}\left(\left\langle k, a_{0}\right\rangle, s+1\right) \neq f_{e}\left(\left\langle k, a_{0}\right\rangle, s\right)$, and

$$
\sigma^{i}(s+1)=\left|\begin{array}{cll}
\pi_{e}(k) & (u, i) & (v, j) \\
A & (0,2) & (0,0) \\
B & (u, i-2) & (1,1) \\
g_{e}(k) & 1
\end{array}\right|
$$

let $B\left(a_{0}, s+1\right)=1-B\left(a_{0}, s\right)$ and $\gamma_{B}\left(a_{0}, s+1\right)=\gamma_{e}\left(\left\langle k, a_{0}\right\rangle, s+1\right)$: the final setup is

$$
\sigma^{f}(s+1)=\left|\begin{array}{cll}
\pi_{e}(k) & (u, i) & (v, j) \\
A & (0,2) & (0,0) \\
B & (1-u, i-1) & (1,1) \\
g_{e}(k) & 0 &
\end{array}\right|
$$

If none of the above cases apply, or after acting through one of the above cases, move to stage $s+2$.

This concludes the construction, with A, B eventually given by $A(z)=\lim _{s} f_{A}(z, s)$ and $B(z)=\lim _{s} f_{B}(z, s)$, and with $\alpha \in \operatorname{Comp}-1 a(\{A, B\})$ defined as explained earlier.

Verification. Let $\mathcal{A}=\{A, B\}$, let e, k be given, and $a_{i}=a_{i}(e, k)$. We want to show that either $\pi_{e}(k) \notin\{A, B\}$, or $g_{e}(k)$ is defined and $\pi_{e}(k)=\alpha\left(g_{e}(k)\right)$.

If $f_{e}\left(\left\langle k, a_{0}\right\rangle, s\right)=f_{e}\left(\left\langle k, a_{1}\right\rangle, s\right)=0$ for all s, then the claim is true, since in this case $\pi_{e}(k) \notin\{A, B\}$, as $a_{0} \in A$ and $a_{0}, a_{1} \in B$. Since $a_{1} \notin A$, we trivially have in this case that $A \cap\left\{a_{0}, a_{1}\right\} \subset B \cap\left\{a_{0}, a_{1}\right\}$.

Otherwise, by definition of a special approximation, there is a least $s_{0}>0$ such that $f_{e}\left(\left\langle k, a_{0}\right\rangle, s_{0}+1\right) \neq f_{e}\left(\left\langle k, a_{0}\right\rangle, s_{0}\right)$ or $f_{e}\left(\left\langle k, a_{1}\right\rangle, s_{0}+1\right) \neq f_{e}\left(\left\langle k, a_{1}\right\rangle, s_{0}\right)$, but noth both, and $s_{0} \in R_{e, k}$.

1. If $f_{e}\left(\left\langle k, a_{1}\right\rangle, s_{0}+1\right) \neq f_{e}\left(\left\langle k, a_{1}\right\rangle, s_{0}\right)$, then at stage $s_{0}+1$ we act as in case 1 of the construction, and get the final setup

$$
\sigma^{f}\left(s_{0}+1\right)=\left|\begin{array}{ccc}
\pi_{e}(k) & (0,0) & (1,1) \\
A & (0,2) & (0,0) \\
B & (1,1) & (1,1) \\
g_{e}(k) & 1 &
\end{array}\right|
$$

From now on we may act on behalf of $Q_{e, k}$ only through part 4a of the construction. Every time we act in this way (due to a change of $f_{e}\left(\left\langle k, a_{1}\right\rangle, s+1\right) \neq f_{e}\left(\left\langle k, a_{1}\right\rangle, s\right)$, at stages $s+1$, with s in $R_{e, k}$, we have a not winning initial setup of the form

$$
\sigma^{i}(s+1)=\left|\begin{array}{cll}
\pi_{e}(k) & (u, i) & (v, j) \\
A & (0,2) & (v, j-2) \\
B & (1,1) & (1,1) \\
g_{e}(k) & 1 &
\end{array}\right|
$$

ending with a final setup of the form

$$
\sigma^{f}(s+1)=\left|\begin{array}{cll}
\pi_{e}(k) & (u, i) & (v, j) \\
A & (0,2) & (1-v, j-1) \\
B & (1,1) & (1,1) \\
g_{e}(k) & 1 &
\end{array}\right|
$$

after which we define $\gamma_{A}\left(a_{1}, s+1\right)=\gamma_{e}\left(\left\langle k, a_{1}\right\rangle, s\right)$. But as $\lim _{t} f_{e}\left(\left\langle k, a_{1}\right\rangle, t\right)$ exists, we eventually achieve that if $\pi_{e}(k) \in \mathcal{A}$ then $\pi_{e}(k)=\alpha\left(g_{e}(k)\right)$ as $\pi_{e}(k)=\alpha(1)$. Notice that for every $t, \gamma_{A}\left(a_{1}, t\right)$ is correctly defined making this function a correct mind-change function, since for every $t+1$ starting from the first change of the memberhip status of a_{1} in $\pi_{e}(k)$, we define $\gamma_{A}\left(a_{1}, t+1\right)=\gamma_{e}\left(\left\langle k, a_{1}\right\rangle, t\right)$. The values $\gamma_{A}\left(a_{0}, t\right), \gamma_{B}\left(a_{0}, t\right)$ and $\gamma_{B}\left(a_{1}, t\right)$ are trivially correctly defined, since there is no further changes in the membership status of a_{0} in A, and of a_{0}, a_{1} in B.
2. If $f_{e}\left(\left\langle k, a_{0}\right\rangle, s_{0}+1\right) \neq f_{e}\left(\left\langle k, a_{0}\right\rangle, s_{0}\right)$ then we first act through 2 , and then, if we act again, we may assume that we act through 3 , since otherwise action through 1 would yield a final setup of the form

$$
\sigma^{f}(s+1)=\left|\begin{array}{ccc}
\pi_{e}(k) & (1,1) & (1,1) \\
A & (0,2) & (0,0) \\
B & (1,1) & (1,1) \\
g_{e}(k) & 1 &
\end{array}\right|
$$

but then by an argument similar to the one used in the previous case, we may conclude that suitably changing $f_{A}\left(a_{1}, s+1\right)$ in response to, and diagonalizing against, corresponding changes of $f_{e}\left(\left\langle k, a_{1}\right\rangle, s+1\right)$ we eventually achieve success of our strategy. So assume that when we act again at, say $s_{1}+1$, we do it through 3 because an initial setup of the form

$$
\sigma^{i}\left(s_{1}+1\right)=\left|\begin{array}{ccc}
\pi_{e}(k) & (0,2) & (0,0) \\
A & (0,2) & (0,0) \\
B & (1,1) & (1,1) \\
g_{e}(k) & \uparrow &
\end{array}\right|
$$

At the same stage, we get the final setup

$$
\sigma^{f}\left(s_{1}+1\right)=\left|\begin{array}{ccc}
\pi_{e}(k) & (0,2) & (0,0) \\
A & (0,2) & (0,0) \\
B & (1,1) & (1,1) \\
g_{e}(k) & 0 &
\end{array}\right|
$$

From now on we may act on behalf of $Q_{e, k}$ only through part 4b of the construction, when finding initial $\pi_{e}(k)$-setups that are not winning: we start by suitably changing $f_{B}\left(a_{0}, s+\right.$ $1)$ in response to, and diagonalizing against, corresponding changes of $f_{e}\left(\left\langle k, a_{0}\right\rangle, s+1\right)$. By Δ_{2}^{0}-ness, the process eventually stops, at the end of which we have correctly defined the values of the mind-change functions γ_{A}, γ_{B} on a_{0} and a_{1}. To see for instance that the values $\gamma_{B}\left(a_{0}, t\right)$ are correctly defined remember that we define $\gamma_{B}\left(a_{0}, 1\right)=b$ (where $b<_{O} a$ is a notation for the predecessor of $|a|_{O}$), and then we may redefine the values only at a stage $s_{2}+1$ when $f_{e}\left(\left\langle k, a_{0}\right\rangle, s+1\right)$ has already made two changes, and so, by construction, $\gamma_{B}\left(a_{1}, s_{2}+1\right)=\gamma_{e}\left(\left\langle k, a_{0}\right\rangle, s_{2}+1\right)<_{O} b$. From this stage on, the next values of γ_{B} on a_{1} will be defined through the corresponding values of γ_{e} on $\left\langle k, a_{1}\right\rangle$.

In either case 1 or 2 , we have $a_{0} \notin A, a_{1} \in B$; if $g_{e}(k)$ is not defined, or $g_{e}(k)=0$ then $a_{1} \notin A$; if $g_{e}(k)=1$ then $a_{0} \in B$. In any case we have that $A \cap\left\{a_{0}, a_{1}\right\} \subset B \cap\left\{a_{0}, a_{1}\right\}$. Since this holds of every e, k, we conclude that $A \subset B$.

Remark A closer look at the construction shows that if $|a|_{O}=n \in \omega, n \geq 2$, then for every e, $k, f_{A}\left(a_{0}(e, k), t\right)$ changes at least once and at most 2 times; $f_{A}\left(a_{1}(e, k), t\right)$ and $f_{B}\left(a_{0}(e, k), t\right)$ change at most $n-1$ times (and $f_{B}\left(a_{0}(e, k), t\right)$ at least once); $f_{B}\left(a_{1}(e, k), t\right)$ changes exactly once. Thus in general B is $n-1-c . e$., and A is $n-1-c . e$. or A is $2-c . e$. if $n=2$, in accordance with a similar remark made for $n=2$ by Badaev and Talasbaeva [2].

Problem. We do not know if Theorem 3.1 is true also of ordinal notations of limit ordinals, although we conjecture that it is so.

Reference

[1] M.M. Arslanov. Ershov hierarchy. Kazan, 2007. In Russian.
[2] S.A. Badaev and Zh.T. Talasbaeva. Computable numberings in the hierarchy of Ershov. To appear.
[3] Yu. L. Ershov. A hierarchy of sets, I. // Algebra and Logic, 7:47-73, 1968.
[4] Yu. L. Ershov. A hierarchy of sets, II. // Algebra and Logic, 7:15-47, 1968.
[5] Yu. L. Ershov. A hierarchy of sets, III. // Algebra and Logic, 9:34-51, 1970.
[6] Yu. L. Ershov. Theory of Numberings. Nauka, Moscow, 1977. In Russian.
[7] S. Goncharov and A. Sorbi. Generalized computable numerations and non-trivial Rogers semilattices. // Algebra and Logic, 36(6):359-369, 1997.
[8] S. Ospichev. Computable family of Σ_{a}^{-1}-sets without Friedberg numberings. // 6th Conference on Computability in Eueope, CiE 2010, 6th Conference on Computability in Eueope, CiE 2010. Ponta Delgada, Azores, pages 311-315, 2010.
[9] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.

