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HOMOGENIZATION OF ATTRACTORS TO THE REACTION-DIFFUSION
SYSTEM IN A DOMAIN WITH ROUGH BOUNDARY

In this paper, we consider the homogenization problem in a micro inhomogeneous domain with a
rapidly oscillating boundary. It is assumed that a system of nonlinear reaction—diffusion equations
with rapidly oscillating terms and dissipation is considered in the domain. On the locally periodic
oscillating part of the boundary, the third boundary condition with rapidly oscillating coefficients
and a small parameter characterizing the oscillation of the boundary to some degree is imposed.
Depending on the degree of the small parameter in the boundary condition, various homogenized
(limit) problems are obtained and the convergence of the trajectory attractors of the given system
to the attractors of the homogenized system is proved. Critical, subcritical and supercritical cases
of attractor behavior as the small parameter tends to zero are carefully studied. The paper also
considers problems in a domain with a random rapidly oscillating boundary. In this case, a
homogenized system of reaction—diffusion equations with deterministic coefficients is obtained
in the case of a statistically homogeneous random structure of the boundary. A theorem on
the convergence of random trajectory attractors of the initial given system of reaction-diffusion
equations to a deterministic attractor of the homogenized (limit) system of reaction—diffusion
equations is also proved. The paper also proves the convergence of global attractors in the case
of uniqueness of solutions, which in turn is proved for nonlinearity in a system of equations of a
special type.

Key words: attractors, homogenization, reaction-diffusion equations, non-linear equations, weak
convergence, rapidly oscillating boundary.
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Te3 Tepbenmesi niekapachl 6ap aliMmakTap/arbl peakiusi-audysus TeHaeyIepiniy,
aTTPAKTOPJIAPBIHBIH, OPTAIIAJIAY bI

Byn xxymbicTa mekapachkl Te3 TepbesieTiH MUKPO OIpTEKTI emec aifiMakTa OpTalmajiay Moceseci
KapacThIpbLIabl. AfiMakTa YKbLUIIAM TepOeaeTiH MyIiegepi MeH JMCCHIAIUACH] 0ap ChI3BIKTHI
eMmec peaxknus-auddy3usa TeHgeyaep Kyieci 3eprreminred. [llekapaHbiH JTOKAIbIBI TepOeIMeti
besiriange KburmaMm TepbenMesi KoadduimenTTepi 6ap YHIHIN IEeKapasblK IMapT >KOHE IeKa-
pasbIH Oesrijii 6ip gopexKeme TepOesriciH cumaTTaiiThiH IafblH Hapamerp Oesrinenemi. ITlekTik
JKarmaigarsl Kinn mapaMeTp Jopexkecine GaillaHbICThl 9pTYpJIi opTamaianran (IMIEKTIK) ecernrep
AJIBIH/IBI JKOHE OACTANKBI YKYHEeHIH TPAEKTOPHUSJIBIK, ATTPAKTOPJIADPBIHBIH, OPTAIlIAJIAHFaH KYeHIH
aTTPAKTOPJIAPBIHA YKUHAKTAIYBI JpJieanenai. Kiml mapamerp Hejire YMTBUIFAH Ke3/e ATTPaK-
TOPJIAPJIBIH €PeKNIeTiKTepl KPUTUKAJIBIK, CYOKPUTUKAJIBIK 2KOHE CYIePKPUTUKAJIBIK, 2Kariaiiia-
PBl MYKHAT 3epTTestingi. Makajiajga COHbBIMEH KaTap Ke3JeHCOK, YKbLIJaM TepOeIeTiH IeKapachl
Gap aiiMakTarbl Mocejejep KapacThIPbLIaIbl. ByJl Karmaiia IIeKapaHblH CTATUCTUKAJIBIK Oip-
TEKTI Ke3IefCOK KYPBLIbIMbI *KAFIANBIHIA JIeTepPMUHUPJIEHTeH KO3(hdUIMeHTTepi 6ap peakiusi-
muddysus TeHAeyIepiniy opTramasanral Kyieci anbragpl. Peaknus-anddysus TeHeyepiHin
GacTankbl KyiieciHiH Ke37efCOoK TPAeKTOPHUSJIBIK ATTPAKTOPJIAPBIHBIH OpTAIlajaHraH (IIeKTIiK)
peaktus-auddy3ust TeHaeyIep KyHeciHin ke3eiicok, emec ecebiniH, aTTPaKTOPbIHA, KUHAKTAJIY bI
TypaJibl TEOPEMACHI JpJjiejeHreH. 2K yMbIC coHaii-aK, bipereil memiMaep Kar ailblHaa TI06a1/bl
ATTPAKTOPJIAPIBIH, KIMHAKTAIYBIH JIDJIEJIIEHI], OYJI KaFaail ChI3BIKTHIK, eMeC MYIIeIepre KOChIMIIIA
mrapT KOWBLIFaH Ke3je maiiaa 6oIabt.

Tyiiin cesnep: arTpakTop/ap, opramiaJiay, peakims-andy3ust TeHIeyaepi, ChI3bIKTHIK eMeC TeH-
JIeyJIep, 9JICI3 KUHAKTBLIBIK, T€3 TepOeIMeli mekapa.
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O6 ycpeaHeHUUW aTTPAKTOPOB ypaBHeHUil peaknun-andy3un B o6JIacTU ¢ HIEpOXOBATOM
rpaHuiei

B nammoit pabote paccMaTpuBaeTCs 3a/1a4a YCPEIHEeHNs B MUKPO HEOTHOPOIHOM 001acTH ¢ OBICTPO
ocnmLupyioieit rpanuneit. Ilpenmonaraercs, ¥To B 001acTH 33/1aHa CUCTEMA HEJNHEHHBIX yPaB-
HeHuil peaknun—auddy3un ¢ OBICTPO OCIUIUPYIOMUME 4ieHaMu U guccumnanueit. Ha jiokaabao
MIEPUOINIECKON OCIIIINPYIOIIEl YacTU T'PAHUIBI BHICTABIIEHO TPETbEe KPAeBOE YCJIOBHE C OBICT-
PO OCIIMILIAPYIOMIMHU KOI(DMUITUEHTAMEI U MAJIBIM IaPAMETPOM, XaPAKTEPUIYIONUM OCIIHJIJISIIIIO
TPaHUIIBI, B HEKOTOPOIt cTerienn. B 3aBUCHMOCTH OT CTeIeHN MAJIOTO ITapaMeTpa B KPAeBOM YCJIOBHIH
[IOJIyYeHbl PA3JIMYIHble yCPeJIHEHHbIE (IIpe/iesIbHbIe) 3a/1aUi U J0Ka3aHa CXOAUMOCTh TPAEKTOPHBIX
ATTPAKTOPOB UCXOMHON CUCTEMBI K aTTPAKTOPaM YCPEIHEHHON CHCTeMBbl. AKKYPaTHO HUCCJIeI0Ba-
HBl KPUTHYECKWil, CYOKPUTUIECKUIT U CYINMEPKPUTHIECKUIT CJIyIarW IOBEJEHUsI ATTPAKTOPOB IIPHU
CTPEMJIEHAU MAJIOTO MapaMeTpa K HyJ0. B crarbe paccCMOTPEHBI TaKXKe 33/a9u B 00JIACTH CO
cayvaiiHoi 6uICTPO ocrmIupyIomieil rpanuneit. [Ipu sToM mosryveHa ycpeHEHHAsT CUCTEMA yPaB-
HEeHUH peaknuu—auddy3un ¢ TeTepMUHAPOBAHHBIMU KOI(MDMUITUEHTAMA B CJIyYae CTATHCTUIECKH
OJHOPOJTHOM CJIyYaiHOW CTPYKTYpOll rpaHuiibl. TakxKe JIOKa3zaHa TeOpeMa O CXOIUMOCTHU CJIydaii-
HBIX TPAEKTOPHBIX ATTPAKTOPOB UCXOMHOI CUCTEMbI ypaBHEHU peakuu—nudy3un K JeTepMUHI-
POBAHHOMY ATTPAKTOPY yCPEJHEHHOMN (IIpejiesibHOM) cucreMbl ypaBHenuil peakimn—auddysuun.B
paboTe Tak»Ke JO0Ka3aHa CXOIUMOCTD U IVIODAJILHBIX ATTPAKTOPOB B CJIyYae €IMHCTBEHHOCTH Dellre-
HUIl, KOTOpasd B CBOIO o4epe/ib JoKa3aHa [JIs HeJIMHEHHOCTU B CUCTeMe YPaBHEHHIl ClieluajIbHOIO
BHJIA.
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KuiroueBbie cjioBa: arTpakTOpbI, YCPEIHEHWEe, ypaBHEHUs peaknuu-audys3un, HeJuHeiHbIe
ypaBHEHUSI, ¢j1abasi CXOIUMOCTh, OBICTPO OCIUJLIMPYIONAs I'PAHUIIA.

1 Introduction

In this paper, we present a review of results on homogenization of initial-boundary value
problems for a system of reaction—diffusion equations in domains with a rapidly oscillating
boundary (for detailed geometric formulations, see [3| and [40]). We consider nonlinear
systems of reaction—diffusion equations in such a domain with a locally periodic and random
rapidly oscillating boundary, and investigate the case of dissipative coefficients in the
equations. We prove the existence of trajectory attractors, construct a limit (homogenized)
system of reaction—diffusion equations both in the case of a locally periodic and in the case
of a statistically homogeneous random boundary, and prove the convergence of the attractors
of the original system as the small parameter characterizing the boundary oscillation, tends
to zero, i.e. prove the Hausdorff convergence of the attractors of the original system to
the attractors of the homogenized (limit) system as the small parameter tends to zero. In
many purely mathematical works one can find asymptotic analysis of problems in domains
with oscillating (rough) boundaries (see, for example, [1H10]). We also mention here the
fundamental works on this topic [11-14], where one can find a detailed bibliography. A special
feature of the second part of the work is the random geometry of the domain (see some
examples in [37-39]). It is assumed that the random structure is statistically homogeneous.
This fact allows us to obtain a deterministic limit problem (see [40]), which does not depend
on the choice of an element of the probability space. Theoretical results on attractor averaging
can be found, for example, in [15-17], and see references therein. Attractor averaging was
also studied in [17-20] (see also [21-24]).

In this paper, we establish weak convergence (in the sense of “almost surely” in the
probabilistic case, i.e. with probability one) of the trajectory attractor 2. of reaction—diffusion
systems in domains with an oscillating boundary, for ¢ — 0, to the trajectory attractors
A of homogenized systems in some natural functional space. Here the small parameter e
characterizes the period and amplitude of the oscillations. The parameter ¢ also appears
to some power in the third boundary condition on a part of the locally periodic boundary,
and in the limit in the locally periodic case we obtain 3 different homogenized problems
(critical, subcritical and supercritical cases) depending on the ratio between the powers of
the small parameter. In the random formulation of the problem e also characterizes the
microinhomogeneity on the boundary.

In the second section of the paper one can find the main preliminary results on attractors
and random sets, the third section is devoted to homogenization in the locally periodic case.
In the fourth section we present the results of homogenization when the boundary has a
random structure.

2 Preliminary information.

2.1 Trajectory attractors of evolution equations

This section is devoted to the construction of trajectory attractors to autonomous evolution
equations (see details in [17]).
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Consider an autonomous evolution equation of the form for ¢ > 0

ou
o = Alw). (1)

Here A(-) : By — Ej is a nonlinear operator, E, E, are Banach spaces and E; C Ej. As an
example one can consider A(u) = AAu — a(-) f(u) + h(-).

We study weak solutions u(t) to (1)) as functions ¢ € Ry as a whole. The set of solutions
of is said to be a trajectory space K+ of equation . Now, we describe the trajectory
space KT in detail.

Consider solutions wu(t) of (1)) defined on [t1,%3] C R. We consider solutions to problem
in a Banach space JFy, ;,. The space Fy, 4, is a set f(s),s € [t1,to] satisfying f(t) € E for
almost all t € [t1, 5], where F is a Banach space, satisfying £y C E C FEy.

For instance, F;, ., can be considered as the intersection spaces C([t1,to]; E), or
Ly(t1,to; E), for p € [1,00]. Suppose that Il ;,Fr,r, © Fpyp and [l 4, fll7,,, <
C(ty, to, 7, ) fll7, ., Vf € Friry. Here [ty,t0] € [1y, 7] and II;, 4, denotes the restriction
operator onto [tq,ts], constant C(ty,ta, 71, 72) does not depend on f.

Denote by S(7) for 7 € R the translation operator S(7)f(t) = f(7 +t). It is easy to see,
that if the argument ¢ of f(-) belongs to the segment [t;,t5], then the argument ¢ of S(7)f(+)
belongs to [t; — 7,to — 7] for 7 € R. Suppose that the mapping S(7) is an isomorphism from
Fity t0 By gy and |S(7) fll7, 11y r = IfllFt100 Y € Fiypy- It is easy to see that this
assumption is natural.

Suppose that if f(t) € Fi,4,, then A(f(t)) € Dy +,, where Dy, 4, is a Banach space,
which is larger, F, +, € Dy, 4,. The derivative %it) is a distribution with values in FEj, % €
D'((t1,t2); Ep) and we suppose that Dy, ;, € D'((t1,t2); Eo) for all (¢1,t2) C R. A function
u(t) € Fiy 1, 18 & solution of , if 2¢(t) = A(u(t)) in the sense of D'((ty,t2); Ep).

Let us define the space 77 = {f(t), t € Ry | I, 1, f(t) € Fipo, V [t1,t2] C Ry} For
instance, if 7,4, = C([t1,t2); E), then Fi¢ = C(Ry; E) and if Fy, 4, = Ly(t1,to; E), then
Floe = Li*(Ry; E).

A function u(t) € F°¢ is a solution of , if T1;, 4, u(t) € Fi, 4, and u(t) is a solution of
for every [t1,ts] C R;.

Let Kt be a set of solutions to from ]—"ﬁroc. Note, that KT in general is not the set of
all solutions from ffc. The set K consists on elements, which are trajectories and the set
KT is the trajectory space of the equation ([1)).

Suppose that the trajectory space K is translation invariant, i.e., if u(t) € KT, then
u(t +t) € Kt for every 7 > 0.

Consider the translation operators S(7) in Fi¢ : S(7) f(t) = f(7-+t), 7 > 0. It is easy to see
that the map {S(7),7 > 0} forms a semigroup in F2¢ : S(71)S(r2) = S(m1+7) for 7,72 >0
and in addition S(0) is the identity operator. The translation semigroup {S(7),7 > 0} maps
the trajectory space KV to itself: S(7)K+ C KT for all 7 > 0.

We investigate attracting properties of the translation semigroup {S(7)} acting on the
trajectory space KT C ij’c. Next step is to define a topology in the space ]—"_lfc.

Let some metrics py, 4, (-, -) be defined on Fy, 4, for every [t1, 3] C R. Suppose that

Pty ,ta (chtzf’ chtzg) S D(tla t2,7’1, 72)P7—1,7—2 (fa g) ‘V’f,g € f’rl,m) [tht?] g [7_17 TZ]a
pt1—7'7t2—7'(5(7—>f7 S(T)g) = pt1,t2(f7 g) vfag € Ft1,t2a [tla t2] - R? T €R.
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Now, we denote by O, ;, metric spaces on F;, ;,. For instance, p;, 4, is metric associated with
the norm || - ||z, ,, of 4, 4. On the other hand, in application p;, +, generates the topology
Oy, +, that is weaker than the strong one of the F, 4,.

The projective limit of the spaces Oy ;, defines the topology ©%¢ in F'¢ that is,
by definition, a sequence {fy(t)} C F° tends to f(t) € F' as k — oo in O if
Prots Mty 20 fi, Iy 1, f) — 0 as k — oo for all [ty,t5] C Ry. It is possible to show that
the topology @l_fc is metrizable. For this aim we use, for example, the Frechet metric

—m Po,m(f1,f2)
L+ pom(fi, f2)

p+(f1, f2) = Z 2

meN

(2)

The translation semigroup {S(7)} is continuous in ©'%. This statement follows from the
definition of ©°.

We also define the following Banach space F2 := {f(t) € Flo | [fll7 < 4oc}, where
the norm [|f{|z := sup ¢ [[Hoaf (T +1)l|7,,-

We remember that fi C @ﬂfc. We need from our Banach space ]-"fL only one fact that
it should define bounded subsets in the trajectory space Kt. For constructing a trajectory
attractor in KT, instead of considering the corresponding uniform convergence topology of
the Banach space fﬁ’r, we use much weaker topology, i.e. the local convergence topology @lfc.

Assume that K+ C F2, that is, every trajectory u(t) € K* of equation has a finite
norm. We define an attracting set and a trajectory attractor of the translation semigroup

{S(7)} acting on K.

Definition 1 A set P C ©° is called an attracting set of the semigroup {S(7)} acting on
KT in the topology @{ﬁc if for any bounded in Fi set B C KT the set P attracts S(7)B as
T — +00 in the topology ©'%, i.e., for any e-neighbourhood O.(P) in ©Y° there exists 71 > 0
such that S(7)B C O(P) for all 7> 7.

It is easy to see that the attracting property of P can be formulated equivalently: we have
diSt@O’M (H()’MS(T)B, H(),M,P) — 0 (7’ — ‘l‘OO),

where disty(X,Y) = sup,cxdistym(z,Y) = sup,exinfyey pm(x,y) is the Hausdorff
semidistance from a set X to a set Y in a metric space M. We remember that the Hausdorff
semidistance is not symmetric, for any B C Kt bounded in .Fi and for each M > 0.

Definition 2 ([17]) A set A C KT is called the trajectory attractor of the translation
semigroup {S(7)} on KT in the topology ©'°, if

(i) A is bounded in F° and compact in O,

(71) the set A is strictly invariant with respect to the semigroup: S(1)A = A for all 7 > 0,

(i) A is an attracting set for {S(7)} on Kt in the topology ©', that is, for each M > 0
we have diste, ,, (Io.aS(7)B, o uA) — 0 (7 — +00).

Let us formulate the main assertion on the trajectory attractor for equation (|1).

Theorem 1 ([16,(17]) Assume that the trajectory space Kt corresponding to equation (1)) is
contained in ]-“i. Suppose that the translation semigroup {S(t)} has an attracting set P CK+
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which is bounded in F5 and compact in ©%°. Then the translation semigroup {S(),7 > 0}
acting on KT has the trajectory attractor 20 C P. The set 2 is bounded in Fi and compact
m @lﬁc.

Let us describe in detail, i.e., in terms of complete trajectories of the equation, the
structure of the trajectory attractor 2l to equation . We study the equation on the
time axis,i.e. t € R.

Note that the trajectory space Kt of equation on R, have been defined. We need this
notion on the entire R. If a function f(¢), s € R, is defined on the entire time axis, then the
translations S(7)f(t) = f(7 + t) are also defined for negative 7. A function u(t),t € R is a
complete trajectory of equation (1)) if [T, u(7+1¢) € KT for all 7 € R. Here II = Il o denotes

the restriction operator to R .
We have }"_lfc, .Ff’r, and @lfc. Let us define spaces F°¢, 7, and ©'° in the same way:

Fo={f(t),t € R [Ty, f(5) € Frpy ¥ [t te] CRY; F2i= {f(t) € F | | fll 0 < o0},

where

[ fll 7 := sup |[Ho 1 f(T +1)|| 7, (3)
heR

The topological space ©"¢ coincides (as a set) with F¢ and, by definition, fy(t) —
f(t) (k= 00) in ©%¢ if Ty, 4, fe(t) — Ty, 4, f(t) (kK — 00) in Oy, 4, for each [t1,t5] C R. Tt is
easy to see that ©'° is a metric space as well as ©'%.

Definition 3 The kernel K in the space F° of equation s the union of all complete
trajectories u(t),t € R, of equation that are bounded in the space F° with respect to the
norm , i.e. o u(r +1)||7, <C, VT eR.

Theorem 2 Assume that the hypotheses of Theorem[I] holds. Then 2 = I1 K, the set K is
compact in ©'°¢ and bounded in F°.

To prove this assertion one can use the approach from [17].
In this paper we investigate evolution equations and their trajectory attractors depending
on a small parameter € > 0.

Definition 4 We say that the trajectory atiractors 21 converge to the trajectory attractor
2 as ¢ — 0 in the topological space @l_fc if for any neighbourhood O(2A) in @lfr’c there
is an €1 > 0 such that 2. C O®) for any e < e, that is, for each M > 0 we have
diStQO’M (H07MQ[5, HO,MQL) —0 (8 — 0)

2.2 The probabilistic framework and main assumptions

Throughout the paper, we assume that all the random fields and random variables are defined
on a probability space (€2, A, ). The random fields considered in the paper are statistically
homogeneous.

Definition 5 A family of measurable maps T, : @ — Q, z = (21,...,74) € RY, is called a
d-dynamical system if the following properties hold true:
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e Group property:

Tory =TT, Yo,y € RY, Ty = Id (Id is the identical mapping);

e [sometry property:

TUc A w(TU) = pld), Yo eRY, YU € A;

e Measurability: for any measurable functions ¢(w) on €2, the function ¢(T,w) is
measurable on © x R?, where the space R? is equipped with the Borel o-algebra B.

Definition 6 Let ¢(w) be a measurable function (i.e. a random variable) on €. The function
d(Tyw) of z € R? and w € Q is called statistically homogeneous random field, and, for fixed
w € Q, ¢p(T,w) is called the realization of the random field ¢.

Let L,(£2) (¢ > 1) be the space of measurable functions and integrable in the power ¢
with respect to the measure p. The following assertion holds, see [14] and [13] for the proof.

Proposition 1 Assume that ¢ € L,(2). Then almost all realizations ¢(T,w) belong to
Llec(RY). If the sequence {¢r} C Lg(Q) converges in Ly(Q) to the function ¢, then there
exists a subsequence {¢p} such that almost all realizations ¢p/(Tyw) converge in L°(R?) to
the realization ¢(T,w).

Definition 7 A measurable function ¢(w) on € is called invariant if, for any r € R
o(Tyw) = ¢(w) almost surely.

Definition 8 A d-dynamical system 7, is said to be ergodic if all its invariant functions are
almost surely constant.

Definition 9 Let 6 € LY(R?). We say that the function 6 has a spatial average if the limit

M) = lim — [ 6 (f) dz

exists for any bounded Borel set B € B with |B| > 0, and moreover this limit does not
depend on the choice of B. The quantity M () is called the spatial average of the function 6.

The following results are proved in [14].

Proposition 2 Let P be a measurable subset of R containing a neighbourhood of the origin.
Let ¢ > 1 or q¢ = oo. Suppose that a measurable function 0(x,€), x € P, £ € R, has a space
mean value M(0)(x) in RE (that is, with respect to the variable &) for every x € P and the

family {Q(x, f), 0 <e <1}z €K, is bounded in Ly(K), where K is an arbitrary bounded
subset in P containing a neighbourhood of the origin.

Then M(0)(-) € Li“(P) and, for ¢ > 1, we have 0 (x,%) — M(0)(x) weakly in LY°(P)
as e — 0,

while, for ¢ = oo, we have 0 (x,%) — M(0)(x) *-weakly in L°(P) as ¢ — 0.
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From now on we use the following notation z = (x1,...,24_1). For a given group T,,x €
RY, we also consider its subgroup 75 : @ = Q, T = (21,...,24-1) € R, Th = Tiz0).

Let T, be a d-dynamical system in . Wa assume that 7% is also a (d — 1)-dynamical
system in  (see Definition |5 with the number d replaced with (d — 1)).

All the above Definitions and Propositions hold true for the (d — 1)-dynamical system T%
with evident modifications. In particular, we have the following

Definition 10 A random field ((Z,w) (7 € R*!, w € Q) is called statistically homogeneous
if the following representation holds ((7,w) = ((Tsw), where ( is a random variable on
(Q, A, p) and T3 is a (d — 1)-dynamical system on 2.

All along the article, we make use of the Birkhoff ergodic theorem in the following
particular form (see, for instance, [14] and [13] for more details).

Theorem 3 (Birkhoff ergodic theorem) Let T,, z € R%, be a d-dynamical system and
let Y(w) € Ly(9Q, ,u) Then, for almost all w € Q, the realization ¥(T,w) has the space mean
value M (¢(Tyw)) in RL. Moreover, M (1 (T,w)) is an invariant function and

/¢ ) dp = /M T,w)) dp,

where E(¢) is the mathematical expectation of 1. In particular, if T, is ergodic then, for
almost all w € Q, we have the identity

E(y) = M(¢(Tow)).
We shall also apply Birkhoff ergodic theorem to the ergodic (d—1)-dynamical system 7%, T €
R-1,
We are now ready to make assumptions on the random fields F’ (5, w), p(fA, w) and q(g, w)
which we use in the definition of the stochastic geometry and coefficients in the Fourier

boundary condition. First, we assume that these random fields are statistically homogeneous,
that is

F(&w) =F(Trw), pl&w)=p(Trw), q&w)=o(Trw), YEeR™,
where F, p and p are random variables on (92, A, i), and 7% is an ergodic (d — 1)-dynamical
system on (2.
Moreover, we assume that F has, almost surely, continuously differentiable or locally
Lipschitz realizations. We denote

O F(w) = 0, F(Trw 0.F(w) = VF(Trw)| -

13 3 =0

We have VI (E, w) = 9,F(Tzw) (see, for instance, [13]). Finally, we make the following
assumptions on the functions F, p and o:

hl) Fe Lo(Q), Flw)<0as;
) 0.F € (La())" Y

h3) p € Lo(Q), plw) >0as., pu{w: p(w) >0} >0.
) 0€ Ly(Q), 0d,F € (La(Q)"

)‘5207

(
(h2
(
(

h4
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3 Homogenezation of attractors to the reaction-diffusion system in a domain
with locally periodic oscillating boundary

3.1 Statement of the problem

Let D be a bounded domain in R?, d > 2, with smooth boundary D = I'; U T, where D
lies in a half-space 24 > 0 and I'y C {z: xg = 0}. Given smooth nonpositive 1-periodic in
the € function F(z, f) T = (T1,.., Tg—1), £ = (&1, ..,€4-1), define the domain D, as follows:
0D. = T'5 Uy, where we set I'§ = {x = (2,24) : (2,0) € 1,24 =*F(2,2/e)}, 0 < < 1,
ie. we add thin oscillating layer II. = {z = (2,24) : (2,0) € I'1,z4 € [0,e*F(Z,2/¢))} to
the domain D. Usually, we assume F/(&,€) to be compactly supported on I'y uniformly in .
Consider the following boundary-value problem:

a“E—AAus—a(JJ )f(u5)+h( 2), z €D, t>0,

Qe 1 Pp(2, Lyu. = 51_0‘9(37, 1), x = (&,1q) €T5,t>0, (1)
ue = 0, x €l9,t>0,
Ue = (l‘), r € D, t=0,

where u. = u.(x,t) = (u!,...,u")" is an unknown vector function, the nonlinear function

="~ .., M isgiven, h = (h',...,h™)" is the known right-hand side function, and \ is
an n X n-matrix with constant coefficients, having a positive symmetrical part: %()\ +AT) >

wl (where I is the unit matrix with dimension n). We assume that 5§ > 0,p <a§,é> =

diag{p',...,p"}, ¢ (:i",é) = (g*,...,g™)" are continuous, 1-periodic in ¢ and p' <£,é), i =
du. [ Ou} ou”
o \ov'' ov

1,...n, are positive. Here ) is the normal derivative of the vector

ZZA”(‘) ENk,z—l ,n and

=1 k=1
N = (Ny, ..., Ny) is the unit outer normal to the boundary of the domain.

Function a(z,€) € C(D. x R?) such that 0 < ay < a(z,£) < A with some coefficient
ag, Ap. Assuming that function a.(z) = a (z,%) has average a(z) when ¢ — 0+ in space
Lo «w(D), that is

/ (. 2) el - / Ddz (e — 04) (5)

D

function wu,

for any function ¢ € Ly(D).

Denote by DT such a domain that D, C D™ for any . For the vector function h (& €),
assume that for any £ > 0 the function hi(z) = h' (z,%) € Ly(D™) and has the average h’(x)
in the space Lo(D™) for e — 0+, that is

X <m, E) — hi(x) (¢ — 0+) weakly in Ly(DV),
€
or

/ h’( 2)dz — / Ri(2)p(a)de (e — 0+) (6)

D+
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for any function ¢ € Ly(D*) and for alli =1,...,n.

From the condition (6)) it follows that the norm of the function hi(z) are bounded
uniformly in €, in the space Lo(D,), i.e. [|hi(2)| L,p.) < Mo, Ve € (0,1].

It is assumed that the vector function f(v) € C'(R™;R") satisfies the following inequalities

Z ‘fz(v) Bif(pi=1) S CO (Z ’Ui P + 1) ) 2 S P S s S Pn—1 S Pn, (7>
i=1 i=1

Z'yi|vi|pi -C< Zfi(v)vi, Vv € R”, (8)
i=1 i=1

for vy > 0 for any ¢ = 1,...,n. The inequality is due to the fact that in real
reaction-diffusion systems, the functions f?(u) are polynomials with possibly different degrees.
Inequality calls dissipativity condition for the reaction-diffusion system . In a simple
model case p; = p for any ¢ = 1,...,n, condition and reduce to the following
inequalities

F@I < Co (o +1), Aol = C < fw)o, YweR™

Note that the fulfillment of the Lipschitz condition for the function f(v) relative to the
variable v not expected.

Remark 1 Using the methods presented, it is also possible to study systems in which

nonlinear terms have the form Y a; (:L', f) fi(u), where a; are matrices whose elements allow
=1
averaging and f;(u) polynomial vectors of u, which satisfy conditions of the form f. For

brevity, we study the case m =1 and a, (:13, £) =a (a:, E) I, where I is the identity matriz.
€ 3

Denote

G(#) = / VeF (2, 6) g2, €) d, (9)
[071)d—1

P = [\ IVeFG&Paa.) dé (10)
[071)d71

and we have the following convergences (see [3]):

gl—a/gi <x f) v (i,s”‘F (x f)) ds — /Gi (&) v (z) ds
£ S
FE

1 1
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for any v € HY(D.) by € = 0, i = 1,...,n. Here ds is the element of (d — 1)-dimensional
measure on the hypersurface.

Let us introduce the following notation for the spaces H := [Ly(D)]", H. := [Lo(D.)]",
V :=[HYD,Ty)|", V. := [H'(D.;T5)|". Here, H'(D,T5) (respectively H'(D,,T)), denotes
the space of functions from the Sobolev space H'(D) (respectively H'(D.)) with zero trace
on I'y. The norms in these spaces are determined as follows

ol = [ 3l e, ol o= [ 3 oo,
D 1=1 i=1

De

/Zl Vv () [2dz.

D:.

n
o2 = / SOV (@) Pz, o], =
D =1

We denote by V' the dual space to the space V, and by V. the dual space to the space V..
Let ¢; = p;i/(p; —1) for any ¢ = 1,...,n. We will use the following vector notation
p=(p1,...,pn) and q = (q1,- .-, qn), and also define spaces

L, =L, (D)x...xL, (D), Ly, := L, (D.) x ... x L, (D.),
Lp(Ry; Lp) := Ly, (Ry; Ly, (D)) X ... X Ly, (Ry; Ly, (D)),
Lp(Ry; Lpe) = Ly, (Ry; Ly, (De)) x ... x Ly, (Rys Ly, (D).

As in [17,26] we study weak solutions of the initial boundary value problem , that is,
functions

ue(z,t) € LY(Ry; H) NLY(Ry; Vo) NLE (R L )

which satisfy the equation (4] in the distributional sense (the sense of generalized functions),
that is, the integral identity holds

- / (T % dxdt + / AVu, - Vip dxdt + / ac(x) f(ue) - ¢ daedt+

a1
D xRy D xRy De xRy
+aﬁ/p<@,f> u, -1 dsdt = /ha(x)-wdxdt—i—al_o‘/g(i,z) o dsdt
19 19
s xRy DoxR, s xRy

for any function ) € C(Ry; V. NLy.). Here y; - y2 means scalar product of vectors yy, ys €
R™.

If u-(x,t) € Lp(0,M;Ly.), then from the condition it follows that f(u(z,t))
L(0,M;Ly.). At the same time, if uc(x,t) € Ly(0, M;V.), then Au.(x,t) + he (x)
L,(0, M; V.). Therefore, for an arbitrary weak solution u.(z, s) to problem ({]), satisfies

S
S

Ouc(x,t)

ot
From the Sobolev embedding theorem follows that Lg(0,M;Lg.) + Lo(0,M;V.) C
Ly (0, M;HT), where space H.* :== H" (D) x...x H ™ (D,.), r = (r1,...,r,) and indexes

€ Lqy(0, M; L) + Lo(0, M; V7).
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r; = max{1,d(1/q; —1/2)} by i = 1,...,n. Here H"(D.) denotes the space conjugate to
the Sobolev space WJ(D.) with index r > 0 in the domain D..

Therefore, for any weak solution u.(x,t) to problem it’s time derivative % belongs
to Ly (0, M;HC™) .

Remark 2 FEzistence of a weak solution u(x,t) to problem for any initial data U € H,
and fized €, can be proved in the standard way (see, for example, |16|, [26]). This solution
may not be unique, since the function f(v) satisfies only the conditions (7)), (8)) and it is not
assumed that the Lipschitz condition is satisfied with respect to v.

The following Lemma is proved in a similar way to the proposition XV.3.1 from [17].

Lemma 1 Let u(x,t) € LY°(Ry; Vo) NLE(Ry; L) be a weak solution of problem ().
Then

(i) u. € C(R,;H,);

(ii) function ||uc(-,t)||* is absolutely continuous on R, , and moreover

1d
§%|lua(-,t)|]2+/)\Vu£(a:,t)-Vug(as,t)d:v+/aa(x)f(ua(x,t))-ug(a?,t)dx+ (11)
D, D,
+5f8/p (f,g) us(z,t)us(x,t)ds = /ha(a:)-ug(x,t)dm+€1_a/g (:ﬁ, g)-ug(x,t) ds,
I De re

for almost all t € R,

To define the trajectory space KT for , we use the general approaches of Section
and for every [t1,ts] € R we have the Banach spaces

ov
‘Ftl,tg = Lp(tl,tg; Lp) N Lg(tl,tQ;V) N Loo(tl,tg; H) M {U ’ E - Lq (tl’tQ;HT)}

(sometimes we omit the parameter ¢ for brevity) with the following norm:

ov
1oll7y ey = MVl rtaize) + 10lleav) + 1ollwoarmm + || 5 :
Lq(t1,t2;H7"')

Setting Dy, 1, = Lq (t1,t2; H™") we obtain Fy, 4, € Dy, 4, and for u(t) € Fy, 4, we have
A(u(t)) € Dy, 1,- One considers now weak solutions to as solutions of an equation in the
general scheme of Section [2.1]

Consider the spaces

ocC ocC ocC ocC av ocC —-r
P LR L) N LR V) LR )0 {0 | 5 € Lt },
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Flot = LR, Ly..) N LY (R, V.) N L (R, HL) 0 { i

81} oc -r
o5 € qu (R—O—;He )} :

We introduce the following notation. Let K be the set of all weak solutions to (4)). For any
U € H there exists at least one trajectory u(-) € K such that u(0) = U(z). Consequently,
the space KT to is not empty and is sufficiently large.

We define metrics py, 4, (-, -) in the spaces Fi, 1, by means of the norms from Ly (¢4, to; H).
We get

1/2

Pty 2 (U, V) /||U — o(t)||fadt Vu(-),v(:) € Fipy-

The topology @lfc in fﬁfc is generated by these metrics. Let us recall that {v,} C fffc
converges to v € F as k — oo in O if [Jvg(-) — v()||Lsrtemy — 0 (K — o0) for all
[t1,t2] C R,. The topology @l"c is metrizable. We consider this topology in the trajectory
space KT of (4 1.} Similarly, we deﬁne the topology @l"i in ]-"éoj

Denote by S(7) the translation semigroup, i.e. S(7)u(t) = u(t + 7). The translation
semigroup S(7) acting on K, is continuous in the topology @lsoi It is easy to see that
K c Fl° and the space K is translation invariant, i.e. S(7)KF € K for all 7 > 0.

Using the scheme of Section , one can define bounded sets in the space K by means
of the Banach space ]_—g +- We naturally get

Flp=Ly(Ry;Lp o) NL5(R4; Vo) N Lo (R4 H) { )a € L%(Ry; H )}

and the space F? ', is a subspace of fé"j

Suppose that K. is the kernel to , that consists of all weak complete solutions u(t),t €
R, to our system, bounded in

ff:LIF’,(R;LM)HLS(R;VE)OLOO(R;HE)H{v g” LY (R; H )}

In analogous way we define the topology ©°¢ in F?.

Proposition 3 Problem . has the trajectory attractors 2. in the topological space @“’C
The set . is bounded in .7-"1’Jr and compact in @l;’fr Moreover, A. = 11, IC., the kernel ICE 18
non-empty and bounded in .Ff and compact in @l"c

To prove this proposition we use the approach of the proof from [17]. To prove the existence

of an absorbing set (bounded in F?, and compact in ©'°}) one can use Lemma |1 I similar
to [17].
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3.2 Homogenized reaction-diffusion system and convergence of attractors in the critical
case (f=1-—a)

Now we study the behaviour of the problem as € — 0 in the critical case § =1 — a. We
have the following “formal” limit problem with inhomogeneous Fourier boundary condition

0 — N\Aug —a(z) f(ug) + h(x), € D,t>0,

ot

%u  P(3)ug = G(2), r=(£,0) €Ty t >0, 12
UOIO, $€Fg,t>0,

uo = U(x), z€D,t=0,

Here @(x) and h(x) are defined in and (), respectively, G(#) and P(&) were defined in

@ and .

As before, we consider weak solutions of the problem , that is, functions
uo(e,1) € LI (R H) N L (Ry: V) NLE (Ry5Ly),
which satisfy the following integral identity:

— / (e ?‘9_2? dxdt + / AVuy - Vo dzdt + / a(x)f(up) - ¢ dedt+

DXR+ DXR+ DXR+

—l—/P(a?)uo-wdsdt:/h(m)-wdxdt—i-/G(:i")-iﬂdsdt

' XR+ DX]R+ I XR+

(13)

for any function ¢ € CF°(Ry;V NLy). For any weak solution u(z,t) to problem (12)), we
have that auoa—(f’t) € Ly (0,M;H™) (see Section . Recall, that the “limit” domain D in
and is independent of € and it boundary contains the plain part I'y.

Similar to , for any initial data U € H, the problem has at least one weak solution
(see Remark. Lemma also holds true for the problem with replacing the e-depending
coefficients a, h, p and g by the corresponding averaged coefficients a(z), h(x), P(z), and G(Z).

As usual, let K be the the trajectory space for (the set of all weak solutions), that
belong to the corresponding spaces F'°¢ and F% (see Section . Recall that K C F loc and
the space K is translation invariant with respect to translation semigroup {S(7)}, that is,
S(T)KJr C K" for all 7 > 0. We now construct the trajectory attractor in the topology @l_fc

for the problem ([12]) (see Sections and .

Similar to Proposition [3] we have

Proposition 4 Homogenized problem has the trajectory attmctor_ﬁ in the topological space
@ljr’c. The set A is bounded in }"ﬁ and compact in @lfc. Moreover, A =11 IC, the kernel IC of
the homogenized problem is non-empty and bounded in F°.

Here we formulate the main result concerning the limit behaviour of the trajectory
attractors 20, of the reaction-diffusion systems as € — 0 in the critical case § =1 — «.

Theorem 4 The following limit holds in the topological space @lfr"’

A —A ase —0+.
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Moreover,
K.—>Kase— 0+ in O

Finally, we consider the reaction—diffusion systems for which the uniqueness theorem is
true for the Cauchy problem. It suffices to assume that the nonlinear term f(u) in (4] satisfies
the condition

(f(v1) = f(v2),v1 — v2) = =Clvy — vo|* for any vy, vp € R™. (14)

(see [17,26]). In [26] it was proved that if is true, then (4) and generate dynamical
semigroups in H, possessing global attractors A, and A are bounded in V (see also [16], [15]).
Moreover

A = {u(0) | ue A}, A= {u(0) | ueA}
Corollary 1 Under the assumption of Theorem[d] the limit formula takes place
distg—s (A:, A) = 0 (¢ — 04).
3.3 Homogenized reaction-diffusion system and convergence of attractors in the
subcritical case (8 > 1— «)

In the next sections, we study the behaviour of the problem as € — 0 in the subcritical
case 8 > 1 — a. We have the following “formal” limit problem with inhomogeneous Fourier
boundary condition

o — N\Aug —a(z) f(ug) + h(x), =€ D,t>0,

ot
%:G(aj), x=(2,0) € I'1,t >0, (15)
ug = 0, x €Tyt >0,
uy = Ulx), re D, t=0,
Here a(z) and h(z) are defined in (f]) and (6)), respectively, G(Z) was defined in @
As before, we consider weak solutions of the problem , that is, functions
u(z,t) € LRy H) N LY (R V) NLEY° (Ry; Ly)
which satisfy the following integral identity:
0
—/u : a—qfdxdt—i—/ AVu - Vzﬁdmdt—i—/ a(z)f(u) - dedt =
DxR4 DxR4 DxR4 (16)
:/ﬁ(m) -¢dxdt+/G(£) - dsdt
DXR+ Iy XR+

for any function ¢ € CF(R4; V NLy). For any weak solution u(x,t) to problem (15]), we

have that % € Ly (0, M;H™™) (see Section . Recall, that the “limit” domain D in ({15])
and is independent of € and it boundary contains the plain part I';.

For homogenized problem holds Proposition .

For trajectory attractors 2l. of the reaction-diffusion systems (4)) as € — 0 in the subcritical

case > 1 — « holds Theorem 4 and Corollary [I}
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3.4 Homogenized reaction-diffusion system and convergence of attractors in the
supercritical case (8 <1 — «)

In the next sections, we study the behaviour of the problem as € — 0 in the supercritical
case 8 < 1 — a. We have the following “formal” limit problem with inhomogeneous Fourier
boundary condition

%o — \Auy —a () fug) + h(z), =€ D,t>0,
up =0, z € 0D,t >0, (17)
ug = Ul(x), reD,t=0,

Here @(x) and h(z) are defined in () and (@], respectively.
We note that, in the supercritical case, the influence of the boundary layer on the part of

the boundary I'y completely disappears (compare with critical case [44] and subcritical case

mentioned in Subsection (3.3)).
As before, we consider weak solutions of the problem (17), that is, functions

ug(z,t) € LI (Ry; H) NLy°(Ry; V) NLY° (Ry; L)

which satisfy the following integral identity:

— /uo : %—f dxdt + / AVug - Vi dzdt + / a(x) f(ug) - ¥ dedt = /h(x) <) dxdt (18)

DXR+ DXR+ DXR+ DXR+

for any function ¢ € CF°(Ry; V N Ly). For any weak solution u(x,t) to problem (17)), we
have that Moa—(f’t) € Ly (0, M;H™) (see Section . Recall, that the “limit” domain D in
and is independent of € and it boundary contains the plain part I';.

For homogenized problem holds Proposition .

For trajectory attractors 2. of the reaction-diffusion systems as ¢ — 0 in the
supercritical case § < 1 — a holds Theorem [4] and Corollary [I}

4 Homogenezation of attractors to the reaction-diffusion system in a domain
with randomly oscillating boundary

4.1 Statement of the problem

Let D ¢ RN {x|xy > 0}, d > 2, be a smooth bounded domain whose boundary has a
nontrivial flat part I'y = 0D N {x|z4 = 0} with a nonempty (d — 1)-dimensional interior
I'i. We perturb the flat part of the boundary in such a way that the perturbed domain
has an oscillating boundary. To this end, we define a smooth nonnegative function ¢(7),
T = (x1,...,24_1), such that suppg(z) C Ty € Io‘l, and, given a statistically homogeneous
non-positive random function F'(§,w), £ = (&,...,&:-1), which has smooth realizations and
is defined on a standard probability space (€2, A, ), we set, for ¢ > 0,

~

I.={rcR? : 7Ty, eg(2)F (g,w> < xq <0}
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and, finally, introduce the desired domain with random boundary as follows: D, = D U II..
For more detailed definitions of randomness we refer to the next section. According to the

above construction, the boundary 0D, consists of the parts I'y and I'] = {:c € 0D, : (z,0) €
[y, xqg =eg9(@)F (%, w) } forming together the domain boundary.
We consider the boundary-value problem:

Qe = NAu. —a (z,%,w) flue) +r(z,2,w), z€D.,t>0,

8“5 +g(2)p (2 w) us = g()q (f,w) , r=(%,xq) €T5,t>0, (19)
ug—(), x eyt >0,
UEIU(.I), re D, t=0,
where u. = u.(x,t) = (u',...,u")" is an unknown vector function, the nonlinear function
=Y., fHTisgiven, r = (r!,...,r") 7" is the known right-hand side function, and X is an

n X n-matrix with constant coefficients, having a positive symmetrical part: %()\ + A1) > @l
(where [ is the unit matrix with dimension n and w > 0). We assume that p (%\,w) =
diag {p D) g (8, ) = (¢%,...,¢")" are random statistically homogeneous functions
and p' ( w), i =1,...n, are positive.

We assume that the random functions a.(z,w) = a(x, z w) and 7. (z,w) = r(x £ w) are
statistically homogeneous, that is a(x, &, w) = A(z, Trw), r(z,§,w) = R(z, Tew), where
A:DxQ—Rand R: D x ) — R" are measurable.

We also assume that A(z,w) € Cy(D) for almost all w € Q and 0 < oy < A(z,w) <
a, |R(z,w)| < ¢(x), V€ D, where ¢(z) is a positive function such that ¢ € Lo(D).

Birkhoff ergodic theorem implies that the functions a (z,&,w) and r(z,£,w) have the
space mean value

for every € D. Note that the functions a(x) and 7(x) also satisfy the inequality oy < a@(z) <
o1, [F(z)| < ¢(z), V€ D. It follows from Proposition [2] that almost surely in w € (2

/ (z, da:—>/ z)dr (e = 0+) VYo e Li(D), (20)
/ : (o dH/ 2)dz (e = 04) Vo € (D), i=1....n. (g

Here D7 is such a domain that D, C D" for any e.
We assume that the vector function f(v) € C(R™;R") satisfies inequalities (7)) and ().
From it follows that the norms of ri(x,w) are almost surely uniformly bounded
|7ill Loy < My, Ve € (0,1] in the space Lo(D).
Denote

P@) = () 1+ 6@OFWF) . Q@) =5 (o) 1+ 0@ 0Pw)).
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(22)

and, due to Birkhoff ergodic theorem and Proposition [2, we have almost surely the following
convergence (see [40]):

oot (L) v (eo@r (20)) as o [a@@ @) o) as

rs '
and
(T R x R x i
/g(a:)pZ (g,w) u (a:,sg(.r)F (g,w)) v (x,eg(x)F (;w)) ds — /g(az)PZ (2) u(z)v () ds
re N}
for any u,v € H'(D.) as e — 0,7 =1,...,n. Here ds is the element of (d — 1)-dimensional

measure on the hypersurface.

As in [17,26] we study weak solutions of the initial boundary value problem , that is,
functions

’LLE(CL’, t) € LZZ;C(R—F; HE) n LIZOC(R-I—; Va) N Llr?c (R+; Lp,e)

which satisfy the equation in the distributional sense (the sense of generalized functions),
that is, the integral identity holds

- / Ue - % dxdt + / AVu, - Vi dxdt + / a:(z,w) f(ue) - ¢ dedt+

ot
DexRy DexRy DexRy
+ / g(Z)p (z,w) U - Y dsdt = / re(z,w) - dadt + / 9(2)q (g,w) ~p dsdt
€ €
e xR, D xR, s xR,

for any function ¢ € C5°(Ry; V. NLy ). Here y; - yo means scalar product of vectors yy,y2 €
R™.

For any weak solution u.(x,t) to problem the time derivative HUE(I el q (0, M;H.T)
(see Section

Remark 3 FEuzistence of a weak solution u(x,t) to problem for any initial data U € H,
and fized €, can be proved in the standard way (see, for example, |16, |26] ). This solution may
not be unique, since the function f(v) satisfies only the conditions and it is not assumed
that the Lipschitz condition is satisfied with respect to v.

Proposition 5 Under the hypotheses (7)) and . the system (|19 . has the trajectory attractors
2. in the topological space @i"i The set A, is w-almost surely bounded in .7-"bJr and compact
m @ffﬁr Moreover, . = I, K., the kernel K. is non-empty, bounded in F° and compact in

l 13
oc
lec,
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4.2 Homogenized reaction-diffusion system and convergence of attractors

In the next sections, we study the behaviour of the problem as ¢ — 0. We have the
following “formal” limit problem with inhomogeneous Fourier boundary condition

%0 — \Aug —a () f(ug) +7(x), x€D,t>0,
G0+ g(2)P(2)ug = g(2)Q(2), x=(&0)el,t>0,
ug = 0, x €Tyt >0,
UO:U(z), xGD’tZO’

(23)

Here @(x) and 7(z) were defined in and (21), respectively, Q(#) and P(z) were defined
in (22).
As before, we consider weak solutions of the problem , that is, functions
uo(z,t) € LiZ (R H) NLY°(Ry; V) NLY* (Ry; L)

which satisfy the following integral identity:

— / Ug - % dxdt + / AVuy - Vo dxdt + / a(x) f(ug) - ¢ dedt+

ot
DxRy DxRy DxRy (24)
+ / 9(Z)P (z) ug - ¢ dsdt = / 7(z) - ¢ dedt + / 9(2)Q (z) - Y dsdt
'y xRy DxRy ' xRy

for any function ¢ € CF(Ry; V N Lpy). For any weak solution u(x,t) to problem (23)), we
have that %Oa—(f’t) € Lq(0,M;H™) (see Section . Recall, that the “limit” domain D in
and is independent of € and it boundary contains the plain part I';.

For homogenized problem holds Proposition .

Under assumptions (hl)-(h4), for trajectory attractors 2. of the reaction-diffusion
systems as € — 0, w-almost surely holds Theorem |4 and Corollary .

5 Conclusion

In the paper we consider reaction—diffusion systems with rapidly oscillating terms in equations
and in boundary conditions in domains with locally periodic or randomly oscillating boundary
(rough surface) depending on a small parameter. We define the trajectory attractors of these
systems and express that they converge (almost surely) in a weak sense to the trajectory
attractors of the limit (homogenized) reaction—diffusion systems in domain independent of
the small parameter.

Acknowledgment

The first part of this research has been funded by the Science Committee of the Ministry of
Science and Higher Education of the Republic of Kazakhstan (Grant No.AP26199535), the
second part of the research is supported by the Russian Scientific Foundation (grant number
25-11-00133) .



22

Homogenezation of attractors to the reaction-diffusion system ...

(1]
(2]

(3]

[4]

(5]

(6]

[7]

(8]

Bl

[10]

[11]

(12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

20]

21]

[22]

References

Marchenko V.A., Khruslov E.Ya. Homogenization of partial differential equations, Boston (MA): Birkh&user, 2006.

Belyaev A.G., Piatnitski A.L., Chechkin G.A. Asymptotic Behavior of Solution for Boundary-Value Problem in a
Perforated Domain with Oscillating Boundary, 1998; 39(4): 730-754. doi: 10.1007/BF02673049

Chechkin G.A., Friedman A., Piatnitski A.L. The Boundary Value Problem in Domains with Very Rapidly Oscillating
Boundary, 1999; 231(1): 213-234. doi: 10.1006/jmaa.1998.6226

Chechkin G.A., Mel'nyk T.A. Homogenization of a Boundary-Value Problem in a Thick 3-Dimensional Multilevel Junction,
2009; 200(3): 357-383.

Chechkin G.A., McMillan A., Jones R., Peng D. A computational study of the influence of surface roughness on material
strength, 2018; 53(9): 2411-2436.

Gaudiello A., Sili A. Homogenization of Highly Oscillating Boundaries with Strongly Contrasting Diffusivity, 2015; 47(3):
1671-1692.

Amirat Y., Chechkin G.A.; Gadyl’shin R.R. Asymptotics of Simple Eigenvalues and Eigenfunctions for the Laplace
Operator in a Domain with Oscillating Boundary, 2006; 46(1): 97-110.

Amirat Y., Chechkin G.A., Gadyl’shin R.R. Asymptotics for Eigenelements of Laplacian in Domain with Oscillating
Boundary: Multiple Eigenvalues 2007; 86(7): 873-897.

Amirat Y., Chechkin G.A., Gadyl’shin R.R. Asymptotics of the Solution of a Dirichlet Spectral Problem in a Junction
with Highly Oscillating Boundary, 2008; 336(9): 693-698.

Amirat Y., Chechkin G.A., Gadyl’shin R.R. Spectral Boundary Homogenization in Domains with Oscillating Boundaries
2010; 11(6): 4492-4499.

Sanchez-Palencia E. Homogenization Techniques for Composite Media. Berlin: Springer—Verlag, 1987.

Oleinik O.A., Shamaev A.S., Yosifian G.A. Mathematical Problems in Elasticity and Homogenization. Amsterdam: North—
Holland, 1992.

Jikov V.V., Kozlov S.M., Oleinik O.S. Homogenization of Differential Operators and Integral Functionals. Berlin: Springer—
Verlag, 1994.

Chechkin G.A., Piatnitski A.L., Shamaev A.S. Homogenization: Methods and Applications. Providence (RI): Am. Math.
Soc. 2007.

Temam R. Infinite-dimensional dynamical systems in mechanics and physics. New York (NY): Springer-Verlag 1998. doi:
10.1007,/978-1-4684-0313-8

Babin A.V., Vishik M.I. Attractors of evolution equations. Amsterdam: North-Holland 1992.
Chepyzhov V.V., Vishik M.I. Attractors for equations of mathematical physics. Providence (RI): Amer. Math. Soc. 2002.

Hale J.K., Verduyn Lunel S.M. Averaging in infinite dimensions. J. Integral Equations Applications, 1990; 2(4): 463-494.
doi: 10.1216/jiea/1181075583

Ilyin A.A. Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides. Sb. Math., 1996;
187(5): 635-677. doi: 10.1070/SM1996v187n05ABEH000126

Efendiev M., Zelik S. Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their
homogenization. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2002; 19(6): 961-989. doi: 10.1016/S0294-1449(02)00115-
4

Bekmaganbetov K.A., Chechkin G.A., Chepyzhov V.V. Homogenization of random attractors for reaction-diffusion
systems. CR Mecanique, 2016; 344(11-12): 753-758. doi: 10.1016/j.crme.2016.10.015

Bekmaganbetov K.A., Chechkin G.A., Chepyzhov V.V., Goritsky A.Yu. Homogenization of trajectory attractors of
3D Navier-Stokes system with randomly oscillating force. Discrete Contin. Dyn. Syst., 2017; 37(5): 2375-2393. doi:
10.3934/dcds.2017103



G.F. Azhmoldaev et. al. 23

23]

[24]

[25]

[26]

27]

28]

[29]

[30]

31]

32]

(33]

[34]

[35]

[36]

37]

[38]

(39]

[40]

[41]

[42]

[43]

[44]

Chechkin G.A., Chepyzhov V.V., Pankratov L.S. Homogenization of Trajectory Attractors of Ginzburg-Landau equations
with Randomly Oscillating Terms. Discrete and Continuous Dynamical Systems. Series B, 2018; 23(3): 1133-1154. doi:
10.3934/dcdsb.2018058

Bekmaganbetov K.A., Chechkin G.A., Chepyzhov V.V. Weak Convergence of Attractors of Reaction—Diffusion Systems
with Randomly Oscillating Coefficients. Applicable Analysis 2019; 98(1-2): 256-271. doi: 10.1080/00036811.2017.1400538

Boyer F., Fabrie P. Mathematical Tools for the Study of the Incompressible Navier—Stokes Equations and Related Models.
Applied Mathematical Sciences. New York (NY): Springer, 2013.

Chepizhov V.V.,. Vishik M.I. Trajectory attractors for reaction-diffusion systems. Top.Meth.Nonlin.Anal. J. Julius
Schauder Center 1996; 7(1): 49-76.

Maz’ya V.G. The S.L. Sobolev’s Spaces. Leningrad: Leningrad State University Press, 1984.

Chechkin G.A., Koroleva Yu.O.,Persson L.-E. On the Precise Asymptotics of the Constant in the Friedrich’s Inequality
for Functions, Vanishing on the Part of the Boundary with Microinhomogeneous Structure. Journal of Inequalities and
Applications 2007.

Chechkin G.A., Koroleva Yu.O., Meidell A., Persson L.-E. On the Friedrichs inequality in a domain perforated along
the boundary. Homogenization procedure. Asymptotics in parabolic problems, Russian Journal of Mathematical Physics
2009; 16(1): 1-16.

Mikhailov V.P. Partial differential equations, Moscow: Mir, 1978.

Belyaev A.G., Piatnitski A.L., Chechkin G.A. Averaging in a Perforated Domain with an Oscillating Third Boundary
Conditionto Sb. Math. 2001; 192(7): 933-949. doi: 10.4213/sm576

Chechkin G.A., Piatnitski A.L. Homogenization of Boundary-Value Problem in a Locally Periodic Perforated Domain.
Applicable Analysis 1998; 71(1): 215-235. doi: 10.1080,/000368 19908840714

Lions J.-L. Quelques méthodes de résolutions des problemes aux limites non linéaires, Paris: Dunod, Gauthier-Villars,
1969.

Ladyzhenskaya O.A. Boundary - Value Problems of Mathematical Physics, Moskow, 1973.

Maz’ya V.G. Classes of spaces, measures, and capacities in the theory of spaces of differentiable functions, in Modern
problems of Mathematics. Fundamental Investigations (Itogi Nauki i Techniki VINITI AN SSSR, Moskow: Nauka, 1987;
26.

Lax P.D., Milgram A. Parabolic equations, in Contributions to the Theory of Partial Differential Equations. Ann. Math.
Studies. Princeton: Princeton University Press 1954; 33: 167-190.

Chechkin G.A., Chechkina T.P., D’Apice C., De Maio U., Mel'nyk T.A. Homogenization of 3D Thick Cascade Junction
with the Random Transmission Zone Periodic in One direction. Russian Journal of Mathematical Physics 2010; 17(1):
35-55.

Chechkin G.A., Chechkina T.P., D’Apice C., De Maio U., Mel’nyk T.A. Asymptotic Analysis of a Boundary Value Problem
in a Cascade Thick Junction with a Random Transmission Zone. Applicable Analysis 2009; 88(10-11): 1543-1562.

Chechkin G.A., Chechkina T.P., Ratiu T.S., Romanov M.S. Nematodynamics and Random Homogenization. Applicable
Analysis 2016; 95(10): 2243-2253. doi: 10.1080,/00036811.2015.1036241

Amirat Y., Bodart O., Chechkin G.A. ,Piatnitski A.L. Boundary homogenization in domains with randomly oscillating
boundary. Stochastic Processes and their Applications 2011; 121(1): 1-23.

Yosida K. Functional Analysis. Springer-Verlag, Berlin, 1995.

Belyaev A.G. On Singular perturbations of boundary-value problems (Russian). Moscow State University,PhD Thesis,
1990.

Sobolev S.L.. Some applications of functional analysis in mathematical physics. Third Edition. Translations of
Mathematical Monographs Serie. Providence, Rhode Island: AMS Press, 1991; 90.

Azhmoldaev G.F., Bekmaganbetov K.A., Chechkin G.A., Chepyzhov V.V. Homogenization of attractors to reaction—
diffusion equations in domains with rapidly oscillating boundary: Critical case. Networks and Heterogeneous Media, 2024;

19(3): 1381-1401.



24 Homogenezation of attractors to the reaction-diffusion system . ..

Asmop mypaav, Maaimem:

Aotemondaes Tasus Datisyaraesuy (Koppecnondenwm asmop) — JI.H.Tymunes amvndazon Eypa-
3ua  yammolk ynusepcumeminiy, dokmopanmos (Acmana, Kaszaxeman, aaekmpondoks nowma:
azhmoldaevgf@gmail.com);

Bexmazanbemos Kyanviu, Ab60parmanosuy — GuU3UKA-MAMEMAMUKE 2bLABMOIADbIHBLE, 00KMOPDL,
M.B. Jlomonocos amuvindaev, Mackey memaexemmix yrusepcumeminit, Kasaxemandaev, Gusuanvi-
Hou npogeccopur (Acmana, Kaszaxeman, srexmpondor nowma: bekmaganbetov-ka@yandex.kz);

Yeurxun I'puzoputi Aaekcandposut — Guauka-mMamemamure evtavmoapuiHviy, doxmopu,, M.B. Jlo-
monocos amuirdazv, Mockey memaexemmir yrusepcumeminin, npogeccopo. (Mockey, Peceti, snex-
mpondok nowma: chechkin@mech.math.msu.su);

Yenwiorcoe Baadumup Buxkmoposuy — @Puauka-mamemamurs  2uavmoapuino,  dokmopot,
A A. Xapxesuu amuindazol aKnapammot, H#cibepy MoCceAeseps UHCTNUMYMbIHLH, 0GC 2bIABIM Kbl3MeN-
kepi (Moackey, Peceti, anexmpondv nowma: chep@iitp.ru,).

Cesedenus 06 asmope:

Aotemondaes Tasuz Datizyanaesuy (koppecnondenm asmop)— PhD doxmopanm Espasutickozo
HAYUOHAALHO20 YyHusepcumema umenu J1. H. lymunréea (Acmana, Kasaxcman, anexmponnas nowma:
azhmoldaevgf@gmail.com);

Bexmazanbemos Kyanviuw A6dparmarosuy — Aoxmop Guauko-mamemamueskut Hayk, npopeccop
Kasaxemanckozo duavara MI'Y umernu M.B. Jlomonocosa (Acmana, Kazaxcman, ssexmpornas
nouma: bekmaganbetov-ka@yandex.kz);

Yeuxun I'pueoputl Asexcandposuy — dokmop dusuro-mamemamueukur Hayx, npogpeccop Moc-
K06CK020 20cydapcmeentozo yrusepcumema umeny M.B. Jlomonocosa (Mockea, Poccus, anexmpon-
nasa nouwma: chechkin@mech.math.msu.su);

Yenwiorcoe Baadumup Buxmoposuy — dokmop husuko-mamemamueukus Hayx, 2Aa8HbT HayuHbL
compyonur Unemumyma npobaem nepedavu ungopmavyuu um. A. A. Xapresuwa (Mockea, Poccuas,
anexkmponnas nowma: chep@Qiitp.ru,).

Information about author:

Gaziz Faizullaevich Azhmoldaev (corresponding author) — PHD student of L.N. Gumilev Eurasian
National University (Astana, Kazakhstan, e-mail: azhmoldaevgf@gmail.com);

Kuanysh Abdrakhmanovich Bekmaganbetov — Doctor of physical and mathematical sciences,
Associate professor of M.V. Lomonosov Moscow State University, Kazakhstan Branch (Astana,
Kazakhstan, e-mail: bekmaganbetov-ka@yandex.kz);

Gregory Alexandrovich  Chechkin — Doctor of physical and mathematical sciences,
Full  Professor of M.V. Lomonosov Moscow State University (Moscow, Russia, e-mail:
chechkin@mech.math.msu.su);

Viadimir Victorovich Chepyzhov — Doctor of physical and mathematical sciences, leading
researcher of Institute for Information Transmission Problems, Russian Academy of Sciences
(Moscow, Russia, e-mail: chep@Qiitp.ru,).

Received: April 16, 2025
Accepted: June 8, 2025



	Introduction
	Preliminary information.
	 Trajectory attractors of evolution equations 
	The probabilistic framework and main assumptions

	Homogenezation of attractors to the reaction-diffusion system in a domain with locally periodic oscillating boundary
	Statement of the problem
	Homogenized reaction-diffusion system and convergence of attractors in the critical case (=1-)
	Homogenized reaction-diffusion system and convergence of attractors in the subcritical case (>1-)
	Homogenized reaction-diffusion system and convergence of attractors in the supercritical case (<1-)

	Homogenezation of attractors to the reaction-diffusion system in a domain with randomly oscillating boundary
	Statement of the problem
	Homogenized reaction-diffusion system and convergence of attractors

	Conclusion

