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SYMMETRY EQUIVALENCES OF BOUNDARY VALUE PROBLEMS FOR
THE NON-UNIFORM BEAMS

In this paper, the models of Euler–Bernoulli non-uniform beams with the axial loads on the Winkler
foundations are considered. The non-uniform beam in the model is described by three variable
parameters/coefficients: bending stiffness, foundation and beam mass per unit length. The key
finding of this study is the clear demonstration of how the agreed symmetry of variable parameters
affects the spectral properties of a problem. The qualitative results for the symmetric equivalence
(factorisation of sets of eigenvalues and eigenfunctions) of eigenvalues of non-uniform beams for
two types of fixing at the ends (clamped-clamped and hinged-hinged) have been obtained. In
order to demonstrate equivalence, a hybrid algorithm has been devised, based on the qualitative
spectral properties of fourth-order ordinary differential equations and axial load calculations. The
results have been validated using examples on the Maple computer package and compared with
the experimental measurements.
Key words: Euler–Bernoulli beam, non-uniform beam, eigenvalue, symmetry, equivalence.
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Бiркелкi емес бөренелер үшiн шекаралық есептердiң симметриялық эквиваленттiгi

Бұл жұмыста iргесi Винклер бойынша осьтiк жүктемелерi бар Эйлер-Бернулли бiркелкi емес
бөренелердiң модельдерi қарастырылған. Модельдегi бiркелкi емес бөрене үш айнымалы па-
раметрмен/коэффициенттермен сипатталады: иiлу қаттылығы, ұзындық бiрлiгiне қатысты
бөрененiң iргесi мен массасы. Бұл зерттеудiң негiзгi тұжырымы айнымалы параметрлердiң
келiсiлген симметриясының есептiң спектрлiк қасиеттерiне қалай әсер ететiнiн айқын көрсету
болып табылады. Бiркелкi емес бөренелердiң меншiктi мәндерiнiң симметриялық эквивалент-
тiлiгiнiң (меншiктi мәндерiнiң және меншiктi функциялар жиының көбейткiштерге жiктелi-
нуi) екi ұштарында бекiтудiң (қатты-қатты және топсалы-топсалы бекiтiлген) түрлерi үшiн
сапалы нәтижелер алынды. Эквиваленттiлiгiн көрсету үшiн төртiншi реттi қарапайым диф-
ференциалдық теңдеулердiң сапалы спектрлiк қасиеттерiне және осьтiк жүктеменi есептеуге
негiзделген гибридтi алгоритм жасалды. Нәтижелер Maple компьютер пакетiндегi мысалдар
арқылы расталды және эксперименттiк өлшемдермен салыстырылды.
Түйiн сөздер: Эйлер–Бернулли бөренесi, бiркелкi емес бөренелер, меншiктi мән, симметрия,
эквиваленттiк.
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В данной работе рассматриваются модели неоднородных балок Эйлера–Бернулли с осевыми
нагрузками на основание Винклера. Неоднородная балка в модели описывается тремя пере-
менными параметрами/коэффициентами: жесткостью изгиба, основанием и массой балки на
единицу длины. Ключевым выводом данного исследования является наглядная демонстра-
ция того, как согласованная симметрия переменных параметров влияет на спектральные
свойства задачи. Получены качественные результаты для симметричной эквивалентности
(факторизации наборов собственных значений и собственных функций) собственных значе-
ний неоднородных балок для двух типов закрепления на концах (защемленно-защемленное
и шарнирно-шарнирное). Для демонстрации эквивалентности разработан гибридный алго-
ритм, основанный на качественных спектральных свойствах обыкновенных дифференциаль-
ных уравнений четвертого порядка и расчетах осевой нагрузки. Результаты были проверены
с использованием примеров в компьютерном пакете Maple и сравнены с экспериментальными
измерениями.
Ключевые слова: балка Эйлера–Бернулли, неоднородная балка, собственное значение, сим-
метрия, эквивалентность.

1 Introduction

The majority of mechanical systems comprising beam construction, as employed in technology
and engineering, are defined by their geometric and physical variable parameters. Such
structures include parabolic tapering and functionally graded beams [1–3], which can be
adopted for a light-weight design or specific wave propagation effects [4, 5], as well as
piezoelectric energy harvesting [6, 7]. In [3], a closed-form dynamic stiffness formulation for
the analysis of transverse free vibration in non-uniform symmetric Euler–Bernoulli beams was
proposed, and effects of boundary conditions were investigated. A beam with a heterogeneous
temperature distribution exhibits variable physical properties. The presence of variable
parameters introduces a significant degree of complexity into the dynamic analysis. The
modelling of mechanical systems comprising non-uniform beam construction gives rise to
the formation of fourth-order linear equations with variable coefficients. Consequently, both
approximate analytical [8–10] and numerical methods [12–16] for solving differential equations
with variable coefficients under different conditions are being actively developed. A thorough
literature review on the solution methods for transverse vibration of non-uniform beams with
variable cross-sections can be found in [9]. In [10], approximate analytical expressions for the
natural frequencies of non-uniform beams were obtained in terms of asymptotic theory. The
isospectral problems for non-uniform beams were studied in [11,12]. The isospectral problems
between non-uniform and uniform beams were presented in [12]. The natural frequencies of
free boundary value problems for beams with symmetric coefficient without an axial load
were studied in [9]. In [15], a regular variation approach to finding natural frequencies and
modes of vibration of non-homogeneous beams were studied.

In the modelling of mechanical systems, it is essential to have a closed analytical formula
for natural frequencies [17, 18, 20, 23]. In [17], a closed-form solution for non-uniform beams
was proposed using special functions. In [18], an asymptotic formula of natural frequencies for
the non-uniform beams with different boundary conditions was derived based on perturbation
method. Eigenvalue asymptotics of an even order differential ordinary operator with square
integrable potential were obtained in [19]. In [20], a solution for the free vibrations of
non-uniform beams on a non-uniform Winkler foundation was presented, employing the
Laguerre collocation method. The influence of axial loads on the natural frequencies of
uniform beams with various boundary conditions were investigated in [21, 22]. Additionally,
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the papers revealed critical values of axial loads. In [23], several results pertaining to
the closed-form expression for the natural frequencies of uniform beams were modified.
Additionally, the concept of symmetrical equivalence was demonstrated for a uniform Euler-
Bernoulli beam subjected to an axial load. The spectral properties of hinged-hinged beams,
both with and without axial loads on an elastic foundation, were investigated based on
the characteristic determinant in [24, 25] and [26], respectively. The effects of a foundation
coefficient for calculating of the critical load were presented in [27]. The symmetric equivalence
of boundary value problems for the uniform beams without and with axial loads lying on
a Winkler’s type foundation were studied in [28] and [29], respectively. Nevertheless, the
symmetric equivalence of boundary value problems for non-uniform beams remains an area of
incomplete investigation. One of the methods for studying non-uniform beams is to represent
them as stepped beams. The symmetric equivalence of stepped beams can be employed for
identification problems pertaining to the physical properties of beams, as evidenced by the
findings set forth in the paper by [30].

The goal of this research is to identify conditions for the variable coefficients of bending
stiffness, foundation and mass of the beam per unit length and fixing types of a non-
uniform beam under which it is possible to establish the equivalence of the eigenvalues and
eigenfunctions. The novelty of the paper is the agreed symmetry of the variable coefficients
(see Theorems 1). The results presented here extend several known results from the cited
sources, namely [23,28,29].

The problem of transverse vibrations of a non-uniform beam of unit length

ρA(x)
∂2w(x, t)

∂t2
+ k(x)w(x, t) + T

∂2w(x, t)

∂x2
+

∂2

∂x2

(
EJ(x)

∂w(x, t)

∂x2

)
= 0,

after replacement w(x, t) = v(λ, x) sin(ωt) reduces to the following spectral problem:

(EJ(x)v′′(λ, x))
′′
+ Tv′′(λ, x) + k(x)v(λ, x) = λρA(x)v(λ, x), x ∈ Ip, p = 1, 2, (1)

where v(λ, x) are the eigenfunctions of the transverse static deflection of the beam; EJ(x)
is the bending stiffness; ρA(x) is mass of the beam per unit length; T is corresponding to
a constant compressive force if T > 0 or a constant tensile force if T < 0; λ = ρω2 are
the eigenvalues; ω is the circular frequency; ρ is the material density; k(x) is the variable
coefficient of foundation, I1 = (0, 1), I2 =

(
1
2
, 1

)
. Notice that J(x) and A(x) are assumed

twice continuously differentiable and strictly positive, k(x) is the real-valued summable
function.

In this study, two types of beams are considered. The first is the hinged-hinged beam on
the interval I1 with the boundary conditions (see Figure 1)

v(λ, 0) = 0, v′′(λ, 0) = 0, v(λ, 1) = 0, v′′(λ, 1) = 0, (2)

and the second is the clamped-clamped beam on the interval I1 with the boundary conditions
(see Figure 2)

v(λ, 0) = 0, v′(λ, 0) = 0, v(λ, 1) = 0, v′(λ, 1) = 0. (3)

In addition, we introduce the sliding-hinged boundary conditions
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Figure 1: Hinged-hinged Euler–Bernoulli non-uniform beam.

Figure 2: Clamped-clamped Euler–Bernoulli non-uniform beam.

v′
(
λ,

1

2

)
= 0, v′′′

(
λ,

1

2

)
= 0, v(λ, 1) = 0, v′′(λ, 1) = 0, (4)

and hinged-hinged boundary conditions

v

(
λ,

1

2

)
= 0, v′′

(
λ,

1

2

)
= 0, v(λ, 1) = 0, v′′(λ, 1) = 0 (5)

which are connected with hinged-hinged fixing on the interval I2. Furthermore, we introduce
the sliding-clamped boundary conditions

v′
(
λ,

1

2

)
= 0, v′′′

(
λ,

1

2

)
= 0, v(λ, 1) = 0, v′(λ, 1) = 0, (6)

and hinged-clamped boundary conditions

v

(
λ,

1

2

)
= 0, v′′

(
λ,

1

2

)
= 0, v(λ, 1) = 0, v′(λ, 1) = 0 (7)

which are connected with clamped-clamped fixing on the interval I2.

2 Main results

Let σ(A1), σ(B1), σ(C1) be a set of eigenvalues of problems A1 − λI, B1 − λI, C1 − λI
generated by Equation (1) on finite intervals by boundary conditions (2), (4), (5), respectively.
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Theorem 1 Let J(x), k(x) and A(x) be the symmetric functions with respect to the point
x = 1

2

J(x) = J(1− x), k(x) = k(1− x), A(x) = A(1− x), x ∈
[
0;

1

2

]
(8)

and T < Tcr. The following statements are true:
1. σ(A1) ≡ σ(B1) ∪ σ(C1)
2. If λ ∈ σ(B1) or λ ∈ σ(C1), then the eigenfunctions of problems A1 − λI corresponding to
the eigenvalues λ are symmetric or asymmetric with respect to the middle of the beam at the
point x = 1

2
on the interval (0, 1), respectively.

Let σ(A2), σ(B2), σ(C2) be a set of eigenvalues of problems A2 − λI, B2 − λI, C2 − λI
generated by Equation (1) on finite intervals by boundary conditions (3), (6), (7), respectively.

Theorem 2 Let J(x), k(x) and A(x) be the symmetric functions with respect to the point
x = 1

2
, i.e. the condition in Equation (8) holds and T < Tcr. The following statements are

true:
1. σ(A2) ≡ σ(B2) ∪ σ(C2)
2. If λ ∈ σ(B2) or λ ∈ σ(C2), then the eigenfunctions of problems A2 − λI corresponding to
the eigenvalues λ are symmetric or asymmetric with respect to the middle of the beam at the
point x = 1

2
on the interval (0, 1), respectively.

The proof of Theorems 1 and 2 is ideologically similar to that presented in work [28].
Nevertheless, there is a single discrepancy, which require is calculating of the critical value
Tcr. Further will be described the scheme for proving Theorems 1 and 2.

First step. The following functions J(x), k(x) and A(x) will be selected to satisfy
condition (8).

Second step. The critical value of Tcr will be calculated that corresponding to the first
step and the value of T will be selected such that T < Tcr. The calculation of Tcr will be
conducted using well-known numerical method (see, [22]).

Third step. The final step will employ the same technique used to prove the result
presented in [28].

Upon completion of the aforementioned three steps, the proofs of Theorems 1 and 2 will
be obtained. In the third step, the analytical or numerical method may be employed. It should
be noted that if the functions J(x), k(x) and A(x) satisfy condition (8) and the additional
condition from [12], then the non-uniform beam can be transformed into a uniform one.

Remark 1 Results from Theorem 1 and Theorem 2 are preserved for stepped beams.
Experimental and numerical simulations for the clamped-clamped stepped beam were carried
out in [30,31]. The symmetric equivalence of the clamped-clamped stepped beam was used for
solving the inverse coefficients problems in [30].

3 Examples and discussion

In this section, we calculate approximately the four or five eigenvalues of boundary value
problems An−λI, Bn−λI, Cn−λI (n = 1, 2, 3) generated by the Euler–Bernoulli equation for
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the various coefficients J(x), k(x), A(x) and p(x). The results of calculation of the eigenvalues
are shown in the corresponding columns of Tables 1–4.

Example 1 In this analysis, we examine three steps.
First step. Let J(x) = 1 + x(1− x), k(x) = 4x(1− x), A(x) = x(1− x) and E = 1.
Second step. In this example Tcr ≈ 12.09 and take T = 5.
Third step. The numerical results of the first five eigenvalues’ square root

√
λ for Example

1 are shown in Table 1.

Table 1: Numerical calculations of the first five eigenvalues from the Example 1
Hinged-hinged at the
points x = 0, x = 1

Sliding at the point x =
1
2
, hinged at the point
x = 1

Hinged at the point x =
1
2
, hinged at the point
x = 1

(2) (4) (5)
17.95 17.95 95.65
95.65 229.93 420.31
229.93 666.79 969.34
420.31 1327.96 1742.63
666.79 2213.36 2740.14

The calculations presented in Example 1 provide corroboration for the validity of
Statement 1 of Theorem 1 pertaining to the factorization of the set of eigenvalues.

Example 2 In this analysis, we consider three steps.
First step. Let J(x) = x(1− x), k(x) = 5(1 + x)3, A(x) = x(1− x) and E = 1.
Second step. In this example Tcr ≈ 3.73 and take T = 1.
Third step. The numerical results of the first five eigenvalues’ square root

√
λ for Example

2 are shown in Table 2.

Table 2: Numerical calculations of the first five eigenvalues from the example 2.
Hinged-hinged at the
points x = 0, x = 1

Sliding at the point x =
1
2
, hinged at the point
x = 1

Hinged at the point x =
1
2
, hinged at the point
x = 1

(2) (4) (5)
11.31 12.37 37.09
36.38 84.70 152.81
84.31 240.98 349.07
152.55 476.99 624.72
240.81 792.23 979.52

The violation of the regularity of factorization of eigenvalues in Example 2 is due to the failure
to satisfy the symmetry condition for the function k(x). The aforementioned calculations in
Example 2 confirm the validity of Statement 1 of Theorem 1.
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Example 3 We consider three steps.
First step. Let J(x) = 1 + x(1− x), k(x) = 4, A(x) = x2(1− x)2 and E = 1.
Second step. In this example Tcr ≈ 45.71 and take T = 30.
Third step. The numerical results of the first five eigenvalues’ square root

√
λ for Example

3 are shown in Table 3.

Table 3: Numerical calculations of the first five eigenvalues from the Example 3
Clamped-clamped at the
points x = 0, x = 1

Sliding at the point x =
1
2
, clamped at the point
x = 1

Hinged at the point x =
1
2
, clamped at the point
x = 1

(3) (6) (7)
27.4 27.4 121.79
121.79 285.1 511.35
285.1 800.52 1152.37
511.35 1566.79 2043.71
800.52 2583.07 3184.87

The calculations which represent in Example 3 confirm the validity of Statement 1 of
Theorem 2 on the factorization of the set of eigenvalues.

Example 4 We consider three steps.
First step. Let J(x) = 1 + x(1 + x), k(x) = 4, A(x) = x2(1− x)2 and E = 1.
Second step. In this example Tcr ≈ 67.4 and take T = 30.
Third step. The numerical results of the first five eigenvalues’ square root

√
λ for Example

4 are shown in Table 4.

Table 4: Numerical calculations of the first four eigenvalues from the Example 4
Clamped-clamped at the
points x = 0, x = 1

Sliding at the point x =
1
2
, clamped at the point
x = 1

Hinged at the point x =
1
2
, clamped at the point
x = 1

(3) (6) (7)
43.21 62.46 191.41
159.65 420.72 725.72
357.61 1126.92 1602.73
631.47 3562.85 2820.71

The violation of the regularity of factorization of eigenvalues in Example 4 is is due to
the failure to satisfy the symmetry condition for the function J(x). The aforementioned
calculations in Example 4 confirm the validity of Statement 1 of Theorem 2.

Example 5 In this study, we consider a two-stepped beam with clamped-clamped boundary
conditions. The geometric dimensions of the composite beam are as follows: L1 = L3 =
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247.6mm L2 = 508mm, h1 = h2 = h3 = 3.6mm, b1 = b3 = 38.2mm and b2 = 25.7mm
and these are illustrated in in Fig.3. Young’s modulus and the density are 28.3GPa and
ρ = 1800kg/m3, respectively. In this example, T = 0, k(x) = 0. The natural frequencies

Figure 3: Two-stepped composite beam with clamped-clamped boundary conditions [30,31].

are computed by transcendental eigenvalue problem (TEP) and the results compared with the
experimental measurements [30] in Table 5.

Table 5: The first five natural frequencies (Hz) from the Example 5
Clamped-clamped at the
points x = 0, x = 1.
Experiment [30]

Sliding at the point x =
1
2
, clamped at the point
x = 1

Hinged at the point x =
1
2
, clamped at the point
x = 1

(3) (6) (7)
16.1± 0.16 16.12 41.01
41.3± 0.16 78.67 130.55
79.3± 0.16 195.01 270.97
134.0± 0.16 360.78 465.47
196.5± 0.16 581.72 708.17

The calculations presented in Example 5 confirm the validity of Statement 1 of Theorem
2 on the factorization of the set of eigenvalues.

A numerical method was employed for the calculation of the eigenvalues at the variable
coefficients of J(x), A(x) and k(x) with the polynomial expansion and integral techniques as
outlined in [14]. The degree of the polynomial was selected as N = 25, which ensures accuracy
of calculations. The numerical calculations were carried out using the Maple computer
mathematics system [32].

The results obtained in this work permits to study the qualitative spectral properties of
a non-uniform beam. Symmetrical equivalence permits to calculate the natural frequencies
of a full beam using the natural frequencies of two short beams with different lengths and
fixing methods. This paper presents examples of partial factorization of the eigenvalues of
a full-length beam in the case of an asymmetric foundation coefficient. Furthermore, the
length of short beams is also contingent upon the agreed symmetry. To illustrate, when the
parameters are symmetric about the x = 1/2, the length of the short beams is equal to half
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the length of the full beam. The aforementioned capabilities are play a significant role in
computer calculations and the modeling of mechanical systems with complex structures. It
is therefore anticipated that future research will focus on the behavior of mechanical systems
of complex structure, with the star graph serving as a case in point [33] .

4 Conclusions

In this paper, the problems for determining the eigenvalues of the non-uniform
Euler–Bernoulli beam with the axial load lying on the Winkler’s type foundation at two types
of fixings at the ends have been solved: clamped-clamped and hinged-hinged. A sufficient
condition has been found for the variable coefficients of the differential equation of the beam,
which a symmetrical equivalence of the eigenvalues and eigenfunctions is satisfied.
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